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Abstract The paper is concerned with system reduction by statistical methods and, in par-
ticular, by the optimal prediction method introduced in (Chorin, A.J., Hald, O.H., Kupfer-
man, R., Optimal prediction with memory, Phys. D 166:239–257, 2002). The optimal predic-
tion method deals with problems that possess large and small scales and uses the conditional
expectation to model the influence of the small scales on the large ones.

In the current paper, we develop a different variant of the optimal prediction method as
well as introduce and compare several approximations of this method. We apply the original
and modified optimal prediction methods to a system of ODEs obtained from a particle
method discretization of a hyperbolic PDE and demonstrate their performance in a number
of numerical experiments.

Keywords Optimal prediction · Particle methods · Multiscale computations

1 Introduction

Many physical systems of scientific or engineering interest can have very large numbers of
degrees of freedom. Usually we are not interested in all of these millions of variables, we
just want to know a handful of statistical quantities.

The situation can be further explained as follows: in the numerical solution of nonlinear
partial differential equations (PDEs), there are always (small) scales that can not be resolved
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because there are not enough computational (memory/running time) to simulate those scales.
In many important applications, however, the unresolved small scales may be important:
very often it is not that these scales themselves needed to be resolved, but their influence
on the large scales has to be accounted for. In most cases the impact of the small scales on
the large ones is crucial in understanding the phenomenon. Therefore, we would like ways
of approximating the interesting features of a system without keeping all the variables and
doing all the work.

Reduction schemes attempt to take a very large dynamical system and reduce its size
by taking into account the effects of a large subset of variables (called unresolved) on a
small subset (resolved) without explicitly computing their evolution. This large subset is
usually thought of as consisting of relatively uninteresting variables at the extreme end of
some scale, e.g., fast or small, and thus the goal is to find a dynamical system that has a
substantially smaller number of degrees of freedom, yet still modeling interesting aspects of
the original system with acceptable accuracy.

In [7, 8] and a number of related papers [9, 12], an optimal prediction (OP) framework,
which can be regarded as a type of order reduction scheme, has been recently developed.
The OP method is based on the Mori-Zwanzig (M-Z) identity, which transforms a system of
ordinary differential equations (ODEs) to a form amenable to simplifying approximations
of systems of ODEs. The M-Z equation yields, in principle, exact reduction methods, but
often hard to use (see, e.g., [11, 13, 16, 17, 21]), so in [7, 8] an approximation of the M-Z
equation termed the t -model was presented. The t -model of a system of ODEs is a smaller
system of ODEs that approximates the original system in a useful sense. It has been applied
to Euler equations in [14] and to the Burgers equation in [1]. Its higher order versions have
been recently constructed in [19] and used to compute the rate of energy decay for the
Taylor-Green vortex problems [20].

In the current work, we have developed a different variant of the optimal prediction (OP)
method. Several approximations of this method are introduced, one of them is similar to the
aforementioned t -model. In Sect. 2, we summarize the former results of the OP method. We
introduce the M-Z formulation and define the projection operator as the conditional expec-
tation. In Sect. 3, we present our version of obtaining an equation for the resolved scales.
We also derive simplified formulations and compare them. In Sect. 4, we show how the OP
method can be applied to a systems of ODEs that arises in numerical solutions of PDEs by
particle methods. To this end we consider a simple model problem, which nevertheless will
give new insight into many important details of a reduced model derivation. In Sect. 4.2,
we demonstrate the performance and accuracy of our approach in a number of numerical
experiments. Finally, a brief overview of particle methods is given in Appendix.

2 The Optimal Prediction Method and the t -model

In this section, we briefly describe the OP method. For a detail derivation and analysis of
the method we refer the reader to [7–9] and the references therein.

We start with the system of ODEs

φ t = f(φ) (2.1)

that will be the focus of our study. Here, φ = (φ1, . . . , φn) ∈ R
n is a vector function of a time

variable t and f : R
n → R

n is a given function. We assume that n is large enough that the
work of integrating (2.1) in time is inconveniently large. The system may be obtained from
discretization of PDE’s, in which case n tends to infinity.
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The system (2.1) is supplemented by initial conditions, and part of the Mori-Zwanzig
framework is the fact that φ depends on them, so we have

φ = φ(t,x) and φ(t = 0,x) = x (2.2)

and x = (x1, . . . , xn) ∈ R
n just as φ is.

