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We introduce a newdispersion-velocityarticle method for approximating solu-
tions of linear and nonlinear dispersive equations. This is the first time in which
particle methods are being used for solving such equations. Our method is based
on an extension of the diffusion-velocity method of Degond and Musti&lis\ J.

Sci. Stat. ComputL1(2), 293 (1990)) to the dispersive framework. The main analy-
tical result we provide is the short time existence and uniqueness of a solution to
the resulting dispersion-velocity transport equation. We numerically test our new
method for a variety of linear and nonlinear problems. In particular we are inter-
ested in nonlinear equations which generate structures that have nonsmooth fronts.
Our simulations show that this particle method is capable of capturingpthinear
regime of a compacton—compacton type interaction.2001 Academic Press

Key Wordsparticle methods; dispersive equations; diffusion-velocity; dispersion-
velocity; compacton equations.

1. INTRODUCTION

In recent years, particle methods have become one of the most useful and widesp
tools for approximating solutions of partial differential equations in a variety of fields. |
these methods, a solution of a given equation is represented by a collection of partic
located in pointx; and carrying masses . Equations of evolution in time are then written
to describe the dynamics of the location of the particles and their weights. Due to
Lagrangian nature of the method, small scales that might develop in a solution can be e:
described with a relatively small number of particles. This property is what made parti
methods so attractive in practice.

In this work we present the first particle method for approximating solutions of line:
and nonlinear dispersive equations. Our method is based on the diffusion-velocity mett
which was introduced in [11] for approximating solutions of parabolic equations, and \
therefore name our new method tlispersion-velocity method he dispersion-velocity
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DISPERSION-VELOCITY PARTICLE METHOD 709

method is the first particle method to be proposed per se for approximating solutions of s
equations. Most importantly, this is the first attempt to use particles for directly simulati
interactions between solitary waves.

Since our starting point was a particle method for parabolic equations, we briefly desc
some ofthe ideas that are used for such equations. Itis generally possible to divide the pa
methods for approximating parabolic equations into two classes: stochastic methods
deterministic methods.

The most widely used treatment of diffusion terms, taadom vortex methqdvas
introduced by Chorin in [6]. There, diffusion was introduced by adding a Wiener proce
to the motion of each vortex. Numerous works followed that pioneering paper (see, €
[1-4, 15, 18-20, 29, 31]). For a comprehensive list we refer to the review paper of Pucl
[32] and the book by Cottet and Koumoutsakos [8].

A different approach in which particle methods were used for approximating solutions
the heat equation and related models (such as the Fokker—Planck equation, a Boltzmani
equation—the Kac equation and Navier-Stokes (NS) equations), was introduced by Ri
in [38, 39]. In these works, the diffusion of the particles was described as a determini
process in terms of a mean motion with a speed equal to the osmotic velocity associated
the diffusion process. In a following work [40], the method was shown to be success
for approximating solutions to the two-dimensional Navier—Stokes (NS) equation in
unbounded domain. In this setup, the particles were convected according to the velc
field while their weights evolved according to the diffusion term in the vorticity formulatio
of the NS equations. See also Fishelov [13] and Mas-Gallic and Raviart [30].

Another deterministic approach for approximating solutions of the parabolic equatic
with particle methods was introduced by Degond and Mustieles in [11]. Their so-call
diffusion-velocitymethod was based on defining the convective field associated with t
heat operator which then allowed the particles to convect in a standard way.

For example, the one-dimensional heat equation

Ut = Uxx
is rewritten as
U + (@uu)x =0,

where the velocitya(u) is taken as—uy/u. Particles carrying fixed masses will be then
convected with speed(u). The convergence properties of the diffusion-velocity metho
were investigated, e.g., in [24, 25], where short time existence and uniqueness of solut
to the resulting diffusion-velocity transport equation were proved. The diffusion-veloci
method serves as the basic tool for the derivation of our particle methods in the disper
world.

We focus our attention on linear and nonlinear dispersive partial differential equatio
Our model problem in the linear setup is the linear Airy equation,

Ut = Uxxx-

The success of particle methods in approximating the oscillatory solutions that develo
this dispersive equation provides us with valuable insight regarding the potential embed
in our approach.
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In the nonlinear setup, we focus on equations which generate compactly supported s
tions with nonsmooth fronts, the prototype being #ém, n) equation, which was intro-
duced by Rosenau and Hyman in [34]. In this equation, a nonlinear dispersion term reple
the linear dispersion term in the Korteweg-de Vries (KdV) equation, resulting with

Km,n): Uy + UMy + UMyxx=0, m>0,1<n<3.

