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Temporal, or “strict,” stability of approximation to PDEs is much more difficult to
achieve than the “classical” Lax stability. In this paper, we present a class of finite-
difference schemes for hyperbolic initial boundary value problems in one and two
space dimensions that possess the property of strict stability. The approximations
are constructed so that all eigenvalues of corresponding differentiation matrix have a
nonpositive real part. Boundary conditions are imposed by using penalty-like terms.
Fourth- and sixth-order compact implicit finite-difference schemes are constructed
and analyzed. Computational efficacy of the approach is corroborated by a series of
numerical tests in 1-D and 2-D scalar problemsg 2000 Academic Press
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1. INTRODUCTION

In many computational problems, including, for example, acoustics, electromagn
wave propagation, and fluid dynamic, low-order schemes (second or lower) are not acci
enough. The advantage of high-order finite-difference schemes is twofold: they allow
either to increase accuracy while keeping the number of mesh points fixed or to rec
the computational cost by decreasing the grid dimension while preserving accuracy. .
although they require more work per node, the fact that fewer points need to be storec
computed makes them more efficient than low-order methods [8].

One of the main reasons that low-order schemes are still used in practical computatio
that difficulty arises for the high-order finite-difference schemes near the boundaries of ¢
putational domain. To retain the formal accuracy of the high-order scheme, boundary
sures must be accomplished with the same accuracy as that of the interior scheme, or ai
one order less [6, 7]. On a Cartesian mesh, it is always possible to derive nonsymmet
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boundary operators that fulfill the boundary conditions and maintain the overall accur
of the scheme. The difficulty is in deriving high accuracy atableoperators.

While dealing with the numerical integration of time-dependent PDEs, two differe
limit processes can be considered. One limit is the behavior of the numerical solutiol
the mesh sizé — 0 for a fixed timeT . Another is the behavior of the solution for a fixed
mesh sizeh as the timeT tends to infinity. “Classical” stability addresses the first issue
boundedness of the numerical solution as the mesh is refined at a fixetl.timthis case,
Lax’s equivalence theorem ensures that the scheme converges, i.e., that for a fix€d ti
the numerical solution converges to the analytical solution as the mesdf-siz& Nothing
in this definition excludes error growth in time, and specifically it allows exponential grow
of the error in time. Unfortunately, for time-dependent problems, this stability definiti
might be too weak, in particular if long time integration is being carried out. For long tin
numerical simulations to be useful, the numerical solution must be strictly stable in tir
In the case of semidiscrete approximations, strict stability implies that for a fixed m
sizeh, all eigenvalues of the coefficient matrix of the corresponding system of ordin:
differential equations have a nonpositive real part. For calculation over long time interv
strict stability is especially important because it prevents exponential growth in time of
error for a fixed mesh size.

In the work by Carpenteet al. [3] it was shown that many high-order scalar scheme
which are stable in the classical sense, are not time stable. Moreover, it was recently f
that many high-order schemes that are strictly stable in the scalar case exhibit time d
gence when applied to systems of equations. The underlying reason for the error grow
time is improper imposition of boundary conditions.

For the scalar explicit central-differencing case, Kreiss and Scherer [9] have prese
a method for constructing a boundary condition of accuracy one order less than the i
scheme such that a generalized summation by parts property of the differential equati
preserved. Strand [12] obtained the stability results for explicit high-order finite differer
approximations using the G-K-S stability theory for the semidiscrete initial boundary va
problems (IBVPs). To close the scheme near the boundary he obtained extra bour
conditions by extrapolating the outgoing characteristic variables, and by differentiating
analytic boundary conditions and using the partial differential equation for the incom
characteristic variables. However, in some cases the approximation with such boun
conditions had eigenvalues with a positive real part, and to assure the time stability o
scheme the numerical boundary conditions were modified by adding dissipative terms
the inflow part of the boundary conditions.

In the present work a methodology for constructing compact implicit high-order finit
difference schemes for hyperbolic initial boundary value problems is presented. The .
procedure for imposing the analytical boundary conditions proposed by Carpératier
in [4] is generalized in such a way that: (i) it essentially simplifies the construction of t
approximation of the desirable accuracy from the technical point of view and (i) it alloy
one, in principle, to apply this technique to the solution of multidimensional problen
Temporal stability in one space dimension is achieved by constructing such approximat
that all eigenvalues of the coefficient matrix of the corresponding system of ordinary dif
ential equations have a negative real part. On the other hand, convergence of the sche
proved directly by deriving an equation for the error and bounding the error norm. In or
to solve two-dimensional scalar probledy®x + /9y is approximated by the sum of two
differentiation matrice®, + Dy, where bothD, and Dy have eigenvalues with a negative
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real part. Since the sum matrR, + Dy does not necessarily preserve this virtue, stric
stability of the scheme is proved by showing ti&¢Dx + Dy) + [H (Dx + Dy)]" <0 for
any symmetric positive definite matrbt. Numerical studies on hyperbolic scalar IBVPs in
one and two space dimensions have been performed using fourth- and sixth-order con
implicit difference schemes. Boundary conditions have been imposed using the SAT bol
ary procedure. The numerical results support the theoretical analysis. It has been sl
that the actual numerical solution has a temporal error bounded by a constant.