The next piece of the framework is partitioning φ and x into a “resolved” part ̂φ, x̂ ∈ R
m

(with m � n) and an “unresolved” part ˜φ, x̃ ∈ R
n−m, so that

φ = (̂φ,˜φ), x = (̂x, x̃). (2.3)

An alternative way of looking at the splitting is to assume that the solution contain large and
small scales and we are interested in resolving only the large scale part of the solution with
taking into account the effect of the small scales on the large ones. If the ODE (2.1) is derived
from a partial differential equation, then typically the high-frequency parts of the solution
correspond to the unresolved variables, and low-frequency parts to the resolved variables.
We will use high modes/low modes interchangeably with resolved/unresolved variables.

A convenient way of deriving the OP method is to use the Liouville operator that leads to
a linear version of (2.1). The Liouville operator L associated with the ODE (2.1) is defined
by

L =
∑

j

fj (x)
∂

∂xj

= f · ∇x. (2.4)

It can be also defined as

L =
∑

j

fj (φ)
∂

∂φj

= f · ∇φ . (2.5)

For the proof that the two definitions are equivalent we refer the reader to [7, p. 125].
The Liouville equation is then given by

ut = Lu,

where u : R
+ × R

n → R, which is a linear first-order PDE whose characteristics are the
solutions of (2.1). If we now let u(t = 0,x) = u0(x) = xj , j takes any value, then

u(t,x) = φj (t,x).

This important result requires a somewhat lengthy proof, which can be found in, e.g., [7].
The M-Z formula involves a time invariant projection operator P (which will be defined

later) that projects every function to its large (resolved) scales. Having the operators P and
Q = I − P , one can obtain the equation for the large scales only:

∂Pu

∂t
= PeLt P Lu0 +

∫ t

0
PeL(t−τ)P LeQ Lτ QLu0 dτ. (2.6)

This yields a reduced equation with fewer variables, though it is much more complicated
than the original ODE (2.1).

In order to derive an efficient method for system reduction, the integral (the memory
term) on the right-hand-side (RHS) of (2.6) has to be simplified. An approximation to (2.6),
known as the t -model, was introduced in [8] and [9]. Assuming that initially u0 can be
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replaced by Pu0 and expanding the memory term to first order in t , one can obtain that for
short times

∫ t

0
PeL(t−τ)P LeQ Lτ QLu0 dτ ∼ t P L QL Pu0.

Furthermore, assuming that for short times eLt can be approximated by eQ Lt ∼ (I + QLt)

and replacing u0 by u(t) in the first term on the RHS of (2.6) and by (I − Q L P)u(t) in the
second term, one gets:

∂Pu

∂t
∼ P(I + QLt)P L P(I − QLt)u + t P L QL Pu.

Since P Q = 0, one obtains following the t -model:

ξt = P L Pξ + t P L QLξ, (2.7)

where ξ approximates Pu.
Finally one needs to define the operator P . The original M-Z framework deals with this

issue by using a probability distribution on x, that is, making x a random vector, and then
considering the conditional expectations of quantities, conditioned on x̂. Recall that if the
probability on x has a density function q(x) = q(̂x, x̃), then the conditional expectation of x̃
with respect to x̂ is

E(̃x|̂x) =
∫

x̃q(̃x, x̂) dx̃
∫

q(̃x, x̂) dx̃
(2.8)

and the conditional expectation of a function g(x) = g(̂x, x̃) with respect to x̂ is

E(g|̂x) =
∫

g(̂x, x̃)q(̃x, x̂) dx̃
∫

q(̃x, x̂) dx̃
. (2.9)

So, for example, E(φ(t, x̂, x̃)|̂x) depends on x̂ and t , but not on x̃.
The operator P is then defined as

Pg = E(g(x)|̂x) (2.10)

for any function g(x). Note that Pg �= g(̂x,E(̃x|̂x)). Notice also that the operator P is linear:

P(αg(x) + βh(x)) = αPg(x) + βPh(x)

and it is idempotent:

P (Pg(x)) = Pg(x).

3 A Modified Optimal Prediction Method

In this section, we present a new derivation of the t -model equation for the resolved scales
as well as its modification and a higher-order version.

Let us consider here a linear equation

ut = Lu (3.1)
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with an initial condition

u(t = 0) = u0 (3.2)

and with suitable boundary conditions, which we assume to be incorporated in the form
of the operator L. The precise form of the operator L is of no interest for the discussion
to follow. However, since it is sometimes convenient to have a specific model, the reader
is encouraged to think about function u being a function of a time variable t and spatial
variable x, that is u = u(t,x), and L being, for instance, the Liouville operator (2.4).

