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Abstract. Recently, a wavelet-based method was introduced for the systematic derivation of
subgrid scale models in the numerical solution of partial differential equations. Starting from a
discretization of the multiscale differential operator, the discrete operator is represented in a wavelet
space and projected onto a coarser subspace. The coarse (homogenized) operator is then replaced
by a sparse approximation to increase the efficiency of the resulting algorithm.

In this work we show how to improve the efficiency of this numerical homogenization method
by choosing a different compact representation of the homogenized operator. In two dimensions our
approach for obtaining a sparse representation is significantly simpler than the alternative sparse
representations. L∞ error estimates are derived for a sample elliptic problem. An additional im-
provement we propose is a natural fine-scales correction that can be implemented in the final ho-
mogenization step. This modification of the scheme improves the resolution of the approximation
without any significant increase in the computational cost. We apply our method to a variety of test
problems including one- and two-dimensional elliptic models as well as wave propagation problems
in materials with subgrid inhomogeneities.
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1. Introduction. We are concerned with approximating solutions of partial dif-
ferential equations (PDEs) that involve information on different scales. Our main
interest is in subgrid models in which the computational grid is too coarse to resolve
the fine scales of the solution. The precise form of the PDE is of no interest in this
work. However, since it is sometimes convenient to have a specific model, the reader is
encouraged to think about multiscale differential operators that include, e.g., variable
coefficients that are either rapidly oscillating or random.

Our starting point is a particular discretization of the PDE of interest, which we
write as

Lu = f(1.1)

with L = P (∆,A, h). Here, ∆ represents discrete difference operators, A represents a
discretization of the coefficients of the equation, and h is a given mesh size, which is
assumed to be sufficiently small to resolve all scales. We will consider equation (1.1)
as our starting point even when all the scales are not fully resolved. The ultimate
goal is to find an alternative “effective” equation,

L̄ū = f̄ ,(1.2)

such that L̄ is of the same structure of L, i.e., L̄ = P (∆,H, h̄). Here, H is a subgrid
model of A, and h̄ � h. Due to the similarity with classical homogenization [3], such
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a procedure will be referred to as numerical homogenization, or, for simplicity, we
will usually refer to it as homogenization and to the operator L̄ as the homogenized
operator. Since, in general, the homogenized operator is dense, an additional reduction
in the complexity of the computations is sought by finding a sparse representation
of L̄.

In the past decade, several authors addressed the problem of finding a suitable
homogenized representation (1.2). A multiresolution approach presented by Brewster
and Beylkin in [9] reduces the problem of finding the effective equation (1.2) into the
problem of finding the Schur complement of a certain projection of the equation on
a coarse-scales/fine-scales representation of the solution. This approach was further
developed by Gilbert [15], where she established the connection between the mul-
tiresolution strategy and methods of classical homogenization. Related results were
obtained by Dorobantu [11] and by Dorobantu and Engquist [12]. We note that the
wavelet basis used in [11, 12, 15] was the Haar basis.

We would like to note in passing that it is possible to use basis functions other
than the Haar basis. For example, high-order wavelets were used for approximating
solutions of elliptic problems by Beylkin and Coult [7]. There, increasing the number
of vanishing moments of the wavelets basis provided control over the rate of decay of
the off-diagonal blocks of the reduced operator, hence enabling one to obtain good
approximation properties with reduced operators. For other related works see [6, 20]
and the references therein.

Generally, the operator L in (1.1) is sparse and enjoys a certain structure. The
operator L̄ in (1.2), however, is typically dense. Nevertheless, there are important
cases in which L̄ is diagonally dominant [1]. An exponential decay for the elements
away from the main diagonal can be obtained, e.g., for certain elliptic problems [12].
This property motivated Andersson et al. [1] to propose different ways of obtaining
a sparse approximation of L̄ (see also [14]). It is important to note that in all the
numerical simulations performed in [1, 14] when several homogenization steps were
performed sequentially, the homogenized operator was replaced with its sparse ap-
proximation only in the last homogenization step. Indeed, such an approximation
does reduce the overall computational cost. However, from a practical point of view,
it is desirable to find a sparse representation of the homogenized operator that can
be invoked at every homogenization step. Unfortunately, a direct application of the
compactification algorithm of [1, 14] at every stage yields poor approximation results.