In Part 1l of this work [13] the above procedures are implemented for the cases of !
and 2-Dsystems of hyperbolic PDBBartial reflection and/or absorbtion at the boundarie
render the analysis more complex. For example, the construction of the differentia
matrices allows for nonpositiveness of the real part of the eigenvalue. Results of sin
quality to those of Part | are reported there.

2. 1-D HYPERBOLIC EQUATIONS

2.1. Description of the Method and Proof of the Main Theorem
We consider the scalar hyperbolic equation
2—?4—/\2—2:0, 0<x<1t=>0 (2.1)
with initial conditions prescribed &t=0,
ux,0 = f(x), O0<x<l1 (2.2)
For positiver we have the boundary condition

u(o, t) = g(t), t>0. (2.3)

We want to solve the above problem by finite difference approximations. In this wo
we will deal with compact schemes for the discretization of the spatial opefgtwe
therefore introduce the mesh widthand divide the interval [0, 1] into subintervals of
lengthh. We use withj =0, ..., N andN = 1/h the notation

Xj = jh, uj(t) = u(xj, t), (2.4)

whereu; (t) is the projection of the exact solutiarix, t) unto the grid. We denote hythe
vector(ug(t), , ..., un(t)T and byv the numerical approximation to the projection
The implicit approximation for the first derivative can be written as

v
P— = Q, 2.5

= Q0 (25)
whereP = (pij) andQ = (g;;) are(N 4+ 1) x (N + 1) Toeplitz matrices with small pertur-
bations at the corners due to the boundary conditions (a detailed discussion regardin
construction of these matrices is given in [5]). Using (2.5), we may write the followir
approximation for (2.1)

>

ov
P— =—-1Qv. 2.6
S = Qi (26)
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In order to satisfy the analytic boundary conditions, (2.3), we use the SAT methodol
introduced in [4], which involves an indirect treatment of the boundary conditions. Usi
this method we do not satisfy the boundary conditions directly by impasgiagg(t), but
add to the derivative operator a term proportional to the difference between the disc
valuevg and the boundary terigt), and solve a derivative equation everywhere, includin
the boundary points. This approach will be discussed later.

Throughout this work we make three main assumptions:

1. Equation (2.5) is accurate to orderi.e.,
P— = Qi+ PT, (2.7)

whereT is the truncation error due to the numerical differentiation and
ITI = Oh™. (2.8)

This implies that we assume a solution of sufficient smoothness (see footnote 1, in
following).

2. The matrixP is a symmetric positive definite matrix with a simple structure that |
easily invertible and there exist positive constamgts; independent oN such that

colll? < (PG, U) < cyldl?, (2.9)

where||G]|° = (U, U) = 3. u?is the standard form of the scalar product, anis the largest
eigenvalue ofP, i.e.,c; = || P| becauseP is positive definite symmetric matrix.
3. The matrixQ is almost skew-symmetric except(n+ 1) x (n+ 1) corners.

It is shown in [5] that the matrixQ = (g;j) can be constructed in such a way that 1,
that is,

Q+QT
2
Qoo (o1 + Guo) O
£(oz + G0) Ou1 0 0

0 0 0

0 0 0

0 0 ON-1N-1 $(@nN-1 4 On-1N)
0 3(OnNN-1+ ON-1N) aNN

We now rewrite the semidiscrete problem foin the form

-

PEY — 3Qi + A& — 1), (2.10)
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where

(oo
_ Co1 + Q10
S = 0 . (2.11)

0

THEOREMZ2.1. The approximatiori2.10), (2.11) preserves the order of accuracy m of
the spatial operator and is strictly stable under the following conditions and the corner
entries of the matrix Q

(1—1)qoo > 0, 011 > 0,
(2.12)

ONNUZ + (ON-1N + ONN-DUNUN-1 + On-1n-1U%_; > O, YUy, Un-1 € R.

Proof. Denote as beforg@= (up(t), ..., un(t)T, i.e., the values of the true solution at
the grid points, and denofédts numerical approximation. Combining the accuracy conditio
found in assumption 1 with Eq. (2.10) we may write

P% = —)Qu+ ASo(Uo(t) — gt)) + PT. (2.13)

Note thatug(t) — g(t) = u(0, t) — g(t) = 0. To get the equation for the solution error vector
€(t) =U(t) — v(t), we substract (2.10) from (2.13),

de B 3
Pd—i — —2Q¢ + 25 + PT, (2.14)

whereeg = vg — g(t) = v — Up.
Taking the scalar product @fwith (2.14) one gets

%%ma &) = —1(Q, &) + (%60, &) + (PT, 8. (2.15)