An essential assumption in our discussion is that the solution u possesses large and small
scales. We are interested in resolving the large scales accurately, but in order to get the
correct information we need to consider the effect of the small scales on the large one.

Let P be a time independent projection operator that projects (at least initially) the solu-
tion into the part that contains the large scales and let, as before, Q = I − P , which, in the
same way, projects the solution into its small scales. For the discussion here P is a general
projection operator. Multiplying both sides of (3.1) by P and using the fact that P 2 = P , we
can rewrite (3.1) as

(Pu)t = P L P(Pu) + P L Q(Qu), (3.3)

and similarly we can obtain an equation for Qu in the form

(Qu)t = Q L Q(Qu) + Q L P(Pu). (3.4)

The first term in RHS of (3.3), P L P , contains the impact of the large scales, while the
second one, P L Q, is the impact of the small scales on the development of the large scales
and therefore should not be neglected. The RHS of (3.4) is composed of the contribution of
the small scales, Q L Q and the effect of the large scales, Q L P .

To derive an equation for the large scales Pu, we solve (3.4) for Qu:

Qu(t) = eQ L Qt (Qu0) +
∫ t

0
eQ L Q(t−τ)Q L Pu(τ) dτ (3.5)

and substitute it into (3.3) to obtain:

(Pu)t = P L P(Pu) + P L QeQ L Qt (Qu0) + P L Q
∫ t

0
eQ L Q(t−τ)Q L Pu(τ) dτ. (3.6)

This formula is exact and involves only the large scales Pu(t) at time t > 0 (Qu0 depends
only on the initial conditions). The integral (the memory term) in the RHS of (3.6) models
the effect of the small scales on the large ones being an important component of the model
as it was mentioned above.

Equation (3.6) cannot be solved easily and therefore should be approximated. Follow-
ing a similar venue to [9], we first assume that Qu0 is small and the operator eQ L Qt is
stable (does not amplify the initial values), and thus the second term in the RHS of (3.6),
P L QeQ L Qt (Qu0), can be neglected. Neglecting this term and using the trapezoidal rule for
the memory term yields:

(Pu)t ≈ P L P(Pu) + t

2
P L Q

[

eQ L Qt Q L Pu0 + Q L Pu(t)
]

. (3.7)

Equation (3.7) can be simplified further. To first order in t , one can approximate eQ L Qt in
(3.7) by I and also replace u0 by u(t) (to avoid an obvious growth in time even when the
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exact solution does not grow). The approximation obtained is the aforementioned t -model
(2.7).

In problems where the important effect is the impact of the large scales on the small
ones (the term Q L P ) and not the dynamic of the small scales themselves (described by
Q L Q), the term eQ L Qt decays fast (this will be shown explicitly in Sect. 4 for our particular
application). Neglecting eQ L Qt in (3.7), we obtain a modification of the t -model:

ξt = P L Pξ + t

2
P L QL Pξ, (3.8)

where, as before, by ξ we denote an approximation to Pu. We expect (2.7) to be better for
short times and (3.8) to be better for longer times. This is supported by numerical experi-
ments reported in Sect. 4.2.

To obtain a higher-order method containing t2 (the next term in expation in t ), we ap-
proximate eQ L Qt by the first order Taylor expansion I + t Q L Q and u0 by u(t) − tut (t):

eQ L Qt Q L Pu0 ∼ [I + t Q L Qt]Q L P[u − tut ]. (3.9)

Expanding the RHS of (3.9) to first order in t and using (Pu)t ∼ P L Pu, yields

eQ L Qt Q L Pu0 ∼ Q L Pu + t[Q L Q L P − Q L P L P]u.

Finally, the t2-approximation is

ξt = P L Pξ + t P L QL Pξ + t2

2
P L QL(I − 2P)L Pξ (3.10)

with ξ approximating Pu.

4 Application to a Particle-Method Problem

In this section, we demonstrate how the reduction method, described in Sect. 3, can be
applied for a system of ODEs that arises in numerical solutions of PDEs by particle methods.
For this purpose, we consider a model problem

wt + (r2w)r = 0, w(r,0) = w0(r), r ∈ R, t > 0, (4.1)

where w = w(r, t) is a function of a space variable r and time variable t . We derive a
particle system of ODEs for (4.1) and show how to reduce its dimensionality by using the
OP method, as well as perform a number of numerical experiments. Despite its apparent
simplicity, this example offers a clear view of how the reduced model for a particle system
can be obtained in general. A brief description of particle methods is given in Appendix.