In this paper we propose a couple of ways to improve the method of [1, 12, 14].
First, we propose to generate a sparse representation of the homogenized operator
by approximating only the high-frequencies component of the homogenized operator.
Such an approximation still allows us to control the size of the homogenized operator,
which then enables us to use any standard algorithms for handling sparse matrices
at every homogenization step. Our numerical results indicate that such an approach
provides a significantly more accurate solution compared with [1] when the sparse
approximation is performed at every homogenization step. In two dimensions, this
algorithm is noticeably simpler than the alternative approaches of [1, 12, 14]. An ad-
ditional modification we propose is a fine-scales correction, which allows us to improve
the resolution at the final computational stage without any significant computational
cost.

The structure of the paper is as follows: we start in section 2 with a brief review of
multiresolution analysis and of wavelet-based numerical homogenization algorithms.
In section 3 we discuss different compact representations of the homogenized operator,
focusing on our approach, which involves the compactification of the high-frequencies
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part of the homogenized operator. In section 4 we describe the fine-scales correction
to improve the resolution at the final computational stage. We conclude in section 5
with numerical simulations of a variety of elliptic and hyperbolic test cases, all of
which involve subgrid inhomogeneities.

For completeness of this presentation, we refer the reader to related modern
“state-of-the-art” approaches, such as those in [4, 5, 8, 13, 16, 17, 18, 19, 22, 24]
and the references therein.

2. Background.

2.1. Multiresolution analysis. We start with a brief review of multiresolution
analysis. For more details we refer the reader to [21, 23].

Definition 2.1. A multiresolution approximation (MRA) of L2(Rn) is an in-
creasing sequence Vj, j ∈ Z, of closed subspaces of L2(Rn) with the following proper-
ties:

1.
⋂

j∈Z
Vj = {0}.

2.
⋃

j∈Z
Vj is dense in L2(Rn).

3. For all f ∈ L2(Rn) and j ∈ Z, f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1.
4. For all f ∈ L2(Rn) and k ∈ Z

n, f(x) ∈ V0 ⇔ f(x− k) ∈ V0.
5. There exists a function θ(x) ∈ V0 such that {θ(x − k)}k∈Zn is a Riesz basis

of the space V0.
We recall that a Riesz basis of a Hilbert space H is a sequence e0, . . . , ek, . . . ∈ H,

such that the vector space of finite sums
∑

αkek is dense in H and there exists

constants 0 < a1 < a2, such that for all α0, α1, . . . , we have a1

(∑
|αk|2

)1/2 ≤
‖
∑

αkek‖ ≤ a2

(∑
|αk|2

)1/2
. It is possible to construct from the Riesz basis {θ(x −

k)}k∈Zn an orthonormal basis for the MRA as stated by the following theorem.
Theorem 2.2 (see [23], p. 26). Let Vj, j ∈ Z, be a MRA of L2(Rn). Then there

exist constants 0 < c1 ≤ c2 such that for almost all ξ ∈ R
n, c1 ≤

(∑
k∈Zn |θ̂(ξ +

2kπ)|2
)1/2 ≤ c2. Also, if φ ∈ L2(Rn) is defined by φ̂(ξ) = θ̂(ξ)

(∑
k∈Zn |θ̂(ξ +

2kπ)|2
)−1/2

, then {φ(x− k)}k∈Zn is an orthonormal basis of V0.
With a proper normalization of the “scale function,” φ(x), one can generate an

orthonormal basis for Vj : {φj,k(x) = 2j/2φ(2jx− k)}k∈Z.
For a given MRA, {Vj}j∈Z, the “details” space, Wj , is the orthogonal complement

of Vj in Vj+1, i.e., Vj+1 = Vj ⊕Wj . As a direct consequence of the definition of the
MRA, we have L2(Rn) = VJ ⊕

⊕∞
j=J Wj =

⊕∞
j=−∞ Wj .

In one dimension we write an orthonormal basis for the “details” space, Wj , in
terms of the “wavelets” {2j/2ψ(2jx − k)}k∈Z. The generating function, ψ(x), the
so-called mother wavelet of class m, is assumed to satisfy the following properties:

1. ψ(x)(l) ∈ L∞(R) for l = 0, . . . ,m (the lth derivative of ψ).
2. ψ(x)(l) decrease rapidly as x → ±∞ for l = 0, . . . ,m.
3.