For certain values aoh andn, theK (m, n) equation has solitary waves which are compactly
supported. In particular, the variaki(2, 2),

K(2,2): U + (Udx + (UP)yxx = 0,

has a fundamental “compacton” solution of the form

4 X —at\1?
u(x,t):E cos 7 , X —At] < 2w

After the first appearance of the compactons in [34], it turned out that similar structul
emerge as solutions for a much larger class of nonlinear PDEs (see [26, 27, 35, 36]), an
which is, e.g.,

Ui+ UMy + UUMx)x =0, m>1 m=n+1,

which we consider withn = 2, n = 1 as our nonlinear model problem.

In this work we are mainly interested in developing tools for approximating numerical
solutions to equations which generate nonsmooth structures. Due to the discontinuity ir
derivatives on the fronts of these emerging structures, standard numerical methods su
finite-differences and pseudo-spectral methods generate spurious oscillations on the fr
Controlling these oscillations calls for a numerical filtering of the higher modes, whic
might result in the elimination of fine scales from the solution. Moreover, in cases wher
positive solution should remain positive in time, the spurious numerical oscillations mic
cause the solution to change sign. In this case, one can fall into an ill-posed region of
equation, and the numerical solution will cease to represent the solution to the equatio
hand (see the discussion in [14]).

Finally, we would like to comment that there have been several attempts to addr
the difficulties in approximating solutions of compacton equations. In [14] and [22], e.(
solutions to theK (2, 2) equation were obtained with finite-difference methods. Thes
methods were shown to generate instabilities on the discontinuous fronts (which w
interpreted in [14] as shocks). In [34], the solution of compacton equations was genere
by pseudo-spectral approximations while filtering out the high modes. None of these wa
presented a study of the properties of the numerical scheme used.

The structure of the paper is as follows: we start in Section 2 by introducing the n
dispersion-velocity method in the context of linear equations. The main analytical resul
this section is Theorem 2.1, where we prove (in the spirit of [25]) a short time existen
and uniqueness for solutions of the dispersion-velocity transport equation. This theol
requires the initial data to have only one bounded derivative and provides the same regul
for the resulting solution.



DISPERSION-VELOCITY PARTICLE METHOD 711

In Section 3 we show how to make the adjustments required in order to adapt
dispersion-velocity methods to nonlinear problems. Following the discussion above,
derivation of our method is done on compacton-type equations, which develop structt
with nonsmooth interfaces.

Our numerical method is summarized in Section 4. For completeness we discuss se
issues relating to various aspects of the implementation of the method, such as, e.g.
initialization, the cutoff functions, and the accuracy of the method.

We conclude in Section 5 with several numerical examples for linear and nonline
equations. In the linear examples we are able to verify the accuracy ahd to@servation
properties of the scheme. In the nonlinear examples we show that the particles tha
spread over two compactons (moving with different velocities) are capable of going throt
the nonlinear compacton—compacton interaction and emerge from the interaction, w
preserving the phase shift which is typical with this type of interaction.

2. THE DISPERSION-VELOCITY METHOD: LINEAR PROBLEMS

Inthis section we present the nelgpersion-velocitynethod for approximating solutions
of linear dispersive equations. Extension of this method to nonlinear problems will
presented in Section 3 below.

The dispersion-velocitymethod is based on thdiffusion-velocitymethod which was
introduced by Degond and Mustieles in [11]. There, a deterministic particle method w
used to approximate solutions to the linear heat equation,V - (S(x, t) - Vu) = 0, by
rewriting it as an advection equatian,+ V - (A(x, t)u) = 0, and advecting particles with
aspeedA(x,t) = —S(x, t) - Vu(x, t)/u(x, t).

Our starting point is the scalar, linear dispersive equation in one space dimension,

Ut = Uxxx, (21)

subjectto the initial data(x, t = 0) = ug(x). Boundary conditions will be specified below.
One can rewrite Eq. (2.1) as a convection equation

Us + (a(x, tu)x =0, (2.2)
where the coefficierda(x, t) in (2.2) has to satisfy
ax, Hu(x, t) = —uxx(X, t),
which, in turn, leads to

_ uXX(Xs t)

ax,t) = U D

(2.3)

If a(x, t) is a known function, then (2.2) is a convection equation. A “standard” partic
method for approximating solutions to (2.3) whegix, t) is known is based on introducing
a distribution of the form

N
UNOG D) =D wis(X — X (1),

i=1
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where the initial data is approximated by

N
UN(X, 0) = Y wid(x — X (0) = Ug(X).