We notice that Q¢, €) = ((Q + QT)€/2, €), which means that
(QE, &) = Qooes + (o1 + Gro)€oer + Guie? + guner + (AN-1N + ONN_1)EN-_1€N
+ ON-IN-1€81- (2.16)

From (2.11) follows that

(Soc0, €) = TGoo€s + (Qo1 + Ci0)€oer. (2.17)
Using (2.16), (2.17) in (2.15) one gets

1d

Ea(Pg, €) = —A(1 — 1)Qooes — A1 — A [an NES + (N_1N + ONN_1)EN_1€N

+ON-1N-1€5_4] + (PT,&). (2.18)
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If we require (and manage to achieve by construction) that

an Néﬁ + (ON—1N + ONN-1)EN—1€EN + QNlefleﬁ,l >0

foralley, en_1 € R, thenfor(1 — t)ggo > 0 andg; > 0, and defining = 2T, the equation
(2.18) leads to the inequality

%(Pa &) < (PT1.8). (2.19)

We now use the inequality

(PT1,8) < \/(PT1, TOV(PE, & (2.20)

to obtain

d — > o
Za\/(PG,E </ (PTq, Ta). (2.21)

After integrating (2.21) and using (2.9) we get

R 1 /c -
I€] < 5,/5 sup [ T1(0)]it, (2.22)

O<r<t

which proves the convergence of the scheme for albo (and at most a linear temporal
growth of the error}. The linear temporal bound of€|| given by (2.22) shows that the
scheme is not only Lax stable but also strictly stabim.

Remarks. 1. The construction of the matricds and Q is described in detail in [5].
We note that if we succeed in constructing the matrieesnd Q we then know exactly
the value ofggo, G171, An—1n—1, AN—1N + ANN—1, Onn- This implies that actually stability
of the scheme (2.10), (2.11) depends onlyroiror example, for our sixth-order implicit
scheme with five-order boundary closure the matriBe€) were constructed in such a
way thatdoo=—2, 011 = %, On-1N-1= 3, ON—1N + ONN-1= 3, Onn = 5 and therefore the
expression

anNES + (ON_1N + ONN-1)EN_1€N + ON_IN-1€5_1
1, n 1 L1 1( ten)? 4 1,
= —€ —€EN-1€ —€ = —(eEN=— € —€
3 N 3 N—-1€N 6 N—1 6 N—-1 N 6 N
is positive for alley, en—1 € R and the scheme is strictly stable for 1; see (2.18).
2. For negative. we have the boundary conditionat= 1:

u(l, t) = g(), t>0. (2.23)

1 Note that the behavior af with h depends on the smoothness of the solution. To maintain the order of t
approximation we need(x, t) € C™, wherem is the order of accuracy. If, for example, the initial data contain
only a first derivative this will degrade the behavior\|d?f|| with h.
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In this case we will write the following semidiscrete approximationdfor

ﬁ% = —20b + ASy(vn — g(t)), (2.24)

where
Pij = P)ncinej, (Qij = —(Dnoin-j» Sw)i=—(So)nsi,  VYO<i,j<N.

Because of the Toeplitz structure of matrid®snd Q this means that the matricé&sand
(Q + QT7)/2 are almost identical to the matricBand(Q + QT)/2. They differ only in the
corners, which are transformed in such a way that the metskll satisfies the conditions
of assumption 2 with the same constazisc; and the matri>(Q + QT)/Z is of the form
Q+QT

2

—anN —2(ON-1N + ONN-1)
—5(On-1n + ONN-1) —ON-1N-1 0

0 —0u1 —2(Go1 + G10)
—2(0o1 + G10) —0oo
3. Sometimes it is useful to rewrite the approximation (2.10) in the matrix form

Pz_’t’ = —2QU — ASg(t), (2.25)

whereQ is an(N + 1) x (N + 1) matrix defined by

oo 0O --.- 0
Jo1+Cwo O --- O
Q=0Q-S S= 0 (2.26)
: 0
0

and the vectofy is defined by (2.11).

Note that all the boundary information is incorporated into the m&rand that the time
stability of the numerical scheme (2.25) depends directly on the properties of this matt

It should also be observed that if the inequalities (2.12) hold in the strict sense (as
achieved in the actual construction; see Remark 1) then inequality (2.22) can be shary
The argument is as follows: the matfXis positive definite, that is,

(v, Qv) = %(D, Q+QNHv) >0, VveRN.

This implies that the real part of each eigenvalue of the ma&rixQ is positive. One can
verify this by writing

Ple — Pfl/Z(Pfl/ZQ Pfl/Z) Pl/2’
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which means that the matric® 1Q and P~¥?QP~'/2 are similar and therefore have the
same eigenvalues. Singtis a positive definite symmetric matrix there is no ambiguit)
about the meaning oP/2 (and therefore also the matric®/? and P~'/2 are positive
definite matrices), and the matrix-*/?QP /2 satisfies

@, (P7Y2QPY2)3p) = (P23, Q(P~Y23)) > 0, Vv e R\.

