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Temporal, or “strict,” stability of approximation to PDEs is much more difficult to
achieve than the “classical” Lax stability. In this paper, we present a class of finite-
difference schemes for hyperbolic initial boundary value problems in one and two
space dimensions that possess the property of strict stability. The approximations
are constructed so that all eigenvalues of corresponding differentiation matrix have a
nonpositive real part. Boundary conditions are imposed by using penalty-like terms.
Fourth- and sixth-order compact implicit finite-difference schemes are constructed
and analyzed. Computational efficacy of the approach is corroborated by a series of
numerical tests in 1-D and 2-D scalar problems.c© 2000 Academic Press

Key Words:hyperbolic PDEs; boundary conditions; stability; accuracy; error
bounds.

1. INTRODUCTION

In many computational problems, including, for example, acoustics, electromagnetic
wave propagation, and fluid dynamic, low-order schemes (second or lower) are not accurate
enough. The advantage of high-order finite-difference schemes is twofold: they allow one
either to increase accuracy while keeping the number of mesh points fixed or to reduce
the computational cost by decreasing the grid dimension while preserving accuracy. And
although they require more work per node, the fact that fewer points need to be stored and
computed makes them more efficient than low-order methods [8].

One of the main reasons that low-order schemes are still used in practical computations is
that difficulty arises for the high-order finite-difference schemes near the boundaries of com-
putational domain. To retain the formal accuracy of the high-order scheme, boundary clo-
sures must be accomplished with the same accuracy as that of the interior scheme, or at most
one order less [6, 7]. On a Cartesian mesh, it is always possible to derive nonsymmetrical
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boundary operators that fulfill the boundary conditions and maintain the overall accuracy
of the scheme. The difficulty is in deriving high accuracy andstableoperators.

While dealing with the numerical integration of time-dependent PDEs, two different
limit processes can be considered. One limit is the behavior of the numerical solution as
the mesh sizeh→ 0 for a fixed timeT . Another is the behavior of the solution for a fixed
mesh sizeh as the timeT tends to infinity. “Classical” stability addresses the first issue:
boundedness of the numerical solution as the mesh is refined at a fixed timeT . In this case,
Lax’s equivalence theorem ensures that the scheme converges, i.e., that for a fixed timeT
the numerical solution converges to the analytical solution as the mesh sizeh→ 0. Nothing
in this definition excludes error growth in time, and specifically it allows exponential growth
of the error in time. Unfortunately, for time-dependent problems, this stability definition
might be too weak, in particular if long time integration is being carried out. For long time
numerical simulations to be useful, the numerical solution must be strictly stable in time.
In the case of semidiscrete approximations, strict stability implies that for a fixed mesh
sizeh, all eigenvalues of the coefficient matrix of the corresponding system of ordinary
differential equations have a nonpositive real part. For calculation over long time intervals,
strict stability is especially important because it prevents exponential growth in time of the
error for a fixed mesh sizeh.

In the work by Carpenteret al. [3] it was shown that many high-order scalar schemes,
which are stable in the classical sense, are not time stable. Moreover, it was recently found
that many high-order schemes that are strictly stable in the scalar case exhibit time diver-
gence when applied to systems of equations. The underlying reason for the error growth in
time is improper imposition of boundary conditions.

For the scalar explicit central-differencing case, Kreiss and Scherer [9] have presented
a method for constructing a boundary condition of accuracy one order less than the inner
scheme such that a generalized summation by parts property of the differential equation is
preserved. Strand [12] obtained the stability results for explicit high-order finite difference
approximations using the G-K-S stability theory for the semidiscrete initial boundary value
problems (IBVPs). To close the scheme near the boundary he obtained extra boundary
conditions by extrapolating the outgoing characteristic variables, and by differentiating the
analytic boundary conditions and using the partial differential equation for the incoming
characteristic variables. However, in some cases the approximation with such boundary
conditions had eigenvalues with a positive real part, and to assure the time stability of the
scheme the numerical boundary conditions were modified by adding dissipative terms into
the inflow part of the boundary conditions.

In the present work a methodology for constructing compact implicit high-order finite-
difference schemes for hyperbolic initial boundary value problems is presented. The SAT
procedure for imposing the analytical boundary conditions proposed by Carpenteret al.
in [4] is generalized in such a way that: (i) it essentially simplifies the construction of the
approximation of the desirable accuracy from the technical point of view and (ii) it allows
one, in principle, to apply this technique to the solution of multidimensional problems.
Temporal stability in one space dimension is achieved by constructing such approximations
that all eigenvalues of the coefficient matrix of the corresponding system of ordinary differ-
ential equations have a negative real part. On the other hand, convergence of the scheme is
proved directly by deriving an equation for the error and bounding the error norm. In order
to solve two-dimensional scalar problems∂/∂x+ ∂/∂y is approximated by the sum of two
differentiation matricesDx + Dy, where bothDx andDy have eigenvalues with a negative
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real part. Since the sum matrixDx + Dy does not necessarily preserve this virtue, strict
stability of the scheme is proved by showing thatH(Dx + Dy)+ [H(Dx + Dy)]T ≤ 0 for
any symmetric positive definite matrixH . Numerical studies on hyperbolic scalar IBVPs in
one and two space dimensions have been performed using fourth- and sixth-order compact
implicit difference schemes. Boundary conditions have been imposed using the SAT bound-
ary procedure. The numerical results support the theoretical analysis. It has been shown
that the actual numerical solution has a temporal error bounded by a constant.