i=1

Herex; (t) is the characteristic curve associated vetlx, t), which starts at the point’;
ie.,

{%_f = a(x (1), 1), (2.4)

According to (2.3)a(x, t) depends om and on its second derivative,, and, therefore,
it cannot be considered as a given function. Moreover, since the prodéid¢tin€tions is

not well defined, the standard particle method has to be modified.
Following [11], we introduce a smoothed approximatiof(Xx, t),

N
UROG D) = (UN # Z) (G 1) = Y wide(X — X (D). (2.5)

i=1

The functiong. (x) (which is also called “cutoff function”) is taken as a smooth approxi:
mation of thes function which satisfies

LX) = %g(?) and /g(x)dx =1 (2.6)

Given an appropriate smoothing functiquix), we can approximata(x, t) in (2.3) by

a (X, 1) = — e 2.7)

resulting with thedispersion-velocity transport equation

4 9 (g.u)=0,
{at 3x @) 2.8)

ux,t =0) = up(x).

The resultinglispersion-velocity methdd obtained by considering a particle approxima-
tion as a distribution of the form (2.5), whexgt) are the solutions to

N "
dx __ (uy06,0)" _Zj:1WjEé 6 —Xj)
dt uy (i, t) Z;\‘:le(e(x‘ —Xj) ’ (29)
X (0) = Xio.

Local existence and uniqueness of a solution to the system of ODEs, (2.9), result fr
standard ODE theorems. In order to switch from the solution along these characteris
back to the solution to the dispersion-velocity transport equation (2.8), one typically requi
certain regularity of the equation and the initial data. More specifically, if a first-orde
(nonlinear) PDE is written aB (t, X, u, uy, U) = 0, a standard requirement is tHatwill
have a continuous second-order derivative with respect to its arguments (see [12, -
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In our case, such a condition will amount to requiring, e.g., that the initial datdhas
three continuous derivatives. While this might be acceptable in the linear case, it will
unacceptable in the nonlinear case, where we will be interested in initial data that has «
one derivative.

The following theorem provides a short time existence and uniqueness of a solutiol
the dispersive-velocity transport equation (2.8) under the assumption that the initial
has only one bounded derivative. The proof follows the arguments of Lacombe and M
Gallic [25] for the diffusion-velocity transport equation (see also [24]). Here, however, v
improve the result of [25] by observing that the resulting solution has the same regula
as the initial data.

THEOREM2.1 (Local Existence and Uniquengss Assume, € C*(R), Uup € W-®(R),
and that there exist constants 8 > Osuch thatx < up < 8. Then there existsyBuch that
(2.8) has a unique solution in W*(R x (0, To)).

Proof. The proof follows the arguments of [25] with the required adaptations to tt
dispersive framework and additional bootstrapping arguments regarding the regularit
the solution. It is based on a fixed point argument on the functipralL*>°(R x (0, T))
thatmaps any € L*°(R x (0, T)) to the unique solution to the linear advection equation
v, by

4 Twa (V) =0,
{at ax (2.10)

v(X, t = 0) = Uo(X);

namely, for every suitabl¥, the unique solution of (2.10) is denoted by= ¢ (V). Due
to the smoothness @ (V), givenup € W, v is also inw**. Utilizing the method of
characteristics, the solution of (2.10) can be written as

t
v(X,t) = (V)(X, t) = uo(X(O))exp<—/0 a, (V)(X(s), 9) ds), (2.11)
where the characteristic curv&(s) is the solution of

& =a:(V)(X. 1),
Xt =0) =x.

(2.12)

We now let.A denote the set of functions in*° which are bounded in a strip away from
the origin,

A={ueL®Rx (0, T): aet<u<pe, a B >0.

In order to complete our proof, all that is required is to prove i stable undeg, i.e.,
¢(A) C A and thaip is a strictL>° contraction on4 (both results will be shown to hold
for a short time).

First, givenV e .4 we would like to show thap (V) € A. We denote thé& ! norms of,
anditsderivativesbg = ||¢llwiz, i =0, 1, ..., whereduetothe normalizatiofi{ = 1),
the first constant,, equals 1. With this notation, the derivativeafcan be estimated by

(V#g)Vx8) = (V) &)

- p2e*(cs + ¢1C2) 1
(V x£0)? - o

. (2.13
012 T]_ ( )

Iwa‘

‘ [e9]
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Hence, forT < Ty,

T ’
el<e Jo @ <e

and therefore by (2.11) one can conclude that singeug < 8, ¢ (V) € A which ends the
first part of the proof.