The last inequality implies that the real part of each eigenvall®&éf°QP -2 andP~1Q
is positive. Under these sharp inequalities, which are stricter than the ones assum
Theorem 2.1, we can prove

THEOREMZ2.2. lItis possible to show that the error norm is bounded for all t andtead
of (2.22), is given by

SUR<c<tII Tl

1— ef)xdot
o ( )s

€l <
where @ is the smallest real part of any of the eigenvalues of® under the assumption

that the matrix P1Q is diagonalized.

Proof. Consider Eq. (2.14) for the solution error vector in the matrix form. i.e.,

4 Qe (2.27)
dt
Multiplying both sides of this equation gy using the scalar produ¢t, -) yields

s do e o, o
el llell = —A(P 1Qe, &) + (T, o). (2.28)

We denote now byu; }\, eigenvalues of the matri®—1Q and by{& }, the full orthonor-
mal eigenvalue basis ¢ —1Q and consider the scalar product

ol

N N
(P71QE, &) = Re(PIQE, &) = Re(P‘lQ > ag.) a )
i=0 i=0

N N N N
- Re(zawié, aé) = Re(Z aﬁu) = a?Re(u).
i=0 i=0 i=0 i=0
Using the fact that alRe(u;) > 0 and denotinglo = min < <n|Re(ui)| we get
N
(PTQE. &) > do Y & = do(é. &) = doll€]1%. (2.29)

i=0

Substituting (2.29) and the estimafg, €) < || T || [|€]| into (2.28) and dividing by|| yields

d . - -
gill€ll = —Adollell + 1T (2.30)
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From Gronwall's lemma and the fact th&a0) = 0 follows that

SUR<, <t Tl

1— — A dot .
3o 1—-e"™)

lell <

In the next subsection we show a graphical representation of this fact. Figures 7 al
show the eigenvalue spectrum-eP~1Q for fourth-order and sixth-order approximation,
respectively, for various grids. All eigenvalues of these matri¢es- 20, 40, 60, 80) are
distinct and no eigenvalues with a positive real part exist.

4. In a similar fashion, if we define

0 0
0 : :
Q=Q0-5 S= 0 . S= 0 . (2.31)
0 .-+ 0 —(Go1+ 010 —(Qo1 + J10)
0 ---0 —T0o0 —T0oo

we can rewrite the approximation (2.24) fox 0 as

. —2.0% — ASyg(t). (2.32)

In this case it can be shown that the matgixs negative definite and all eigenvalues of the
matrix P~1Q have a negative real part.

2.2. Numerical Results

In this subsection we consider the scalar model problem

Ur(X, t) + ux(x, t) = 0, 0<x=<1t=>0 (2.33)
ux,0 = f(x), 0=<x=<l, (2.34)
u@©,t) =g, t>0 (2.35)

with f (X) = sinwx, g(t) = —sinwt.
The exact solution is

u(x,t) = sinw(x —t), O<x<1t=>0. (2.36)

In order to highlight the difference in the quality of results obtained using standard ¢
SAT-type boundary conditions, we solve the scalar model equation using both type
boundary conditions.

To solve the model problem (2.33), (2.34), (2.35) we use two different difference ope
tors: fourth-order compact and six-order compact (see [5] for details). Here the order of
difference operator refers to the order of the global accuracy that the theory of Gustaf:
[6, 7] predicts. There itis proved that in our case boundary conditions of at leashordér
must be imposed to retamth-order global accuracy. Therefore we use a fourth-order di
ference operator, which is of order three at the boundary and order four in the interior,
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TABLE |
Grid Convergence of Two High-Order Schemes om; + u, =0, Using
Conventional Implementation of Boundary Conditions

Fourth-order compact Sixth-order compact
Grid 10G10(L2) Rate logo(L ) Rate
21 —2.798 —3.510
31 —-3.431 3.60 —4.535 5.82
41 —3.901 3.76 —-5.331 6.37
61 —4.580 3.86 —6.408 6.12
81 —5.069 3.91 —7.169 6.09

Note.Herew =27, CFL=0.1. T = 10 for the fourth-order scheme afid= 0.5
for the sixth-order scheme.

a sixth-order difference operator of order five at the boundary and order six in the intel
The standard fourth-order Runge—Kutta method is used for time integration in the ¢
of the fourth-order difference operator, and a sixth-order Runge—Kutta method (develc
by Butcher [1, 2]) is used in case of the sixth-order difference operator. The time ste
chosen small enough to ensure the local stability of the Runge—Kutta method. In the ca
conventional implementation of boundary conditions we overwrite the value of the solut
at the boundary point with the analytic boundary condition at the end of each Runge—K
stage.