In Part II of this work [13] the above procedures are implemented for the cases of 1-D
and 2-Dsystems of hyperbolic PDEs. Partial reflection and/or absorbtion at the boundaries
render the analysis more complex. For example, the construction of the differentiation
matrices allows for nonpositiveness of the real part of the eigenvalue. Results of similar
quality to those of Part I are reported there.

2. 1-D HYPERBOLIC EQUATIONS

2.1. Description of the Method and Proof of the Main Theorem

We consider the scalar hyperbolic equation

∂u

∂t
+ λ∂u

∂x
= 0, 0≤ x ≤ 1, t ≥ 0 (2.1)

with initial conditions prescribed att = 0,

u(x, 0) = f (x), 0≤ x ≤ 1. (2.2)

For positiveλ we have the boundary condition

u(0, t) = g(t), t ≥ 0. (2.3)

We want to solve the above problem by finite difference approximations. In this work,
we will deal with compact schemes for the discretization of the spatial operator∂

∂x . We
therefore introduce the mesh widthh and divide the interval [0, 1] into subintervals of
lengthh. We use withj = 0, . . . , N andN= 1/h the notation

xj = jh, u j (t) = u(xj , t), (2.4)

whereu j (t) is the projection of the exact solutionu(x, t) unto the grid. We denote byEu the
vector(u0(t), , . . . ,uN(t))T and byEv the numerical approximation to the projectionEu.

The implicit approximation for the first derivative can be written as

P
∂ Ev
∂x
= QEv, (2.5)

whereP= (pi j ) andQ= (qi j ) are(N+ 1)× (N+ 1) Toeplitz matrices with small pertur-
bations at the corners due to the boundary conditions (a detailed discussion regarding the
construction of these matrices is given in [5]). Using (2.5), we may write the following
approximation for (2.1)

P
∂ Ev
∂t
= −λQEv. (2.6)
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In order to satisfy the analytic boundary conditions, (2.3), we use the SAT methodology
introduced in [4], which involves an indirect treatment of the boundary conditions. Using
this method we do not satisfy the boundary conditions directly by imposingv0= g(t), but
add to the derivative operator a term proportional to the difference between the discrete
valuev0 and the boundary termg(t), and solve a derivative equation everywhere, including
the boundary points. This approach will be discussed later.

Throughout this work we make three main assumptions:

1. Equation (2.5) is accurate to orderm, i.e.,

P
∂ Eu
∂x
= QEu+ P ET, (2.7)

where ET is the truncation error due to the numerical differentiation and

‖ ET‖ = O(hm). (2.8)

This implies that we assume a solution of sufficient smoothness (see footnote 1, in the
following).

2. The matrixP is a symmetric positive definite matrix with a simple structure that is
easily invertible and there exist positive constantsc0, c1 independent ofN such that

c0‖Eu‖2 ≤ (PEu, Eu) ≤ c1‖Eu‖2, (2.9)

where‖Eu‖2= (Eu, Eu)= ∑i u2
i is the standard form of the scalar product, andc1 is the largest

eigenvalue ofP, i.e.,c1=‖P‖ becauseP is positive definite symmetric matrix.
3. The matrixQ is almost skew-symmetric except in(n+ 1)× (n+ 1) corners.

It is shown in [5] that the matrixQ= (qi j ) can be constructed in such a way thatn= 1,
that is,

Q+ QT

2

=



q00
1
2(q01+ q10) 0

1
2(q01+ q10) q11 0 0

0 0 0
. . .

0 0 0

0 0 qN−1N−1
1
2(qN N−1+ qN−1N)

0 1
2(qN N−1+ qN−1N) qN N


.

We now rewrite the semidiscrete problem forEv in the form

P
dEv
dt
= −λQEv + λ ES0(v0− g(t)), (2.10)
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where

ES0 =


τq00

q01+ q10

0
...

0

 . (2.11)

THEOREM 2.1. The approximation(2.10), (2.11) preserves the order of accuracy m of
the spatial operator and is strictly stable under the following conditions onτ and the corner
entries of the matrix Q:

(1− τ)q00 ≥ 0, q11 ≥ 0,
(2.12)

qN Nu2
N + (qN−1N + qN N−1)uNuN−1+ qN−1N−1u2

N−1 ≥ 0, ∀uN, uN−1 ∈ R.

Proof. Denote as beforeEu= (u0(t), . . . ,uN(t))T , i.e., the values of the true solution at
the grid points, and denoteEv its numerical approximation. Combining the accuracy condition
found in assumption 1 with Eq. (2.10) we may write

P
dEu
dt
= −λQEu+ λ ES0(u0(t)− g(t))+ P ET . (2.13)

Note thatu0(t)− g(t)= u(0, t)− g(t)= 0. To get the equation for the solution error vector,
Eε(t)= Eu(t)− Ev(t), we substract (2.10) from (2.13),

P
dEε
dt
= −λQEε + λ ES0ε0+ P ET, (2.14)

whereε0= v0− g(t)= v0− u0.
Taking the scalar product ofEε with (2.14) one gets

1

2

d

dt
(PEε, Eε) = −λ(QEε, Eε)+ λ( ES0ε0, Eε)+ (P ET, Eε). (2.15)

We notice that(QEε, Eε)= ((Q+ QT )Eε/2, Eε), which means that

(QEε, Eε) = q00ε
2
0 + (q01+ q10)ε0ε1+ q11ε

2
1 + qN Nε

2
N + (qN−1N + qN N−1)εN−1εN

+qN−1N−1ε
2
N−1. (2.16)

From (2.11) follows that

( ES0ε0, Eε) = τq00ε
2
0 + (q01+ q10)ε0ε1. (2.17)