In order to proceed, we talkg, V € A, such thatu = ¢(U) andv = ¢ (V). We will
prove thatp is a contraction irL°>, namely, that there exists a constank 1 and a time
T such thavT <T

lo(U) =Vl = LIU = V.

Clearly, the differencev = u — v satisfies

w4 3 V) = f,
{at ax (wa: (V) (2.14)

w(X,t =0) =0,
where
f = (ula,(U) —a V)]

Once again, using the method of characteristics, the solution to (2.14) can be written a

t
w(X, 1) = / J(z, x,t) f(z, x) dr,
0
where
t
J(, X,s) = exp(—/ aé(V)(X(a),a)do) ,

and the characteristic curv€is given by (2.12).
SinceV e A, it follows from (2.13) that(a, (V))'| < 1/Ty, and hencefof < Ty, |J] <
e, which, inturn, carrie§w||. < T €| f|«. All thatis left is to boundf , an estimate which

will be obtained in two steps. We start by bounding
[T lloo < Uar (U) — & (V)]lloo + llu[a; (U) — & (V)]lloo = T1 + Z2. (2.15)
Since the difference, (U) — a, (V) can be rewritten as

(VDU = V) s« &] = [(U = V) % £"](V % &)
(U )V * &) ’

the first term on the RHS of (2.15};, is bounded by

a(U) —a, (V) =

2ﬂe302

T < Wl 2,
o

|U - V|a
which still leaves us with the task of boundifig'||oo:

=711+ Z1o. (216)

[e¢]

uge_faé(U)H + H—uo/ag(U)e‘faé(U)
[o.¢]

lUxlloo < ]
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The first term on the RHS of (2.16J;1, can be bounded by
Ti1 < [Ulloe He*faé(WH < ellUpllwi.

We also have

" U*§§(4) U*;é/ 2 (U*;é//)(u*fé)
||a;<U>||oosHU*§€ T (—u*;) OOH‘WOO
(U /YU % )2
+2| Uxz? ||

and therefore for the second term of the RHS of (2.16), we have

le = ,BE'THag(U)HOO = ﬂeT 012 ()[3

2(A2 2¢qC e4 3462
pees | B(h+20cs)e" | 801021’
o

from which we can conclude that far < 1,
Th = KqJU = V|, (2.17)

where

28€e%¢c 2g3 € (c3 + 2c.¢ 2efc2c
Ky = pec, [e||u0||wl,w+ﬂa c4—|—’3 ( 13)+2’3 12

a? o a?

We are now ready to estimate the second term on the RHS of (Z L B)irst, we rewrite
the differenceag(U) - ag (V) as

(Vx &NIU = V) % 2] — [(U = V) = Z](V * L)
(U s 2e)(V % &)
U DIV =V) =T [(U—=V) =]V xE[)
(U x£o)? (V % g)?
(VDU LIV + V) % &IV = V) ]
(U %82V *x 8o)?

aé(U)—aé(V):

Hence
T, < ullolld, (U) — a} (V)| < KalU — V], (2.18)

with

2 294 Ze4
Ky, = p > (03 + C1Co + C1C2ﬂ2> .
o o

Combining the estimates (2.17) and (2.18) we can finally conclude that

l¢U) —d(Vlloo = lwlleo = Tell flloo = TeZy +72) < TK|U = V],
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whereK = K3 + K. The mappingp is therefore a contraction ib* assuming thal <
min(Ty, 1/K, 1), which guarantees that it has a unique fixed pcfmt; ¢(\7) € A. Since

¢ maps every element of to a solution of the PDE (2.10), it also maps the fixed point o
¢, V to a solution of (2.10), and hense= ¢ (V) € W, This concludes the proof.

Remarks. 1. It is straightforward to extend the results of Theorem 2.1 to equations
the type

Ut + (bu)x = Uxxx-

2. The results of Theorem 2.1 also hold for periodic boundary conditions, with tl
suitable adjustments in the values of the constaqts, =1, 2, ... .

3. We would like to emphasize that Theorem 2.1 does not imply the stability or t
convergence of the numerical scheme (2.9). The existence time provided by the thec
tends to zero as tends to zero, which is the limit in which one would like the scheme t
converge (together withl — 00). Convergence would therefore require a strong result
existence and boundedness for a period of time that does not go to zera with

3. THE DISPERSION-VELOCITY METHOD: NONLINEAR PROBLEMS

In this section we show how ttdispersion-velocitynethod can be used for approxima-
ting solutions of equations with nonlinear dispersion terms. We would like to demonstr:
the advantages of our new techniques when compared with traditional finite-differen
methods which lead us to start our research by focusing on problems which develop r
smooth fronts and are therefore difficult to solve numerically. We would like to stress tt
our methods are not limited to such equations only. They can be applied to a variety
other interesting problems, some of which we will comment on in the remarks below.
this extent, we consider the nonlinear dispersive equation,