The particle-method way of solving problem (4.1) is to first approximate the initial con-
dition w0(r) by a linear combination of Dirac distributions

w0(r) ≈ wN
0 (r) =

N
∑

i=1

ωi(0)δ(r − ri(0)) (4.2)
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for some set (ri,ωi) of points (particles) ri ∈ R and their weights ωi ∈ R (ωi(0) can be
thought of as an integral of w0(r) over a neighborhood of the point ri(0)). Then, an approx-
imate solution wN to (4.1) is sought in the form

wN(r, t) =
N

∑

i=1

ωi(t)δ(r − ri(t)), (4.3)

where the evolution of the weights ωi and the locations ri is described by the system of
ODEs:

⎧

⎪

⎨

⎪

⎩

dri(t)

dt
= r2

i (t),

dωi(t)

dt
= 0,

(4.4)

with initial values (ri(0),ωi(0)), see [18] and Appendix.
Note that the equations for each ri are identical and independent and that the ωis are

all constant, so from now on we will omit the dependence on t for the weights, that is,
ωi := ωi(t) ≡ ωi(0) and consider the system

dri(t)

dt
= r2

i (t), i = 1, . . . ,N, (4.5)

for individual particles only. Equation (4.5) can be easily solved analytically and its solution
is given by

ri(t) = 1

r−1
i (0) − t

, i = 1, . . . ,N, t > 0, (4.6)

so if ri(0) < 0, (4.6) is valid for all t . In this particular example, the exact solution of the par-
ticle system is available, in general, however, the system of ODEs obtained after a particle
discretization is to be solved numerically, and at final time, the solution w(r, t) is to be re-
covered from the computed approximation wN(r, t) (the details are discussed in Appendix).

4.1 Derivation of the Reduced Model

Following the discussion in Sect. 3, we denote by x = (x1, . . . , xN) the initial locations of
particles, that is, xi = ri(0), i = 1, . . . ,N , and split the set of degrees of freedom into the
large (resolved) and small (unresolved) scales. We assume that the number of particles is
even, N = 2M , and define for each j = 1,2, . . . ,M :

r̂j = r2j−1 + r2j , (4.7)

r̃j = r2j−1 − r2j , (4.8)

and correspondingly r̂(0) = x̂ and r̃(0) = x̃. Then r̂ = (̂r1, . . . , r̂M) is the resolved degree
of freedom, containing the large scales, and r̃ = (̃r1, . . . , r̃M) the unresolved one, containing
the small scales, which satisfy the following system of equations:

⎧

⎪

⎨

⎪

⎩

dr̂j

dt
= 1

2

(

r̂2
j + r̃2

j

)

, j = 1,2, . . . ,M,

dr̃j

dt
= r̂j r̃j .

(4.9)
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The Liouville operator corresponding to (4.9) is

L =
M

∑

j=1

[

1

2

(

r̂2
j + r̃2

j

) ∂

∂r̂j

+ r̂j r̃j

∂

∂r̃j

]

. (4.10)

Taking into account (4.6), we now assume that the particles xi, i = 1, . . . ,N are initially
uniformly distributed on the interval [−1,0]. This puts pairs of particles (xi, xi+1) on a
square in the lower left quadrant. In addition, we would like these pairs to have “neighbor
relationships”, so we require |xi − xi+1| < σ, i = 1, . . . ,N − 1, for some small positive
number σ = O(1/N). This restricts the pairs (xi, xi+1) to be uniformly distributed on a
hexagonal region.

