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We extend the dispersion-velocity particle method that we recently introduced
to advection models in which the velocity does not depend linearly on the solu-
tion or its derivatives. An example is the Korteweg de Vries (KdV) equation for
which we derive a particle method and demonstrate numerically how it captures
soliton–soliton interactions.
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1. INTRODUCTION

Particle methods have been used in recent years for approximating solu-
tions for a variety of partial differential equations (PDEs). In these methods,
the initial data are represented as a collection of particles, located at points
xi and carrying masses wi. At later times, the locations of the particles
and/or their weights are allowed to change. The solution is then found by
following the time evolution of the locations and of the weights of the par-
ticles. Due to the Lagrangian nature of the method, small scales that might
develop in the solution can be easily captured with a small number of
particles.
In a recent work [2] we have introduced the dispersion-velocity particle

method for approximating solutions of linear and nonlinear dispersive
equations. This was the first time that particle methods were used for
approximating this type of equations. Our method was based on the diffu-
sion-velocity particle method [6] for approximating solutions of parabolic
equations. In the diffusion-velocity method, one defines a convective field
associated with the heat operator which then allows the particles to convect
in a standard way. For example, the one-dimensional heat equation, ut=uxx,
is rewritten as ut+(a(u) u)x=0, where the velocity a(u) is given by −ux/u.



Particles carrying fixed masses will then be convected with speed a(u).
Issues of existence and uniqueness of solutions to the diffusion velocity
transport equations were investigated in [11, 12]. Convergence results for
a porous-media equation were recently obtained in [13].
We note in passing that there exist other methods for treating diffu-

sion terms with particles, such as the random vortex method introduced by
Chorin in [3]. The theory of particle methods as well as their applications
to various fields are reviewed in [4, 5, 8, 15, 16].
In [2] we have developed a particle method for linear and non-linear

dispersive equations. In the nonlinear setup we were interested in approxi-
mating solutions to equations which generate compactly supported solu-
tions with non-smooth fronts. The prototype of such equations is the
K(m, n) equation ut+(um)x+(un)xxx=0, m > 0, 1 < n [ 3, introduced by
Rosenau and Hyman in [17]. The fundamental solutions of the K(m, n)
equation are compactly supported solitons, the so-called compactons. The
nonlinear compacton equation we considered in [2] was of the form
ut+(u2)x+(u(u)xx)x=0. Since it is already written in an advective form,
the velocity a=u+uxx depends linearly on u and its derivatives.
In the present work the goal is to show that our method can be

applied to nonlinear dispersive equations that when written in a convective
form, do not have a linear dependence on the solution and its derivatives.
In this context, our model problem is the KdV equation introduced by
Korteweg and de Vries in [10],

ut+3(u2)x+uxxx=0

This equation which was developed for modeling shallow water waves, has
been found relevant in other physical models such as, e.g., ion acoustic
waves in a plasma [9] and acoustic waves in an anharmonic crystal [18].
For a comprehensive overview of the analysis and applications of the KdV
equation we refer the reader to [7, 9] and the references therein.
The structure of the paper is as follows: we start in Section 2 by

introducing the dispersion-velocity method for the KdV equation. A short
time existence and uniqueness Theorem for a solution of the resulting dis-
persion-velocity transport equation is stated in Theorem 2.1. We then
demonstrate in Section 3 the implementation of our method in several test
cases: a single translating soliton, a two-soliton problem, and a soliton–
soliton interaction.

2. THE DISPERSION-VELOCITY METHOD

In this section we present the dispersion-velocity method for approxi-
mating solutions of the KdV equation. The dispersion-velocity method is
based on the diffusion-velocity method introduced by Degond and Mustieles
in [6]. Our model problem is the KdV equation

ut+3(u2)x+uxxx=0 (2.1)
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which we augment with the initial data u(x, t=0)=u0(x). Boundary
conditions will be specified below. We rewrite (2.1) as a convection equation

ut+(a(x, t) u)x=0 (2.2)

where the coefficient a(x, t) in (2.2) is

a(x, t)=3u(x, t)+
uxx(x, t)
u(x, t)

(2.3)

A ‘‘standard’’ particle method for approximating solutions for (2.3)
when a(x, t) is known is based on introducing a distribution of the form

uN(x, t)=C
N

i=1
wid(x−xi(t))

where the initial data is approximated by

uN(x, 0)=C
N

i=1
wid(x−xi(0)) 4 u0(x)

Here xi(t) is the characteristic curve associated with a(x, t), which starts at
the point x0i , i.e.,

˛dxidt=a(xi(t), t),
xi(0)=x

0
i

(2.4)

According to (2.3), a(x, t) depends on u and on its second derivative,
uxx, and, therefore, it can not be considered as a given function. More-
over, since the product of d functions is not well defined, the standard
particle method has to be modified. Consequently, we introduce a
smoothed approximation, uEN(x, t),

uEN(x, t)=(uN f zE)(x, t)=C
N

i=1
wizE(x−xi(t)) (2.5)

The function zE(x) (which is also called the ‘‘cutoff function’’) is taken as
a smooth approximation of the d function and satisfies

zE(x)=
1
E
z 1x
E
2 , and F z(x) dx=1 (2.6)
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Given an appropriate smoothing function zE(x), we can approximate
a(x, t) in (2.3) by

az(x, t)=3(u f zE)+
u f z'E
u f zE

(2.7)

resulting with the dispersion-velocity transport equation

˛“u“t+ ““x (azu)=0,
u(x, t=0)=u0(x)

(2.8)