Ut + (Uz)x + (qux)x = O, (3-1)

subject to initial datau(x,t = 0) = up(x). In this case, the “compacton” which is the
fundamental solution to (3.1) has the compact form (see [35]),

2
ux,t) =2x {COS(X_M>] , X =At] <. (3.2)

A particle approximation for Eq. (3.1) can be obtained in the following procedure. Fir
we rewrite (3.1) asi + (a(x, t)u)x = 0, where

alx,t) = u(x, t) + uxx(x, t). (3.3)

We expect the solutions to (3.1) to develop nonsmooth fronts of the form (3.2), and her
we replace the velocits(x, t) in (3.3) with the smoother

a (X, t) =uxl +uxg/ =uy(x,t) +uyx ). (3.4)
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A particle approximation for a solution of (3.1) is therefore given by

N
UROG ) =D wide(X = Xi (1)), (3.5)

i=1

where the cutoff functiong, (x), satisfies (2.6), and the characteristic curves are give
by

B = N wise (i — X)) + YLy w6 — X)),

(3.6)
X (0) = xO.

Remarks. 1. An analogous theorem to Theorem 2.1 for the short time existence &
unigueness of a solution to the dispersion-velocity transport equation (2.8) holds also w
a, (x, t) isgiven by (3.4). Even though equation (3.1) is nonlinear the proof of such a theor
is much simpler than the proof of Theorem 2.1, and that is becgset) depends linearly
onu and its derivatives. We skip the details.

2. It was already pointed out in [14] that one cannot expect the delicate balance betw
the nonlinear advection term and the nonlinear dispersion term (which allows the crea
of compactly supported structures) to be preserved on the numerical level.

From that point of view, one of the advantages of our method is that no splitting betwe
the terms is required. One approach in particle methods for approximating solutions
nonlinear problems, such as the Burgers equation or Navier—Stokes equations, is bas
a fractional step method, in which the advection part of the equation is solved, followed
a solver to the dissipative part of the equation (see [7]). In the method we present, su
splitting is not required, and that seems to help preserve the properties of the solution.

3. We chose to approximate solutions to (3.1) since this equation enjoys the richnes
the features of nonlinear dispersive equations while, from the technical point of view, i
simpler to deal with. (The velocitg, (x, t) in its particle approximation depends linearly
onu). In principle, at least formally, the dispersion-velocity method can be easily extenc
to other equations as well. For example, a similar method can be written fét (Ae2)
equation,

K(2,2): Ut 4 (U?)y + (UDxxx = 0. (3.7)
In this case, the transport velocity is given by

uZ(x, t)
u(x,t)

alx,t) = u(x, t) + 2uxx(X,t) + 2 (3.8)

Another interesting example is a particle approximation for the Korteweg-de Vri
equation,

Uy + (uz)x + (Uz)xxx = O, (3-9)
which can be rewritten ag + (a(x, t)u)x = 0 with

uXX(Xa t)

a(X, t) == U(X, t) + m
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Since we were mainly interested in this work in studying equations which develop solutic
with nonsmooth fronts, we leave the dispersion-velocity approach for the KdV equation
a future study.

4. THE NUMERICAL METHOD

In this section we would like to present the particle method in a general formulatic
and discuss some of the issues related to its implementation. We therefore considel
following problem

{‘jﬁ‘ + 2 (@(u(x, 1), x, hu) =0,
(4.10)

u(x,t = 0) = ug(x),

with a velocity a(u(x, t), x, t) that depends on the problem. For example, the velocit
a(u(x, t), x, t) in the linear equation (2.1) is given by (2.3), while for the nonlinear (3.1) i
is given by (3.3).

Given an appropriate smoothing functigs(x), we can approximata(u(x, t), x, t) by

a: (ux, ), x, t) = a(u(x, t), X, t) * ¢ (X).
Thedispersion-velocity transport equatidinen takes the form

it T ax(@w =0,
ux,t =0) = up(x).

(4.11)

The numerical method is obtained by considering a particle approximation as a distribut
of the form of

N
UROG D) =D wide(X =% (1), (4.12)
i=1

wherex; (t) are the solutions of

& a, (U, X, 1),
{dt a ( ) (4.13)

Xi (0) = Xio.
We are now ready to discuss several issues related to the implementation of the me
(4.12)—(4.13).
4.1. Initialization

We would like to choose constantsii} such thatun(x, 0) = > ; wid(x — % (0)) ap-
proximatesg(x). This is done in the sense of measuredon
Given a test functiog € CI(R), the inner product

(Uo(), 9 () = /R Uo(X)¢ (x) dx
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should be approximated by

UNG). @) =D wid(%).