Using (2.16), (2.17) in (2.15) one gets

1

2

d

dt
(PEε, Eε) = −λ(1− τ)q00ε

2
0 − λq11ε

2
1− λ

[
qN Nε

2
N + (qN−1N + qN N−1)εN−1εN

+qN−1N−1ε
2
N−1

]+ (P ET, Eε). (2.18)



HYPERBOLIC PDEs, I 47

If we require (and manage to achieve by construction) that

qN Nε
2
N + (qN−1N + qN N−1)εN−1εN + qN−1N−1ε

2
N−1 ≥ 0

for all εN, εN−1∈R, then for(1− τ)q00≥ 0 andq11≥ 0, and definingET1= 2ET , the equation
(2.18) leads to the inequality

d

dt
(PEε, Eε) ≤ (P ET1, Eε). (2.19)

We now use the inequality

(P ET1, Eε) ≤
√
(P ET1, ET1)

√
(PEε, Eε) (2.20)

to obtain

2
d

dt

√
(PEε, Eε) ≤

√
(P ET1, ET1). (2.21)

After integrating (2.21) and using (2.9) we get

‖Eε‖ ≤ 1

2

√
c1

c0
sup

0≤τ≤t
‖ ET1(τ )‖t, (2.22)

which proves the convergence of the scheme for allt <∞ (and at most a linear temporal
growth of the error).1 The linear temporal bound on‖Eε‖ given by (2.22) shows that the
scheme is not only Lax stable but also strictly stable.

Remarks. 1. The construction of the matricesP and Q is described in detail in [5].
We note that if we succeed in constructing the matricesP and Q we then know exactly
the value ofq00,q11,qN−1N−1,qN−1N +qN N−1,qN N. This implies that actually stability
of the scheme (2.10), (2.11) depends only onτ . For example, for our sixth-order implicit
scheme with five-order boundary closure the matricesP, Q were constructed in such a
way thatq00=− 2

3,q11= 1
6,qN−1N−1= 1

6,qN−1N +qN N−1= 1
3,qN N= 1

3 and therefore the
expression

qN Nε
2
N + (qN−1N + qN N−1)εN−1εN + qN−1N−1ε

2
N−1

= 1

3
ε2

N +
1

3
εN−1εN + 1

6
ε2

N−1 =
1

6
(εN−1+ εN)

2+ 1

6
ε2

N

is positive for allεN, εN−1∈R and the scheme is strictly stable forτ ≥ 1; see (2.18).
2. For negativeλ we have the boundary condition atx= 1:

u(1, t) = g(t), t ≥ 0. (2.23)

1 Note that the behavior ofε with h depends on the smoothness of the solution. To maintain the order of the
approximation we needu(x, t)∈Cm, wherem is the order of accuracy. If, for example, the initial data contain
only a first derivative this will degrade the behavior of‖ ET‖ with h.
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In this case we will write the following semidiscrete approximation forEv,

P̃
dEv
dt
= −λQ̃Ev + λ ESN(vN − g(t)), (2.24)

where

(P̃)i j = (P)N−i,N− j , (Q̃)i j = −(Q)N−i,N− j , ( ESN)i = −( ES0)N−i , ∀0≤ i, j ≤ N.

Because of the Toeplitz structure of matricesP andQ this means that the matrices̃P and
(Q̃+ Q̃T )/2 are almost identical to the matricesP and(Q+ QT )/2. They differ only in the
corners, which are transformed in such a way that the matrixP̃ still satisfies the conditions
of assumption 2 with the same constantsc0, c1 and the matrix(Q̃+ Q̃T )/2 is of the form

Q̃+ Q̃T

2

=



−qN N − 1
2(qN−1N + qN N−1)

− 1
2(qN−1N + qN N−1) −qN−1N−1 0

. . .

0 −q11 − 1
2(q01+ q10)

− 1
2(q01+ q10) −q00


.

3. Sometimes it is useful to rewrite the approximation (2.10) in the matrix form

P
dEv
dt
= −λQEv − λ ES0g(t), (2.25)

whereQ is an(N+ 1)× (N+ 1) matrix defined by

Q = Q− S, S=


τq00 0 · · · 0

q01+ q10 0 · · · 0

0
... 0
0

 (2.26)

and the vectorES0 is defined by (2.11).

Note that all the boundary information is incorporated into the matrixQ and that the time
stability of the numerical scheme (2.25) depends directly on the properties of this matrix.

It should also be observed that if the inequalities (2.12) hold in the strict sense (as was
achieved in the actual construction; see Remark 1) then inequality (2.22) can be sharpned.
The argument is as follows: the matrixQ is positive definite, that is,

(Ev,QEv) = 1

2
(Ev, (Q+QT )Ev) > 0, ∀Ev ∈ RN .

This implies that the real part of each eigenvalue of the matrixP−1Q is positive. One can
verify this by writing

P−1Q = P−1/2(P−1/2QP−1/2)P1/2,
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which means that the matricesP−1Q andP−1/2QP−1/2 are similar and therefore have the
same eigenvalues. SinceP is a positive definite symmetric matrix there is no ambiguity
about the meaning ofP1/2 (and therefore also the matricesP1/2 and P−1/2 are positive
definite matrices), and the matrixP−1/2QP−1/2 satisfies

(Ev, (P−1/2QP−1/2)Ev) = (P−1/2Ev,Q(P−1/2Ev)) > 0, ∀Ev ∈ RN .