Conventional boundary conditionsTable | shows a grid convergence study for bott
spatial discratizations. The absolute error g 2) atafixed time¢ = T and the convergence
rate between two grids are plotted. The convergence rate is computed as

u— oM h
|0910(H) / Ioglo(h—z), (2.37)
whereu = (u(xo, t), u(xz, t), ..., u(xn, t))T is the projection of the exact solution? is
the numerical solution with mesh width and|ju — v"||, is the discrete_, norm of the
absolute error.

We see in this table that for relative short time integratibr= 0.5) the convergence rate
of sixth-order scheme is approximately 6. The convergence rate of fourth-order sch
asymptotes to the theoretical value of 4. For the schemes to be strictly stable no eigenv
with a positive real part are allowed to exist. Therefore we investigated numerically whe
the schemes are strictly stable by both measuring the error for long time integration
computing eigenvalues of the ODE system obtained after semidiscretization. Figur
and 2 show the error as a function of time for the fourth-order compact scheme anc
sixth-order compact scheme respectively for different grids. Clearly there is an expone
growth in time for the sixth-order scheme, but not for the fourth-order one. Figures 3
4 show the semidiscrete eigenvalue spectrum of the ODE system. In Fig. 3 we see th:
the fourth-order scheme there are no eigenvalues with a positive real part. This fortui
situation fails when one consider the case of a system of equations rather than the <
partial differential equation with conventional boundary conditions (see Part ). In Fig. 4!
see that the eigenvalue spectra of the ODE system for the sixth-order scheme stretche
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FIG.1. Thel,-error as a function of time for the fourth-order approximation using conventional impleme
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FIG. 2. TheL,-error as a function of time for the sixth-order approximation using conventional impleme
tation of boundary conditions with CF= 0.1, w = 27.



HYPERBOLIC PDEs, | 53

40
+ 21 points g * 41 points g
. 50 g
= 20 <
© (W]
[oX Q.
e Py
g 0 g 0
o (o)}
£ £
__20 =
-50 .
3
-40
-6 -4 -2 0 -6 -4 -2 0
real part real part
150
100|- 61 points + 81 points
/ 100 /
t =
g 50 S 50
Fe ] 2
g Of:. g Or
2 2
£ -50 g 50
-100
-100 \ \
-150
-8 -6 -4 -2 0 -8 -6 -4 -2 0
real part real part

FIG. 3. Semidiscrete eigenvalue spectrum for the fourth-order approximation using conventional implen
tation of boundary conditions.

the right half-plane and since the exponential growth is caused by the eigenvalues hav
positive real part we get the unwanted growth. The time divergence seen in the sixth-c
scheme is a result of imposing the conventional boundary conditions.

SAT boundary conditions.We now solve the model problem (2.33), (2.34), (2.35) usin
the SAT method for treating the boundary conditions.

Table 1l shows a grid refinement study for the fourth-order and the sixth-order co
pact difference operators with different SAT parameterAs in the case of conventional

100 150
- 21 points fg%s( X 61 points
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FIG. 4. Magnification of semidiscrete eigenvalue spectrum close to imaginary axis for the sixth-order
proximation using conventional implementation of boundary conditions.
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TABLE II
Grid Convergence of Two High-Order Schemes omi; + uy, = 0, Using SAT
Implementation of Boundary Conditions with the SAT Parameter r =2

Fourth-order compact Sixth-order compact
Grid logio(L2) Rate logo(L,) Rate
21 —-3.632 -5.012
31 —4.315 3.99 —6.203 6.75
41 —-4.816 4.00 —7.044 6.73
61 —-5.541 4.12 —-8.170 6.39
81 —6.061 4.16 —8.949 6.23

Note.Herew = 27, CFL= 0.1, T = 10.

boundary conditions we plot the absolute error}gh,) at the timet =T = 10 (extracted
from computation run td@ = 100) and the convergence rate computed as in (2.37). We s
that the SAT procedure for boundary treatment does not destroy the formal accurac
spatial discretization. The numerical results agree well with the theory of Gustafsson [€
and give the predicted accuracy. Numerical experimentation has shown that the choic
7 =2 is efficacious.

It was proved in Section 2.1 that semidiscrete approximation (2.10) and (2.11) obtai
with the SAT method is strictly stable. From results of Kreiss and Wu [10] and Levi a
Tadmor [11] follow that the fully discrete approximation is stable if a locally stable Rung
Kutta method is used for time integration. Again, the standard fourth-order Runge—Ki
method is used for time integration in the case of the fourth-order spatial difference oper:
and the sixth-order Runge—Kutta method (developed by Butcher [1, 2]) is used in cas
the sixth-order spatial difference operator. The time step is chosen small enough to er
the local stability of the Runge—Kutta method. Figures 5 and 6 show the error as a func
of time for fourth- and sixth-order schemes, respectively, with different SAT parameters
different grids, and different CFL numbers. In all cases the error remained bounded fo
grids and CFLs for time as large @s= 100. No exponential growth was found for the SAT
method, indicating time (strict) stability. Figures 7 and 8 show semi-discrete eigenval
spectrum for this method, i.e., the eigenvalues of the matix 1Q defined by (2.25),
(2.26) (see Section 1.1). As we can see in these figures no eigenvalues with positive
part exist.