In other words, the constant®; }, should be determined by solving the standard numeric:
guadrature problem

[ uos00dxx 3 w0, (4.14)

One way of solving (4.14) can be, e.g., to coRewith a uniform mesh of spacirng > 0. For
j € Zwe then denoté; = {x | (j —1/2)h < x < (j + 1/2)h}. For example, a midpoint
quadrature irlj is given by setting

wi = hug(X)).

4.2. The Cutoff Functions

There is an extensive discussion in the literature on the selection of a cutoff funct
and its relation to the accuracy of particle methods. At this point we would only like
note that the first cutoff function was introduced by Chorin in [6]. These ideas were furtt
developed in various works, out of which we would like to mention, in particular, the worl
by Hald [19] and Beale and Majda [2—4]. For a review on the role that cutoff functions pl
in vortex methods, we refer the reader to Hald [20], the book by Cottet and Koumoutsa
[8], and the review paper by Puckett [32].

For completeness, we would like to present an example for a suitable cutoff funct
Z(X). On the real line, a possiblg(x) is a normalized Gaussian

1 x2
LX) = 22 4.15
Ze(X) mee (4.15)

A similar cutoff function can be used in the periodic case if we assume a pdriechizh
is large enough compared¢oln this case, a normalized periodic Gaussian is given by

_ (x=2Lr)?

1
: § ’ T, 4.16
£ (X) V2me © (4.16)

T=—00

or in terms of its Fourier representation, by

1 & Nz X )2
L0 = o cos<T>e‘%”2€2(t) .

N=—00

4.3. Implementation

o We would like to point out that similar to the diffusion-velocity method, the dispersior
velocity method, as formulated in this section, does not allow the solution to change si
Unlike what happened in the case of the heat equation, the oscillations that the lir
dispersive equation generates can cause the solution to change sign. In order to avoid
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undesirable situations, one can add a constant to the initial data so that it stays away |
zero, at least for short times.

e There are cases where the velody(uy, X;, t) has a denominato?, which can
vanish (e.g., in the linear problem (2.9)). In order to avoid division by zero, at least frc
a technical point of viewp~! can be replaced b/(D? + §2) with § taken as a small
constant, [21].

e It is straightforward to extend the dispersion-velocity method for multidimension:
problems. Implementation of particle methods in more than one space dimension is ci
putationally demanding, and there are a lot of methods that were devised in the literatur
order to improve the efficiency of the implementation in such cases. We refer the reade
[5, 8, 16, 17, 28, 32] for a review of fast techniques for both particle and vortex methot
We will not deal with efficiency issues in this paper and will leave them for a future publ
cation. A similar comment holds also for resampling issues. From the numerical examy
we present below it is clear that when the particles change their location in time, thi
are situations in which redistributing the particles in space is desirable. Further discus:
about redistribution issues can be found in the next section.

5. NUMERICAL SIMULATIONS

In this section we present several examples in which we test our new numerical meth
for linear as well as for nonlinear problems. For simplicity we used in all of our exampl
periodic boundary conditions. The time integration was done using a standard, fourth-ol
Runge—Kutta method with a fixed time step that was chosen small enough to ensure
local stability of the Runge—Kutta method.

e The kernel: In our computations we used two types of smooth kernels. In the line
problems we used the Gaussian kernel given by (4.15). In the nonlinear problems we
the kernel

E(X) = %(g —x2>e"‘2. (5.1)
This kernel was used in order to reduce the error, even though the overall order of accu
of the method is observed to be one in both cases. Clearly, the accuracy of the dispers
velocity method will depend on the choice of the cutoff functip(x) and on its widtke. It

is possible to improve the order of accuracy of the method by choosing more accurate ke
functions and an optimal choice of the widtlof the kernel. For an analysis of accuracy of
particle methods we refer the reader to [1-3, 11, 30-33].

e Redistribution: Since we are dealing with dispersive equations, we do not expect :
bounds on the distance between particles (both lower and upper bounds). In most of
nonlinear problems we tested such a problem was encountered. The technique use
address this issue was a redistribution of the particles in fixed times, which were sele
in such a way as to prevent the particles from spreading too far from each other. T
new locations and weights of the particles were determined using a third-order spl
interpolation. This is not the only possible method, but it did seem to be more accurate t
other methods we tried to use (such as redistribution according to (3.5)). It is importan
note that local extrema can develop in such high-order reconstructions and therefore
solution can be expected to change its sign close to zero.
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Itis well known in particle applications that redistribution of the particles might be cruci
for a successful implementation of the method; e.g., see [4, 31]. Without redistribution c
might fail to capture the long time behavior of the solution. We encountered such a probil
when trying to solve the nonlinear compacton type equations below. In particular, with
redistributing the particles, we were not able to pass the stage of the nonlinear interac
between two compactons.