The last inequality implies that the real part of each eigenvalue ofP−1/2QP−1/2 andP−1Q
is positive. Under these sharp inequalities, which are stricter than the ones assumed in
Theorem 2.1, we can prove

THEOREM2.2. It is possible to show that the error norm is bounded for all t and, instead
of (2.22), is given by

‖Eε‖ ≤ sup0≤τ≤t‖ ET‖
λ d0

(1− e−λ d0t ),

where d0 is the smallest real part of any of the eigenvalues of P−1Q under the assumption
that the matrix P−1Q is diagonalized.

Proof. Consider Eq. (2.14) for the solution error vector in the matrix form. i.e.,

dEε
dt
= −λP−1QEε + ET . (2.27)

Multiplying both sides of this equation byε, using the scalar product(·, ·) yields

‖Eε‖ d

dt
‖Eε‖ = −λ(P−1QEε, Eε)+ ( ET, Eε). (2.28)

We denote now by{µi }Ni=0 eigenvalues of the matrixP−1Q and by{Eei }Ni=0 the full orthonor-
mal eigenvalue basis ofP−1Q and consider the scalar product

(P−1QEε, Eε) = Re(P−1QEε, Eε) = Re

(
P−1Q

N∑
i=0

ai Eei ,

N∑
i=0

ai Eei

)

= Re

(
N∑

i=0

aiµi Eei ,

N∑
i=0

ai Eei

)
= Re

(
N∑

i=0

a2
i µi

)
=

N∑
i=0

a2
i Re(µi ).

Using the fact that allRe(µi )>0 and denotingd0=min1≤i≤N |Re(µi )| we get

(P−1QEε, Eε) > d0

N∑
i=0

a2
i = d0(Eε, Eε) = d0‖Eε‖2. (2.29)

Substituting (2.29) and the estimate( ET, Eε)≤‖ ET‖ ‖Eε‖ into (2.28) and dividing by‖Eε‖ yields

d

dt
‖Eε‖ ≤ −λd0‖Eε‖ + ‖ ET‖. (2.30)
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From Gronwall’s lemma and the fact thatEε(0)= 0 follows that

‖Eε‖ ≤ sup0≤τ≤t‖ ET‖
λ d0

(1− e−λ d0t ).

In the next subsection we show a graphical representation of this fact. Figures 7 and 8
show the eigenvalue spectrum of−P−1Q for fourth-order and sixth-order approximation,
respectively, for various grids. All eigenvalues of these matrices(N= 20, 40, 60, 80) are
distinct and no eigenvalues with a positive real part exist.

4. In a similar fashion, if we define

Q̃ = Q̃− S̃, S̃=


0

0
...

0
0 · · · 0 −(q01+ q10)

0 · · · 0 −τq00

, ESN =


0
...

0
−(q01+ q10)

−τq00

, (2.31)

we can rewrite the approximation (2.24) forλ<0 as

P̃
dEv
dt
= −λQ̃Ev − λ ESNg(t). (2.32)

In this case it can be shown that the matrixQ̃ is negative definite and all eigenvalues of the
matrix P̃−1Q̃ have a negative real part.

2.2. Numerical Results

In this subsection we consider the scalar model problem

ut (x, t)+ ux(x, t) = 0, 0≤ x ≤ 1, t ≥ 0 (2.33)

u(x, 0) = f (x), 0≤ x ≤ 1, (2.34)

u(0, t) = g(t), t ≥ 0 (2.35)

with f (x)= sinωx, g(t)=−sinωt .
The exact solution is

u(x, t) = sinω(x − t), 0≤ x ≤ 1, t ≥ 0. (2.36)

In order to highlight the difference in the quality of results obtained using standard and
SAT-type boundary conditions, we solve the scalar model equation using both types of
boundary conditions.

To solve the model problem (2.33), (2.34), (2.35) we use two different difference opera-
tors: fourth-order compact and six-order compact (see [5] for details). Here the order of the
difference operator refers to the order of the global accuracy that the theory of Gustafsson
[6, 7] predicts. There it is proved that in our case boundary conditions of at least orderm− 1
must be imposed to retainmth-order global accuracy. Therefore we use a fourth-order dif-
ference operator, which is of order three at the boundary and order four in the interior, and
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TABLE I

Grid Convergence of Two High-Order Schemes onut + ux = 0, Using

Conventional Implementation of Boundary Conditions

Fourth-order compact Sixth-order compact

Grid log10(L2) Rate log10(L2) Rate

21 −2.798 −3.510
31 −3.431 3.60 −4.535 5.82
41 −3.901 3.76 −5.331 6.37
61 −4.580 3.86 −6.408 6.12
81 −5.069 3.91 −7.169 6.09

Note.Hereω= 2π , CFL= 0.1. T = 10 for the fourth-order scheme andT = 0.5
for the sixth-order scheme.

a sixth-order difference operator of order five at the boundary and order six in the interior.
The standard fourth-order Runge–Kutta method is used for time integration in the case
of the fourth-order difference operator, and a sixth-order Runge–Kutta method (developed
by Butcher [1, 2]) is used in case of the sixth-order difference operator. The time step is
chosen small enough to ensure the local stability of the Runge–Kutta method. In the case of
conventional implementation of boundary conditions we overwrite the value of the solution
at the boundary point with the analytic boundary condition at the end of each Runge–Kutta
stage.

Conventional boundary conditions.Table I shows a grid convergence study for both
spatial discratizations. The absolute error log10(L2)at a fixed timet = T and the convergence
rate between two grids are plotted. The convergence rate is computed as

log10

(‖u− vh1‖2
‖u− vh2‖2

)/
log10

(
h1

h2

)
, (2.37)

whereu= (u(x0, t), u(x2, t), . . . ,u(xN, t))T is the projection of the exact solution,vh is
the numerical solution with mesh widthh, and‖u− vh‖2 is the discreteL2 norm of the
absolute error.