We also solved the problem (2.33), (2.34), (2.35) for different values tf Figs. 9 and
10 we show the approximate solution of the problem computed at the i) using the
sixth-order compact scheme with= 2, CFL=0.1, v = 307 and the number of grid points
N =80.

3. 2-D HYPERBOLIC EQUATIONS

3.1. Description of the Method and Proof of Main Results

In this section we show how to use the one-dimensional scheme, whose properties
described in the previous section, for the two-dimensional case. We consider the follov
linear differential equation, with constant coefficients, in a rectangular dofaiith
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boundary curvé <,

du  du  au
—4+a—+b—=0, X, Q,t>0, 3.1
at T TP %y ye 3.1)

with initial condition prescribed &t=0,
ux,y,00 = f(x,y), xyeQ, (3.2)
and the boundary condition
ux,y,t)lhe =ge®), t=0. (3-3)
Without loss of generality we assume tl§ats a square
Q={(x,y)eR*|0<x<10<y<1}
and if, for examplea > 0, b < 0 then we have the boundary conditions

u@,y,t) =g¥(y.t) (3.4)
ux,1,t) =g?x,t), t=>0. (3.5)

We begin by dividing the continuous domaihinto N2 uniform intervals of widthh,
whereh=Ax=Ay=1/N.Weuse foi =0,...,Nandj =0, ..., N the notation

xi=ih, yj=jh,  uj®) =ux,yj,t), (3.6)

whereu;; (t) is the projection of the exact solutian(x, y, t) unto the grid. We arrange
the solution projection array in vectors according to rows, starting from the bottom of 1
domaing2, and denote

3 . . . . T
U (t) = (Uoo, U10, - - - » UND; - - - Uoks Uik, - - - 5 UNKS - - - 3 UoN, UIN, - - - UNN)

= (o, ..., Uk, ..., 0Gn)". (3.7)
If we arrange this array by columns (instead of rows) we will have the structure

3 . . . . T
US(t) = (Uoo, Uot, - - -, UoN; - - - 3 Ukos Ukd, - -« 5 UKNG - - - 3 UNOs UNT, - - - » UNN)

= @5, ..., 0, ..., a7 (3.8)
As one can see, the vectﬁt‘?(t) is a specific permutation o 1),
Uct) = RU(t), (3.9)

whereR=R"T =R is an (N + 1)? x (N + 1)? orthogonal matrix, each row of which
containg'N + 1)? — 1 zeros and a single one somewhere. If the domain is not a square, t
R+#RT, butstil RRT = 1.

The continuous derivativai, /0x (k=0, . .., N) is then replaced with a finite-difference
representation

EIv .
Pa—xk = Qlix + PT, (3.10)
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and the continuous derivativgi, /0y (k=0, ..., N) is replaced with
P—* = Qu¢ + PTY, (3.11)

whereP, P and Q, C} are(N + 1) x (N 4+ 1) matrices which have exactly the same struc
ture as in the one-dimensional case, and vecftﬁé f,((y) are the truncation error due to
the numerical differentiation. Recall that the superscript fs used when the “inflow”
boundary is on the right side of the one-dimensional domain.

Using (3.9), (3.10), and (3.11) we can write

9 d - ~ o - o
a— +b— Jujt) =[aDU +bDU® 4+ T® + TY];;
axX ay

=[aDU +bRDRU + T® 4+ RT¥J;;, (3.12)

whereD andD are the(N + 1)2 x (N + 1)2 block-diagonal matrices

P1Q P10
-1 5 5—1R
D= PTQ . DB= P7Q . (3.13)
P-1Q P-1Q
andT® =TY, ... . TOTandT® =TY, ..., TY)T are truncation errors.

We now define theN + 1)? vectors,V = (vg, ..., Uk, ..., on)" and VE= (3§, ...,
vg, ..., v%) T, wherevy anduf are the numerical approximation to the projectignand
Ug (k=0, ..., N), respectively, and write the semidiscrete problem in the following way

dv DRIV 300 2(y)
;= ~1aD+bROR]V —aG® —bRGY, (3.14)
where
P~1Q P-1Q
-1 ~ -1
D= P™Q . D= P—Q ,
P~1Q P-1Q
P1Sog5” (1) P~1Svge’ )
-13& @ 5-13 +@
G0 _ P50, (1) Gw— P75y () ’ (3.15)

P-1Sgy (1) P-1Sugy ()

and the martice®, Q, S, Sand the vectorsy, Sy are the same as in the 1-D case; se
Section 2.
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Since Sl — éoglﬂl)(t) =0 and alsoSu; — N gf(z) (t)=0(k=0,...,N), we may write

-

for the vectoU

du s s o 2y | 2 "
4 =[~aD —bRORJU — aG® —bRGY + T® 4+ RTY, (3.16)
Subtracting (3.14) from (3.16) we get
dE Lo o
ot =[-aD - bRDR]JE +T, (3.17)

whereE =U — V is the two-dimensional array of the errors arranged by rows as a vec
andT is proportional to the truncation error.