5.1. Linear Equations

We start with the linear equation
Ut = Uxxx, X € [—7T, JT], t <0,

subject to initial datai(x, 0) = ug(x) and periodic boundary conditions.
First we used the initial data

Uo(X) = cogXx), X €[—m,m].

In this case the exact solution is a traveling wage, t) = cogx —t).

The number of particledl is taken as 40, 80, 160, 320. The width of the Gaussian kern
is taken ag = 0.5v/h, with h = 27/N.

A convergence rate study is shown in Table I. The entries in the table are the maxin
norm [|u — ug [l and theL? norm |lu — u§ |2 of the absolute error at a fixed tinte=
2. Also presented are the convergence rate between two grids. The convergence r:

computed as
lu — ufy, | \
IOgZ(Hu o /Iogz(Wl), (5.2)

whereu is the projection of the exact solution on the gnig, is the numerical solution,
and|ju — u§ || is a discrete norm of the absolute error. This table shows a convergence |
which is approximately one. The exact and the approximate solutions of this problern
different times are displayed in Fig. 1.

In the second example, we solved the same equatios, uyxx, Subject to initial data
u(x, 0) = 5+ exp(—x?) with periodic boundary conditions or-r, r]. Without the con-
stant in the initial data, the solution would change its sign. The constant does not cha

TABLE |
Convergence Rate for the Linear Problemu; = uy. with Initial Data
u(x, 0) = cosk)

Grid lu—uglle L> Convergencerate |[u—ugl, L2 Convergence rate
N =40 98414-3 — 0.01745 —
N =80 489673 1.007 86792-3 1.008
N =160 245143 1.003 43454-3 1.002
N = 320 12424-3 0.995 220213 0.995

Note.e = 0.5vh., T =2.
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FIG. 1. The solution ofu, = u,y, with initial data uy(x) = cogx) and periodic boundary conditions on

[-m, 7]. N = 40, e = 0.5v/h. The points represent the location of the particles. The solid lines represent t
exact solution.

the solution but it enables us to use the particle method with weights that do not cha
their sign.

Once again, the cutoff function is taken to be a Gaussian with widt0.5/h, where
h =27/N andN = 80, 160, 320, 640. Since the, norm of of the exact solution is pre-
served, we show in Table Il that this feature holds for the numerical solution as well. Figur

presents the numerical solution for different times &he- 320. The points represent the
location of the particles at any given time.

5.2. Nonlinear Equations

We consider the nonlinear dispersive equation
Ut + (uz)x + (qux)x = O,
TABLE Il

The L2 Norm of the Solution to the Linear Problem
Uy = Uy With Initial Data u(x,0) = 5 +e~

T=0 T=1 T=2

Grid llu ll2 llu Il2 llu Il2
N =80 13.26820 13.26827 13.26836
N =160 13.26843 13.26844 13.26847
N =320 13.26854 13.26855 13.26856
N =640 13.26860 13.26859 13.26860

Note.e = 0.5v/h.
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FIG. 2. The solution ofu; = Uy With initial datauy(x) =5+ e‘*z, and periodic boundary conditions on
[, 7). N = 320, ¢ = 0.5,/h. The points represent the location of the particles.

which generates compacton-type solutions as outlined in Section 3. In all of the examg
the boundary conditions are taken to be periodic in an interval much larger than the com
support of the initial data. The kernel is taken to be in the form (5.1).

5.2.1. Compacton Initial Data

Hx.0) — {2 co2(x/2), x| <= '
0, IX| > 7
Inthis case, the exact solution is a traveling wave given by (3.2) with velbeityl. Figure 3
presents the results of the numerical method for different times, Mith 160 particles
taken initially to be equally spaced with spacimgThe width of the kernel is = 0.5/h.
The convergence rate is shown in Table Il and is approximately one for both the maxim
norm and the.? norm.