We see in this table that for relative short time integration(T = 0.5) the convergence rate
of sixth-order scheme is approximately 6. The convergence rate of fourth-order scheme
asymptotes to the theoretical value of 4. For the schemes to be strictly stable no eigenvalues
with a positive real part are allowed to exist. Therefore we investigated numerically whether
the schemes are strictly stable by both measuring the error for long time integration and
computing eigenvalues of the ODE system obtained after semidiscretization. Figures 1
and 2 show the error as a function of time for the fourth-order compact scheme and the
sixth-order compact scheme respectively for different grids. Clearly there is an exponential
growth in time for the sixth-order scheme, but not for the fourth-order one. Figures 3 and
4 show the semidiscrete eigenvalue spectrum of the ODE system. In Fig. 3 we see that for
the fourth-order scheme there are no eigenvalues with a positive real part. This fortuitous
situation fails when one consider the case of a system of equations rather than the scalar
partial differential equation with conventional boundary conditions (see Part II). In Fig. 4 we
see that the eigenvalue spectra of the ODE system for the sixth-order scheme stretches into
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FIG. 1. TheL2-error as a function of time for the fourth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.1, ω= 2π .

FIG. 2. The L2-error as a function of time for the sixth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.1, ω= 2π .
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FIG. 3. Semidiscrete eigenvalue spectrum for the fourth-order approximation using conventional implemen-
tation of boundary conditions.

the right half-plane and since the exponential growth is caused by the eigenvalues having a
positive real part we get the unwanted growth. The time divergence seen in the sixth-order
scheme is a result of imposing the conventional boundary conditions.

SAT boundary conditions.We now solve the model problem (2.33), (2.34), (2.35) using
the SAT method for treating the boundary conditions.

Table II shows a grid refinement study for the fourth-order and the sixth-order com-
pact difference operators with different SAT parametersτ . As in the case of conventional

FIG. 4. Magnification of semidiscrete eigenvalue spectrum close to imaginary axis for the sixth-order ap-
proximation using conventional implementation of boundary conditions.
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TABLE II

Grid Convergence of Two High-Order Schemes onut + ux = 0, Using SAT

Implementation of Boundary Conditions with the SAT Parameterτ = 2

Fourth-order compact Sixth-order compact

Grid log10(L2) Rate log10(L2) Rate

21 −3.632 −5.012
31 −4.315 3.99 −6.203 6.75
41 −4.816 4.00 −7.044 6.73
61 −5.541 4.12 −8.170 6.39
81 −6.061 4.16 −8.949 6.23

Note.Hereω = 2π , CFL= 0.1, T= 10.

boundary conditions we plot the absolute error log10(L2) at the timet = T = 10 (extracted
from computation run toT = 100) and the convergence rate computed as in (2.37). We see
that the SAT procedure for boundary treatment does not destroy the formal accuracy of
spatial discretization. The numerical results agree well with the theory of Gustafsson [6, 7]
and give the predicted accuracy. Numerical experimentation has shown that the choice of
τ = 2 is efficacious.

It was proved in Section 2.1 that semidiscrete approximation (2.10) and (2.11) obtained
with the SAT method is strictly stable. From results of Kreiss and Wu [10] and Levi and
Tadmor [11] follow that the fully discrete approximation is stable if a locally stable Runge–
Kutta method is used for time integration. Again, the standard fourth-order Runge–Kutta
method is used for time integration in the case of the fourth-order spatial difference operator,
and the sixth-order Runge–Kutta method (developed by Butcher [1, 2]) is used in case of
the sixth-order spatial difference operator. The time step is chosen small enough to ensure
the local stability of the Runge–Kutta method. Figures 5 and 6 show the error as a function
of time for fourth- and sixth-order schemes, respectively, with different SAT parametersτ ,
different grids, and different CFL numbers. In all cases the error remained bounded for all
grids and CFLs for time as large asT = 100. No exponential growth was found for the SAT
method, indicating time (strict) stability. Figures 7 and 8 show semi-discrete eigenvalues
spectrum for this method, i.e., the eigenvalues of the matrix−P−1Q defined by (2.25),
(2.26) (see Section 1.1). As we can see in these figures no eigenvalues with positive real
part exist.

We also solved the problem (2.33), (2.34), (2.35) for different values ofω. In Figs. 9 and
10 we show the approximate solution of the problem computed at the timet = 10 using the
sixth-order compact scheme withτ = 2, CFL= 0.1, ω= 30π and the number of grid points
N= 80.

3. 2-D HYPERBOLIC EQUATIONS

3.1. Description of the Method and Proof of Main Results

In this section we show how to use the one-dimensional scheme, whose properties were
described in the previous section, for the two-dimensional case. We consider the following
linear differential equation, with constant coefficients, in a rectangular domainÄ with
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FIG. 5. The L2-error as a function of time for the fourth-order approximation using SAT implementation of
boundary conditions withτ = 1, CFL= 0.5, ω= 2π .

FIG. 6. The L2-error as a function of time for the sixth-order approximation using SAT implementation of
boundary conditions withτ = 2, CFL= 0.1, ω= 2π .
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FIG. 7. Semidiscrete eigenvalue spectrum for the fourth-order approximation using SAT implementation of
boundary conditions withτ = 2.