The corresponding boundaries on the initial values x̂j and x̃j then become

x̂j ∈ [−2,0], |̃xj | < α(̂xj ), j = 1, . . . ,M, (4.11)

with

α(̂xj ) = min(2 + x̂j ,−x̂j , σ ). (4.12)

Following the original M-Z framework and [7, 8], we define the operator P as the con-
ditional expectation in terms of x̂. By symmetry, the first moment vanishes,

P x̃ = E(̃x|̂x) = 0, (4.13)

but the second moment, which we denote by β (̂x) := E(̃x2 |̂x), is nonzero. Indeed, if β (̂x) =
(β(̂x1), . . . , β(̂xM)), then

β(̂xj ) = 1

2α(̂xj )

∫ α(̂xj )

−α(̂xj )

x̃2
j dx̃j = 1

3
α2(̂xj ), j = 1, . . . ,M. (4.14)

Let now ξ = (ξ1, . . . , ξM) be an approximation to the large scales r̂ and η = (η1, . . . , ηM)

to the small scales r̂. Using (4.10) and (4.14), the Mori-Zwanzig functions that appear in the
RHS of (2.7), (3.8), and (3.10) can now be computed as follows:

Lξj = 1

2
(ξ 2

j + η2
j ), (4.15)

P Lξj = 1

2

(

ξ 2
j + β(ξj )

)

, (4.16)

QLξj = 1

2

(

η2
j − β(ξj )

)

, (4.17)

L Q Lξj = ξjη
2 − β ′(ξj )

ξ 2
j + η2

j

4
, (4.18)

P L QLξj = ξjβ(ξj ) − β ′(ξj )
ξ 2
j + β(ξj )

4
. (4.19)

Substituting (4.15)–(4.19) into (2.7), (3.8), and (3.10) for each j = 1, . . . ,M , we obtain the
following t -model

dξj

dt
= 1

2

(

ξ 2
j + β(ξj )

) + t

(

ξjβ(ξj ) − 1

4
β ′(ξj )

(

ξ 2
j + β(ξj )

)

)

, (4.20)
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the modified t -model

dξj

dt
= 1

2

(

ξ 2
j + β(ξj )

) + t

2

(

ξjβ(ξj ) − 1

4
β ′(ξj )(ξ

2
j + β(ξj ))

)

, (4.21)

and the t2-model

dξj

dt
= 1

2

(

ξ 2
j + β(ξj )

) + t

(

ξjβ(ξj ) − 1

4
β ′(ξj )

(

ξ 2
j + β(ξj )

)

)

+ t2

2

[

(

ξj − β ′(ξj )
)

(

ξjβ(ξj ) − 1

4
β ′(ξj )

(

ξ 2
j + β(ξj )

)

)

+ 1

5
β2(ξj )(1 − β ′′(ξj ))

]

.

(4.22)

respectively.

Remark It should be observed that, in the case under consideration, eQ L Qt decays with
time, as it has been predicted in Sect. 3. Indeed, note that Q L Qη = ξη and therefore dη

dt
=

Q L Qη = ξη. Since ξ < 0, then η = eQ L Qt η(0) decreases as time grows.

4.2 Numerical Examples

The goal of this section is to demonstrate the performance of the three different reduction
schemes derived in Sect. 4.1 for the particle method problem (4.1), (4.4).

To numerically compute the approximation ξ , we integrate (4.20), (4.21), and (4.22) in
time using the standard fourth-order Runge-Kutta ODE solver. For the initial condition, we
took xj = xj−1 + �xj , where �xj is a random number between 0 and 1/N , j = 1, . . . ,N ,
and N is the total number of particles. Tables 1 and 2 show a convergence study for the
t -model, the modified t -model and the t2-model. The relative L2-error at times t = 30 (Ta-
ble 1) and t = 60 (Table 2) and the convergence rates are presented for each one of the
models. The convergence rate is computed as

ln

( ‖̂r − ξN1‖2

‖̂r − ξN2‖2

)/

ln

(

N2

N1

)

,

where r̂ is the exact solution, ξN is the numerical solution for the system of N particles,
and ‖̂r − ξN‖2 is the discrete L2-norm of the error. As one can observe, the relative errors
for the modified t -model and the t2-model are smaller than the corresponding errors for the
original t -model, but in all the models, the computed convergence rate is 2.

Table 1 Relative L2-error computed at time t = 30

Number of t-model Modified t-model t2-model

particles Error Rate Error Rate Error Rate

N = 100 7.519 × 10−3 2.380 × 10−3 2.065 × 10−3

N = 200 1.873 × 10−3 2.00 5.942 × 10−4 2.00 5.185 × 10−4 1.99

N = 400 4.679 × 10−4 2.00 1.484 × 10−4 2.00 1.296 × 10−4 2.00

N = 800 1.170 × 10−4 2.00 3.712 × 10−5 2.00 3.247 × 10−5 2.00

N = 1600 2.924 × 10−5 2.00 9.280 × 10−6 2.00 8.117 × 10−6 2.00
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Table 2 Relative L2-error computed at time t = 60