We recall that in Section 2.1 it was proven that if the inequalities (2.12) hold then the r
part of each eigenvalue of the matfx 1Q is positive and the real part of each eigenvalug
of the matrixB~1Q is negative. Therefore all eigenvaluedbhave a positive real part and
all eigenvalues oRDR have a negative real part. To prove the time stability of the schen
(3.14) it is sufficient to show that (—aD — bRDR) + [H(—aD — bRD R)]T <0 for any
symmetric positive definite matribd .

To show this, we define now a symmetric positive definite matixs PY/2(RP R) P/2,
and consider the scalar product

([H(—aD — bRDR) + (—aD — bRDR)"H]E, E)
——a(HD +D"H]E, E) — b(HRDR + RDTRH]E, E). (3.18)
It can be verified by direct multiplication and by using the properties of block-diagor
matrices and of the permutation matiikthat any block-diagonal matri¥ is commu-

tative with the matrix of the fornRDR, i.e., for exampleM RDR= RDR M. Using this
information, and the fact th& R=1, we can write

HD+D'H = PY2(RPRPY?P'Q + Q" P 'P¥2(RPR) P2
(RPRQ + (RPRQ" = RPRQ +Q"),

(3.19)
HRDR+ RDTRH = PY2(RPR)PY?RP1QR + RQ"T PR PY?(RP R) P¥?

= PROR+ PRQ"R=PRQ +QNHR.

Denotingg = (RPY2R)E and using again the fact that for any block-diagonal maix
(RPY2R)M = M (RPY2R) we obtain

(RPRQ + QT)E, E) = (RPYV2RRPY?R(Q + Q")E, E)
— (RPY2R(Q + Q")E, RP¥2RE)
= ((Q+Q"¢. 9). (3.20)
In a similar fashion, denoting= (R PY2)E we get
(PRQ+QNRE, E) = (P’RQ + Q")RE, PY?E)
= (RO + Q")RPY2E, PY/2E)
= (Q+ Q. 0. (3.21)
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Taking into account (3.19), (3.20), (3.21), the fact that 0, b < 0, and
(Q+QN%. 9 =0, (Q+QNAH. M) =0 V§g,ije RN
we can conclude that if the one-dimensional inequalities (2.12) hold, then
([H(—aD — bRDR) + (—aD — bRDR)TH]E, E)
=—-a(Q+Q"N%, %) —b((Q+ QN7 <0
for all E e RIN+D?,

Remark. While the given form of (3.14) is advantageous for the proof, in practice v
used the form

%[V] = —[aD[V] +b[VIDT +aG® 1) P~L + bP 1Sy (G (t))],

where M]is a(N + 1) x (N 4 1) matrix with the elements;; and

o’ (t) 952 )
@ 2
é(l) (t) — gl (t) ) é(z)(t) — gl (t) ,
gy () 9 ®)

and the matrice®, D andP, P and the vectoréo, Sy were defined earlier. This means that
in practice the one-dimensional algorithm was implemented on each row to compute
numerical approximation t@, and on each column to compute the numerical approximatic
to uy. Note thatP—%, P~ are never evaluated. Rather the decompositi®rsLU and
P=LU are calculatedL andU (L andU) are bidiagonal matrices with one of them
having “ones” along the diagonal. Hence, the inversioh ahdU (L andU) is very cheap.

3.2. Numerical Results

Here we consider the problem

z—l:+g—z+g—;=0, 0<x=<10=<y=<1t=0, (3.22)
u(,y,t) = sino(y — 2t), (3.23)
u(x,0,t) = sinw(x — 2t), (3.24)
uex, y, 0) = sino(x +y), (3.25)

The analytic solution of this problem is
ux,y,t) =sino(x +y — 2t). (3.26)

We shall now use the SAT method, as well as the conventional implementation of boun
conditions, to solve the problem (3.22)—(3.25). Two difference operators were used: fol
order with third-order boundary closure and sixth-order with fifth-order boundary closu



62 ABARBANEL AND CHERTOCK

TABLE IlI
Grid Convergence of Two High-Order Schemes on; + uy + uy =0, Using
Conventional Implementation of Boundary Conditions with CFL=0.1 and
T = 0.4 for the Sixth-Order Scheme, and CFL = 025 andT = 10 for the Fourth-
Order Scheme (v = 27)

Fourth-order compact Sixth-order compact

Grid 10G10(L ) Rate logo(L,) Rate
21 —2.786 —3.536

31 —3.461 3.83 —4.619 6.15

41 —3.947 3.89 —5.378 6.07

61 —4.638 3.92 —6.420 5.92

81 -5.131 3.95 —7.143 5.83

The temporal discretization was accomplished with the standard fourth-order Runge—K
algorithm in the case of fourth-order difference operator and with a sixth-order Rung
Kutta algorithm developed by Butcher [1, 2] in the case of sixth-order difference opera
In the case of conventional implementation of boundary conditions the value of the solu
at the boundary point was overridden with the analytic boundary condition at the enc
each Runge—Kutta stage.