FIG. 8. Semidiscrete eigenvalue spectrum for the sixth-order approximation using SAT implementation of
boundary conditions withτ = 2.
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FIG. 9. The numerical solution at the timet = 10 obtained with the sixth-order scheme using SAT implemen-
tation of boundary conditions withτ = 2, CFL= 0.1, ω= 30π, N= 81.

FIG. 10. Magnification of the numerical solution at the timet = 10 obtained with the sixth-order scheme
using SAT implementation of boundary conditions withτ = 2, CFL= 0.1, ω= 30π, N= 81.
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boundary curve∂Ä,

∂u

∂t
+ a

∂u

∂x
+ b

∂u

∂y
= 0, x, y ∈ Ä, t ≥ 0, (3.1)

with initial condition prescribed att = 0,

u(x, y, 0) = f (x, y), x, y ∈ Ä, (3.2)

and the boundary condition

u(x, y, t)|∂Ä = gB(t), t ≥ 0. (3.3)

Without loss of generality we assume thatÄ is a square

Ä = {(x, y) ∈ R2 | 0≤ x ≤ 1, 0≤ y ≤ 1},
and if, for example,a> 0, b< 0 then we have the boundary conditions

u(0, y, t) = g(1)(y, t) (3.4)

u(x, 1, t) = g(2)(x, t), t ≥ 0. (3.5)

We begin by dividing the continuous domainÄ into N2 uniform intervals of widthh,
whereh=1x=1y= 1/N. We use fori = 0, . . . , N and j = 0, . . . , N the notation

xi = ih, yj = jh, ui j (t) = u(xi , yj , t), (3.6)

whereui j (t) is the projection of the exact solutionu(x, y, t) unto the grid. We arrange
the solution projection array in vectors according to rows, starting from the bottom of the
domainÄ, and denote

EU (t) = (u00, u10, . . . ,uN0; . . . ; u0k, u1k, . . . ,uNk; . . . ; u0N, u1N, . . . ,uN N)
T

= (Eu0, . . . , Euk, . . . , EuN)
T . (3.7)

If we arrange this array by columns (instead of rows) we will have the structure

EUc(t) = (u00, u01, . . . ,u0N; . . . ; uk0, uk1, . . . ,ukN; . . . ; uN0, uN1, . . . ,uN N)
T

= (Euc
0, . . . , Euc

k, . . . , Euc
N)

T . (3.8)

As one can see, the vectorEUc(t) is a specific permutation ofEU (t),

EUc(t) = R EU (t), (3.9)

where R= RT = R−1 is an (N+ 1)2× (N+ 1)2 orthogonal matrix, each row of which
contains(N+ 1)2− 1 zeros and a single one somewhere. If the domain is not a square, then
R 6= RT , but still RRT = I .

The continuous derivative∂ Euk/∂x (k= 0, . . . , N) is then replaced with a finite-difference
representation

P
∂ Euk

∂x
= QEuk + P ET (x)

k , (3.10)
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and the continuous derivative∂ Euk/∂y (k= 0, . . . , N) is replaced with

P̃
∂ Euc

k

∂y
= Q̃Euc

k + P̃ ET (y)
k , (3.11)

whereP, P̃ andQ, Q̃ are(N+ 1)× (N+ 1) matrices which have exactly the same struc-
ture as in the one-dimensional case, and vectorsET (x)

k , ET (y)
k are the truncation error due to

the numerical differentiation. Recall that the superscript “∼” is used when the “inflow”
boundary is on the right side of the one-dimensional domain.

Using (3.9), (3.10), and (3.11) we can write(
a
∂

∂x
+ b

∂

∂y

)
ui j (t) = [aD EU + bD̃ EUc + ET (x) + ET (y)] i j

= [aD EU + bRD̃R EU + ET (x) + RET (x)] i j , (3.12)

whereD andD̃ are the(N+ 1)2× (N+ 1)2 block-diagonal matrices

D =


P−1Q

P−1Q
. . .

P−1Q

, D̃ =


P̃−1Q̃

P̃−1Q̃
. . .

P̃−1Q̃

, (3.13)

and ET (x)= ( ET (x)
1 , . . . , ET (x)

N )
T and ET (y)= ( ET (y)

1 , . . . , ET (y)
N )

T are truncation errors.
We now define the(N+ 1)2 vectors, EV = (Ev0, . . . , Evk, . . . , EvN)

T and EVc= (Evc
0, . . . ,

Evc
k, . . . , Evc

N)
T , whereEvk and Evc

k are the numerical approximation to the projectionEuk and
Euc

k (k= 0, . . . , N), respectively, and write the semidiscrete problem in the following way,

d EV
dt
= −[aD+ bRD̃R] EV − a EG(x) − bREG(y), (3.14)

where

D =


P−1Q

P−1Q
. . .

P−1Q

 , D̃ =


P̃−1Q̃

P̃−1Q̃
. . .

P̃−1Q̃

 ,

EG(x) =


P−1 ES0g(1)0 (t)

P−1 ES0g(1)1 (t)
...

P−1 ES0g(1)N (t)

 , EG(y) =


P̃−1 ESNg(2)0 (t)

P̃−1 ESNg(2)1 (t)
...

P̃−1 ESNg(2)N (t)

, (3.15)

and the marticesQ, Q̃, S, S̃ and the vectorsES0, SN are the same as in the 1-D case; see
Section 2.
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SinceSEuk− ES0g(1)k (t)= 0 and alsoSEuc
k− ESNg(2)k (t)= 0 (k= 0, . . . , N), we may write

for the vectorEU
d EU
dt
= [−aD− bRD̃R] EU − a EG(x) − bREG(y) + ET (x) + RET (y). (3.16)

Subtracting (3.14) from (3.16) we get

d EE
dt
= [−aD− bRD̃R] EE + ET, (3.17)

where EE= EU − EV is the two-dimensional array of the errors arranged by rows as a vector
andET is proportional to the truncation error.