Number of t-model Modified t-model t2-model

particles Error Rate Error Rate Error Rate

N = 100 3.054 × 10−2 9.856 × 10−3 8.927 × 10−3

N = 200 7.530 × 10−3 2.02 2.446 × 10−2 2.01 2.267 × 10−3 1.98

N = 400 1.876 × 10−3 2.00 6.102 × 10−4 2.00 5.687 × 10−4 2.00

N = 800 4.686 × 10−4 2.00 1.525 × 10−4 2.00 1.424 × 10−4 2.00

N = 1600 1.171 × 10−4 2.00 3.813 × 10−5 2.00 3.562 × 10−5 2.00

Fig. 1 The relative L2-error as a
function of time for the t -model

Fig. 2 The relative L2-error as a
function of time for the modified
t -model

In order to highlight the difference in the quality of the obtained results, we also plot in
Figs. 1, 2, and 3 the relative error as a function of time for the t -model, the modified t -model
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Fig. 3 The relative L2-error as a
function of time for the t2-model

Fig. 4 The relative L2-error as a
function of time for three
different models

and the t2-model, respectively. For comparison, in Fig. 4, we show the relative errors com-
puted with N = 200 particles for all three reduced models. As one can see, both the modified
t -model and the t2-model outperform the original t -model in a long time integration, while
for short times the original t -model is slightly better than the modified one.
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Appendix: Particle Methods—An Overview

Here we briefly describe a particle method for a one-dimensional (1-D) linear transport
equations. For more detail derivation, we refer the reader to [18].

Let us consider an equation of the form

wt + (a(r, t)w)r + a0(r, t)w = f (r, t), r ∈ R, t > 0 (A.1)

subject to an initial condition:

w(r,0) = w0(r), r ∈ R. (A.2)

Here w is a function of a time variable t and spatial variable r and a, a0, f and w0 are
given functions. We look for the solution of the initial-value problem (A.1), (A.2) as a linear
combination of Dirac distributions,

wN(r, t) =
N

∑

i=1

ωi(t)δ(r − ri(t)), (A.3)

where N is a total number of particles, ri(t) and ωi(t) are the location and the weight of the
ith particle at time t , respectively.

Considering a weak formulation of the problem and substituting (A.3) into (A.1)–(A.2)
results in the following system of ODEs for the locations of particles, ri(t), and their
weights, ωi(t):

⎧

⎪

⎨

⎪

⎩

dri(t)

dt
= a(ri(t), t),

dωi(t)

dt
+ a0(ri(t), t)ωi(t) = γ (ri(t), t),

(A.4)

where γi(t) reflects the contribution of the source term f . The initial positions of the par-
ticles, ri(0), and the weights, ωi(0), are chosen to give a high-order approximation to the
initial datum according to (A.3). The latter can be done, for instance, in the sense of mea-
sures on R. Given a test function ψ ∈ C0

0(R), the inner product, (w0(r),ψ(r)), should be
approximated by

(wN(r),ψ(r)) =
∫

R

u0(r)ψ(r) dr ≈
N

∑

i=1

ωi(0)ψ(ri(0)).

In other words, the constants {ωi(0)}, should be determined by solving the standard nu-
merical quadrature problem. For example, a midpoint quadrature is then given by setting
ωi(0) = w0(ri(0))�r , where �r > 0 is an initial uniform distance between the particles.

The system (A.4) should, in general, be solved numerically and, the final time, the so-
lution w(r, t) is to be recovered from its particle approximation. A commonly used way of
computing the point values of the numerical solution is a regularization of (A.3), which is
usually performed by a convolution product with so-called “cut-off function” ζ(r) that after
a proper scaling takes into account the initial tightness of the particle discretization, namely

wN
ε (r, t) = (wN ∗ ζε)(r, t) =

N
∑

i=1

ωi(t)ζε(r − ri(t)), (A.5)
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and the function ζε(r) is taken as a smooth approximation of the δ-function which satisfies

ζε(r) = 1

ε
ζ

(

r

ε

)

and
∫

R

ζ(r) dr = 1. (A.6)

There is an extensive discussion in the literature on the selection of the cut-off function
and its relation to the accuracy of particle methods, see, e.g. [6, 10, 15, 18] and references
therein. We also refer the reader to [2–5], where several different strategies for recovering
point values of the solution were suggested.
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