Conventional boundary conditionsTo check on the order of accuracy, the runs wer
repeated fonx = Ay =1/20, 1/30, 1/40, 1/60, and ¥80. Doubling the grid at constant
CFL should decrease the error at time T by a factor(%) P, wherep=4, 6 is order of the
method. The formal accuracy of each scheme was determined in this manner. Table Il s|
the results of this study. The lggof the L, error at timet =T and the convergence rate
are the entriesI = 10 in the case of the fourth-order scheme @nd 0.4 in the case of the
sixth-order scheme. As one can see for relative short time integration the convergence
of the sixth-order scheme is approximately 6 and the convergence rate of the fourth-o
scheme asymptotes to the theoretical value of 4.

The error as a function of time for the fourth-order and the sixth-order schemes is show
Figs. 11 and 12, respectively, for different grids. CED.5 was chosen for the fourth-order

TABLE IV
Grid Convergence of Two High-Order Schemes o + u, +u, =0, Using
SAT Implementation of Boundary Conditions with the SAT Parameter
7 =2 and CFL =0.1 for the Sixth-Order Scheme and the SAT Parameter
7 =1 and CFL =0.25 for the Fourth-Order Scheme T = 10, w = 27)

Fourth-order compact Sixth-order compact
Grid 10G10(L 2) Rate logo(L ) Rate
21 —3.389 —4.909
31 —4.100 4.04 —5.991 6.14
41 —4.599 4.00 —6.757 6.14
61 —5.310 4.04 —7.835 6.06

81 —5.813 4.03 —8.575 6.00
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FIG.11. Thel,-error as afunction of time for the fourth-order approximation using conventional impleme
tation of boundary conditions with CR=0.25, w = 27.
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FIG.12. ThelL,-error as a function of time for the sixth-order approximation using conventional impleme
tation of boundary conditions with CR=0.1, w = 27.
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FIG. 13. ThelL,-error as a function of time for the fourth-order approximation using SAT implementation
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boundary conditions with CF& 0.1, t =2, v = 2.
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ulx,y, t)

1 0]

FIG. 15. Numerical solution at the tim€& = 2 obtained with the sixth-order approximation using SAT imple-
mentation of boundary conditions witk =60, CFL=0.1, 1 =2, 0 = 27.

scheme and CF& 0.1 was chosen for the sixth-order scheme. As in the one-dimensio
case, the runs are time stable in the case of the fourth-order scheme. The results obt
by using the sixth-order scheme diverge exponentially from the analytic solution.

SAT boundary conditions.To check on the order of accuracy, the runs were repeated
Ax=Ay=1/20,1/30,1/40,1/60, and ¥80. Table IV shows a grid convergence study
for both spatial operators. The absolute error;§o,) at a fixed timeT =10 and the
convergence rate are plotted. As one can see, the formal accuracy of the spatial oper:
unaffected by SAT boundary treatment.

The simulations were all run to equivalent timies= 100 for both the fourth- and the
sixth-order schemes and different grids. CED.25, T = 1 were chosen for the fourth-order
scheme and CFE 0.1, T =2 were chosen for the sixth-order scheme. Figures 13 and
show a plot of the error of the solution to the problem (3.22)—(3.25) for the fourth-order
the sixth-order, respectively. The lggof the L, error is plotted as a function of time for
five grid densities: 21, 31, 41, 61, and 81 points, respectively. It is clear that both sche
give good results. No exponential growth exists, indicating time stability of the scheme

Figure 15 shows the 3-D plot of the numerical solution at the flme2 obtained using
the sixth-order scheme with =60, CFL=0.1, t =2, w = 2r.

4. CONCLUSIONS

e Amethodology for the construction of high-order finite-difference compact schen
for hyperbolic IBVPs which are strictly stable has been developed and analyzed theo
cally.

e Fourth- and sixth-order compact implicit finite-difference schemes have been ¢
structed and analyzed.

e To close the schemes near the boundary, the SAT procedure, proposed by Carp
et al.[4], but generalized and modified accordingly, has been used. It has been shown
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this procedure does not degrade the overall accuracy of the original spatial operator
it is strictly stable under some mild conditions on the parametevhich appears in the
algorithm, and corner entries of the differentiation matrix.

o Numerical experiments on hyperbolic model problems in one and two space dim
sions have been performed, and the schemes derived in this paper have been compe
conventional ones with respect to convergence rate and long time integrations. All res
show good agreement with theory and demonstrate the efficacy of this methodology w
applied to hyperbolic IBVPs.
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