We recall that in Section 2.1 it was proven that if the inequalities (2.12) hold then the real
part of each eigenvalue of the matrixP−1Q is positive and the real part of each eigenvalue
of the matrixP̃−1Q̃ is negative. Therefore all eigenvalues ofD have a positive real part and
all eigenvalues ofRD̃R have a negative real part. To prove the time stability of the scheme
(3.14) it is sufficient to show thatH(−aD− bRD̃R)+ [H(−aD− bRD̃R)]T ≤ 0 for any
symmetric positive definite matrixH .

To show this, we define now a symmetric positive definite matrix,H = P1/2(RP̃ R)P1/2,
and consider the scalar product

([H(−aD− bRD̃R)+ (−aD− bRD̃R)T H ] EE, EE)
=−a([HD+ DT H ] EE, EE)− b([H RD̃R+ RD̃T RH] EE, EE). (3.18)

It can be verified by direct multiplication and by using the properties of block-diagonal
matrices and of the permutation matrixR that any block-diagonal matrixM is commu-
tative with the matrix of the formRD̃R, i.e., for example,M RD̃R= RD̃RM. Using this
information, and the fact thatRR= I , we can write

HD+ DT H = P1/2(RP̃ R)P1/2P−1Q+QT P−1P1/2(RP̃ R)P1/2

= (RP̃ R)Q+ (RP̃ R)QT = RP̃ R(Q+QT ),
(3.19)

H RD̃R+ RD̃T RH = P1/2(RP̃ R)P1/2RP̃−1Q̃R+ RQ̃T P̃−1RP1/2(RP̃ R)P1/2

= P RQ̃R+ P RQ̃T R= P R(Q̃+ Q̃T )R.

DenotingEϕ= (RP̃1/2R) EE and using again the fact that for any block-diagonal matrixM
(RP̃1/2R)M =M(RP̃1/2R) we obtain

(RP̃ R(Q+QT ) EE, EE) = (RP̃1/2RRP̃1/2R(Q+QT ) EE, EE)
= (RP̃1/2R(Q+QT ) EE, RP̃1/2R EE)
= ((Q+QT )Eϕ, Eϕ). (3.20)

In a similar fashion, denotingEη= (RP1/2) EE we get

(P R(Q̃+ Q̃T )R EE, EE) = (P1/2R(Q̃+ Q̃T )R EE, P1/2 EE)
= (R(Q̃+ Q̃T )RP1/2 EE, P1/2 EE)
= ((Q̃+ Q̃T )Eη, Eη). (3.21)
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Taking into account (3.19), (3.20), (3.21), the fact thata> 0, b< 0, and

((Q+QT )Eϕ, Eϕ) ≥ 0, ((Q̃+ Q̃T )Eη, Eη) ≤ 0, ∀Eϕ, Eη ∈ R(N+1)2

we can conclude that if the one-dimensional inequalities (2.12) hold, then

([H(−aD− bRD̃R)+ (−aD− bRD̃R)T H ] EE, EE)
=−a((Q+QT )Eϕ, Eϕ)− b((Q̃+ Q̃T )Eη, Eη) ≤ 0

for all EE ∈R(N+1)2.

Remark. While the given form of (3.14) is advantageous for the proof, in practice we
used the form

d

dt
[V ] = −[aD[V ] + b[V ]D̃T + a EG(1)(t) EST

0 P−1+ bP̃−1 ESN( EG(2)(t))T
]
,

where [V ] is a (N+ 1)× (N+ 1) matrix with the elementsvi j and

EG(1)(t) =


g(1)0 (t)

g(1)1 (t)
...

g(1)N (t)

 , EG(2)(t) =


g(2)0 (t)

g(2)1 (t)
...

g(2)N (t)

 ,

and the matricesD, D̃ andP, P̃ and the vectorsES0, SN were defined earlier. This means that
in practice the one-dimensional algorithm was implemented on each row to compute the
numerical approximation toux and on each column to compute the numerical approximation
to uy. Note thatP−1, P̃−1 are never evaluated. Rather the decompositionsP= LU and
P̃= L̃Ũ are calculated.L andU (L̃ and Ũ ) are bidiagonal matrices with one of them
having “ones” along the diagonal. Hence, the inversion ofL andU (L̃ andŨ ) is very cheap.

3.2. Numerical Results

Here we consider the problem

∂u

∂t
+ ∂u

∂x
+ ∂u

∂y
= 0, 0≤ x ≤ 1, 0≤ y ≤ 1, t ≥ 0, (3.22)

u(0, y, t) = sinω(y− 2t), (3.23)

u(x, 0, t) = sinω(x − 2t), (3.24)

u(x, y, 0) = sinω(x + y), (3.25)

The analytic solution of this problem is

u(x, y, t) = sinω(x + y− 2t). (3.26)

We shall now use the SAT method, as well as the conventional implementation of boundary
conditions, to solve the problem (3.22)–(3.25). Two difference operators were used: fourth-
order with third-order boundary closure and sixth-order with fifth-order boundary closure.
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TABLE III

Grid Convergence of Two High-Order Schemes onut + ux + uy = 0, Using

Conventional Implementation of Boundary Conditions with CFL = 0.1 and

T = 0.4 for the Sixth-Order Scheme, and CFL = 0.25 andT = 10 for the Fourth-

Order Scheme (ω = 2π)

Fourth-order compact Sixth-order compact

Grid log10(L2) Rate log10(L2) Rate

21 −2.786 −3.536
31 −3.461 3.83 −4.619 6.15
41 −3.947 3.89 −5.378 6.07
61 −4.638 3.92 −6.420 5.92
81 −5.131 3.95 −7.143 5.83

The temporal discretization was accomplished with the standard fourth-order Runge–Kutta
algorithm in the case of fourth-order difference operator and with a sixth-order Runge–
Kutta algorithm developed by Butcher [1, 2] in the case of sixth-order difference operator.
In the case of conventional implementation of boundary conditions the value of the solution
at the boundary point was overridden with the analytic boundary condition at the end of
each Runge–Kutta stage.