The dispersion-velocity method is then obtained by considering a particle
approximation as a distribution of the form (2.5), where xi(t) are the
solutions of

˛dxidt=3uEN(xi, t)+(u
E
N(xi, t))œ
uEN(xi, t)

=3 C
N

j=1
wjzE(xi−xj)+

;N
j=1 wjz

−

EŒ(xi−xj)
;N
j=1 wjzE(xi−xj)

,

xi(0)=x
0
i (2.9)

Local existence and uniqueness of a solution for the system of ODEs,
(2.9), can be obtained from standard ODE theorems if the initial data is
smooth. For non smooth initial data a theorem similar to Theorem 2.1 in
[2] reads:

Theorem 2.1 (Local Existence and Uniqueness). Assume z ¥ C4(R),
u0 ¥W1,.(R), and that there exist constants a, b > 0 such that a [ u0
[ b. Then there exists T0 such that (2.8) has a unique solution in
W1,.(R×(0, T0)).

The proof of Theorem 2.1 is similar to the proof of Theorem 2.1 in
[2]. We would like to remark that the regularity of the solution is the same
regularity of the initial data. Also, a similar Theorem can be formulated
for periodic boundary conditions. Finally, we would like to stress that
Theorem 2.1 does not imply the stability or the convergence of the numerical
scheme, (2.9), as the existence time vanishes with E.

Remarks

1. In order to approximate the initial data, we would like to choose
constants {wi} such that uN(x, 0)=;i wid(x−xi(0)) approxi-
mates u0(x). This is done in the sense of measures on R. Given
a test function f ¥ C00(R), the inner product

(u0( · ), f( · ))=F
R
u0(x) f(x) dx
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should then be approximated by

(uN( · ), f( · ))=C
i
wif(xi)

The constants {wi} can then be determined by solving the
standard numerical quadrature problem

F u0(x) f(x) dx %C
i
wif(xi)

One way of solving the last equation can be, e.g., to cover R with
a uniform mesh of spacing h > 0 and set

wi=hu0(xi)

2. Clearly, the accuracy of the dispersion-velocity method will depend
on the choice of the cutoff function zE(x) and on its width E. For
a discussion on the role of the cutoff function we refer the reader
to our previous work [2] and the references therein.

3. Since we are dealing with dispersive equations, we do not expect
any bounds on the distance between particles (both lower and
upper bounds). The natural way to overcome this difficulty is to
redistribute the particles in fixed times, which sould be selected in
such a way as to prevent the particles from spreading too far from
each other. It is well known in particle applications that redistri-
bution of the particles might be crucial for a successful implemen-
tation of the method, e.g., see [1, 14]. Without redistribution one
might fail to capture the long time behavior of the solution.

3. NUMERICAL SIMULATIONS

In this section we present several examples in which we test our par-
ticle method for Eq. (2.1). The kernel we used in all the examples is in the
form

t(x)=
1

`p
13
2
−x22 e−x2 (3.1)

The time integration was done using a standard fourth-order Runge–Kutta
method with a fixed time step that was chosen small enough to ensure the
local stability of the Runge–Kutta method. For simplicity periodic boundary
conditions were used in all simulations.
We start by considering the KdV equation (2.1) subject to the initial

data

u(x, 0)=0.5 sech2(0.5x) (3.2)
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Fig. 1. The solution of (2.1) with initial data (3.2) on [−12, 12]. N=128, E=`h. The
points represent the location of the particles. The solid lines represent exact solution (3.3).

in the interval [−12, 12]. In this case, the solution is a fundamental
soliton, which is a traveling wave of the form

u(x, t)=0.5 sech2(0.5(x−t)) (3.3)

The exact and numerical solutions at times t=1, 2, 3 are presented in
Fig. 1. The number of particles was taken as N=128 and they were
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Fig. 2. The solution of (2.1) with initial data (3.4) on [−15, 12]. N=500, E=`h. The
points represent the location of the particles. The solid lines represent exact solution (3.5).
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equally spaced at time t=0, with spacing h=24/N. The width of the
kernel was set as E=`h.
In the second example we present a two-soliton problem. Here we

solve (2.1), subject to the initial data

u(x, 0)=6 sech2 x (3.4)
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Fig. 3. The solution of (2.1) with initial data (3.6) on [−3p, 10p]. N=400, E=`h.
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For such initial data, the solution can be expressed as (see [7])

u(x, t)=12
3+4 cosh(2x−8t)+cosh(4x−64t)
(3 cosh(x−28t)+cosh(3x−36t))2

(3.5)

In Fig. 2 we plot the exact and the numerical solutions at =0.1, 0.4. The
number of particles was taken N=500. The width of the kernel was taken
as E=`h, where h is the initial spacing between particles. As expected, two
solitons split from the initial data.
Finally, we compute the double soliton collision. Here the initial

condition is taken as a sum of two solitons:

u(x, 0)=2 sech2(x)+0.5 sech2(0.5(x−4p)) (3.6)

in the interval [−3p, 10p]. The results are presented in Fig. 3. Once
again, the width of the kernel was taken as E=`h, where h=13p/N and
N=400. As one can see, the higher soliton (to the left) that travels with
a higher velocity (l=2), passes through the lower soliton which travels
slower (l=1) after going through a nonlinear interaction. Evidently, the
particles are capable of capturing the non-linear interaction. The solitons
emerge from the interaction in the canonical soliton shape. It is important
to mention, however, that redistribution of particles was essential in this
case; without such a process the soliton–soliton interaction can not be
captured. Redistribution was applied in fixed time intervals of Dt=0.4
using third-order splines.
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