5.2.2. Arbitrary Initial Data

UK, 0) = 3cod(x/4), |X| <2r
0= 0, IX| > 27

In this case we expect the fundamental compactons (3.2) to split out of this initial de
In Fig. 4 we plot the solution in time$ = 0, 1, 2, 4, 6, 8. The number of particles up to
timeT = 1 was taken abl = 200. AfterT = 1, one hundred additional particles with zero
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FIG. 3. The solution to (3.1) with initial datay(x) = 2 cog(x/2) on [-x, 7] and zero elsewher&l = 160,
€ = 0.5/h. The points represent the location of the particles.

weights were added to the right of the solution in order to solve the problem on the en
line. The width of the kernel is taken as= 1.25,/h, whereh is the initial spacing between
the particles. What can be clearly seen are compactons splitting out of the initial data
time, the residual tail splits into more compactons (see [34]).

In Fig. 5 we show that the shape of the emerging compactons attin@ coincides with
the canonical, fundamental compacton (3.2). The points represent the numerical solu
at that time. The solid line represents two fundamental compactons, shifted to the cente
the corresponding numerical humps and scaled so as to have the same amplitude.

We also compare our particle method simulations with results that are obtained wit
pseudo-spectral method in space and fourth-order Runge—Kutta method in time; see Fi
In order to avoid the numerical oscillations that develop in the pseudo-spectral method fi
the nonsmooth boundaries we filter the solution every time step with a smooth exponer
filter in the Fourier space (for further details see [35]). The number of points in the spec

TABLE IlI
Convergence Rate for the Solution to (3.1) with Initial Data
u(x, 0) = 2 cod(x/2)

Grid Jlu—uylls L* Convergencerate |lu—ugl. L2 Convergence rate
N =40 0.03851 — 0.06826 —
N =80 0.01945 0.986 0.03446 0.986
N =160 Q77673 0.989 0.01732 0.989
N =320 493233 0.988 8714%-3 0.989

Note.e = 0.5vh, T = 2.
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FIG.5. The structures splitting from the initial data are fundamental compactoas8. The points represent
the particle method. The dashed line represents the fundamental compactons (3.2).

simulations is taken all = 128. Clearly, the results of the particle method do not suffe
from the spurious oscillations that are present in the spectral methods. Itis importantto n
however, that the similarity between the results obtained with the two methods strength
also the validity of the spectral methods as a tool for solving problems of this type.

4- 5 T T T T T T N T
particle method
spectral method  »

u(x,t)

-0.5 L
-5 0 5 10 15 20 25 30

FIG.6. The solution to (3.1) with initial datay(x) = 3 cog(x/4) on [-27, 2] and zero elsewherd. = 8.
The points represent the spectral method. The solid line represents the particle method.
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5.2.3. Compacton—Compacton Interaction

Here the initial condition is taken as two compactons:

4co%(x/2), —T < X<T
u(x, 0) = ¢ cog((x — 2.57)/2), 1.57 < X < 3.57

0, elsewhere

In Fig. 7 we plot the solution intimeB = 0, 2, 4, 6, 8, 10. Up to timeT = 4 the number
of particles was taken &8¢ = 400. AfterT = 4, one hundred additional particles with zero
weights were added to the right of the solution in order to solve the problem on the en
line. The width of the kernel is taken as= v/h, whereh is the initial spacing between the
particles. The higher compacton (to the left) that travels with a higher velocity?) passes
through the lower compacton which travels sloweef 0.5) after going through a nonlinear
interaction that generates a phase shift. Evidently, the particles are capable of capturin
nonlinear interaction. We would like to note that the compactons seem to emerge from
interaction in the canonical compacton shape (3.2) while leaving behind a small resic
A similar phenomenon was observed in the past when approximating solutions to rele
equations with other methods; see for example [34, 35].

Finally, in Fig. 8 we compare the solutions obtained at time- 4 by both the particle
and the pseudo-spectral method outlined above. The spurious numerical oscillations
were presented in the spectral computation (even though the solution is filtered in ev
time step) completely disappear in the particle computation. In this figure we also show
results obtained when the particle method is run without any redistribution of the particl

4
' ! ' part'icle method wi{hout redistribdtion +
particle method with redistribution
35 | spectral method
3 i
25 F g
2+ 4
3
=1
15 F hy g
F)
1k 4
3
05 £ 4
A +
0 gr o v K
05 1 1 1 1 I 1
-10 5 0 5 10 15 20 25

FIG. 8. The solution to (3.1) with initial data (5.2.3]. = 4. The plus represents the particle method without
any redistribution of particles. The solid line represents the particle method with redistribution. The dot repres
the spectral methods.
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Redistribution is therefore essential; without it the compacton—compacton interaction c
not be captured. Redistribution was applied in fixed time intervalaf 0.25 using
third-order splines as described in the beginning of the section.
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