Conventional boundary conditions.To check on the order of accuracy, the runs were
repeated for1x=1y= 1/20, 1/30, 1/40, 1/60, and 1/80. Doubling the grid at constant
CFL should decrease the error at timet = T by a factor(1

2)
p, wherep= 4, 6 is order of the

method. The formal accuracy of each scheme was determined in this manner. Table III shows
the results of this study. The log10 of the L2 error at timet = T and the convergence rate
are the entries.T = 10 in the case of the fourth-order scheme andT = 0.4 in the case of the
sixth-order scheme. As one can see for relative short time integration the convergence rate
of the sixth-order scheme is approximately 6 and the convergence rate of the fourth-order
scheme asymptotes to the theoretical value of 4.

The error as a function of time for the fourth-order and the sixth-order schemes is shown in
Figs. 11 and 12, respectively, for different grids. CFL= 0.5 was chosen for the fourth-order

TABLE IV

Grid Convergence of Two High-Order Schemes onut + ux + uy = 0, Using

SAT Implementation of Boundary Conditions with the SAT Parameter

τ = 2 and CFL = 0.1 for the Sixth-Order Scheme and the SAT Parameter

τ = 1 and CFL = 0.25 for the Fourth-Order Scheme (T = 10,ω = 2π)

Fourth-order compact Sixth-order compact

Grid log10(L2) Rate log10(L2) Rate

21 −3.389 −4.909
31 −4.100 4.04 −5.991 6.14
41 −4.599 4.00 −6.757 6.14
61 −5.310 4.04 −7.835 6.06
81 −5.813 4.03 −8.575 6.00
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FIG. 11. TheL2-error as a function of time for the fourth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.25, ω= 2π .

FIG. 12. TheL2-error as a function of time for the sixth-order approximation using conventional implemen-
tation of boundary conditions with CFL= 0.1, ω= 2π .
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FIG. 13. TheL2-error as a function of time for the fourth-order approximation using SAT implementation of
boundary conditions with CFL= 0.25, τ = 1, ω= 2π .

FIG. 14. The L2-error as a function of time for the sixth-order approximation using SAT implementation of
boundary conditions with CFL= 0.1, τ = 2, ω= 2π .
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FIG. 15. Numerical solution at the timeT = 2 obtained with the sixth-order approximation using SAT imple-
mentation of boundary conditions withN= 60, CFL= 0.1, τ = 2, ω= 2π .

scheme and CFL= 0.1 was chosen for the sixth-order scheme. As in the one-dimensional
case, the runs are time stable in the case of the fourth-order scheme. The results obtained
by using the sixth-order scheme diverge exponentially from the analytic solution.

SAT boundary conditions.To check on the order of accuracy, the runs were repeated for
1x=1y= 1/20, 1/30, 1/40, 1/60, and 1/80. Table IV shows a grid convergence study
for both spatial operators. The absolute error log10(L2) at a fixed timeT = 10 and the
convergence rate are plotted. As one can see, the formal accuracy of the spatial operator is
unaffected by SAT boundary treatment.

The simulations were all run to equivalent timesT = 100 for both the fourth- and the
sixth-order schemes and different grids. CFL= 0.25, τ = 1 were chosen for the fourth-order
scheme and CFL= 0.1, τ = 2 were chosen for the sixth-order scheme. Figures 13 and 14
show a plot of the error of the solution to the problem (3.22)–(3.25) for the fourth-order and
the sixth-order, respectively. The log10 of the L2 error is plotted as a function of time for
five grid densities: 21, 31, 41, 61, and 81 points, respectively. It is clear that both schemes
give good results. No exponential growth exists, indicating time stability of the schemes.

Figure 15 shows the 3-D plot of the numerical solution at the timeT = 2 obtained using
the sixth-order scheme withN= 60, CFL= 0.1, τ = 2, ω= 2π .

4. CONCLUSIONS

• A methodology for the construction of high-order finite-difference compact schemes
for hyperbolic IBVPs which are strictly stable has been developed and analyzed theoreti-
cally.
• Fourth- and sixth-order compact implicit finite-difference schemes have been con-

structed and analyzed.
• To close the schemes near the boundary, the SAT procedure, proposed by Carpenter

et al. [4], but generalized and modified accordingly, has been used. It has been shown that
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this procedure does not degrade the overall accuracy of the original spatial operator and
it is strictly stable under some mild conditions on the parameterτ , which appears in the
algorithm, and corner entries of the differentiation matrix.
• Numerical experiments on hyperbolic model problems in one and two space dimen-

sions have been performed, and the schemes derived in this paper have been compared to
conventional ones with respect to convergence rate and long time integrations. All results
show good agreement with theory and demonstrate the efficacy of this methodology when
applied to hyperbolic IBVPs.
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