∫∞
−∞ xkψ(x)dx = 0 for k = 0, . . . ,m.

4. {2j/2ψ(2jx− k)}(j,k)∈Z2 is an orthonormal basis of L2(R).
In more than one dimension we consider only the separable case in which the mul-

tidimensional MRA can be written as the tensor product of one-dimensional MRAs.
For example, a separable two-dimensional MRA can be written as Vj = Vj ⊗ Vj ,

where Vj is a one-dimensional MRA. In this case L2(R2) =
⊕

j∈Z
Wj, and the two-

dimensional details space, Wj, can be decomposed as Wj = (Wj ⊗Wj)⊕ (Vj ⊗Wj)⊕
(Wj ⊗ Vj). In terms of basis functions, if {φj,k(x)}k∈Z is an orthonormal basis of Vj ,
then {φj,k,l(x1, x2) = φj,k(x1) ⊗ φj,l(x2)}(k,l)∈Z2 is an orthonormal basis of Vj.
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2.2. Wavelet-based numerical homogenization. For simplicity we start with
a one-dimensional problem and consider

Lu = f,(2.1)

where L is assumed to be a differential operator and u, f ∈ L2(R). A discretization
of (2.1) can be viewed in terms of replacing (2.1) with an approximation in Vj+1.
The operator L is replaced by Lj+1 ∈ L(Vj+1, Vj+1), where L(X,Y ) represents the
bounded linear maps between X and Y . Similarly u, f are approximated by U,F ∈
Vj+1. Hence,

Lj+1U = F.(2.2)

Our main goal is to reduce the dimensionality of the system (2.2). This will be
done by separating U into fine and coarse components and writing a suitable equation
only for the coarse part of the solution. Given the decomposition Vj+1 = Wj ⊕Vj , we
introduce the orthogonal projection operator Mj : Vj+1 → Wj × Vj . In other words,

we can separate U ∈ Vj+1 into two parts: MjU =
(
Uf

Uc

)
. Here, Uf ∈ Wj and Uc ∈ Vj

denote the fine- and coarse-scales components of U , respectively. Projecting (2.1) on
Vj ⊕Wj we have MjLj+1MjM

T
j U = MjF , or, equivalently,

MjLj+1M
T
j

(
Uf

Uc

)
=

(
Ff

Fc

)
,(2.3)

where Ff ∈ Wj and Fc ∈ Vj denote the fine- and coarse-scales components of F ,

respectively. If we now split Mj =
(
Qj Pj

)T
, where Pj is the projection on Vj and

Qj = I − Pj is the projection on Wj , we can rewrite the operator on the left-hand
side of (2.3) as

MjLj+1M
T
j =

(
QjLj+1Q

T
j QjLj+1P

T
j

PjLj+1Q
T
j PjLj+1P

T
j

)
:=

(
Aj Bj

Cj Lj

)
.(2.4)

An effective equation for the coarse scales of the solution Uc can now be obtained via
a block Gaussian elimination of (2.3), which yields

L̄jUc = F̄j(2.5)

with

L̄j = Lj − CjA
−1
j Bj , F̄j = Fc − CjA

−1
j Ff .(2.6)

Hence, the coarse grid operator L̄j is the Schur complement of MjLj+1M
T
j .

As an example, in the case of the Haar basis the projection on Vj is simply an
approximation with a piecewise constant function on the resolution level set by Vj .
In this case, Qj and Pj are given by

Qj =
1√
2

⎛
⎜⎜⎜⎝

1 −1 0 · · ·
0 0 1 −1 0 · · ·
...

...
. . .

. . .

0 0 · · · 0 1 −1

⎞
⎟⎟⎟⎠, Pj =

1√
2

⎛
⎜⎜⎜⎝

1 1 0 · · ·
0 0 1 1 0 · · ·
...

...
. . .

. . .

0 0 · · · 0 1 1

⎞
⎟⎟⎟⎠.
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We would like to emphasize that the numerical homogenization technique discussed
above is not limited to the Haar wavelets and that other types of wavelets can be
used.

An analogous derivation holds in the multidimensional case. Similarly to the
one-dimensional case, we start with Lj+1U = F , where U,F ∈ Vj+1, and Lj+1 ∈
L(Vj+1,Vj+1). Hence, (2.3) holds for the d-dimensional orthogonal projection oper-
ator, Md

j : Vj+1 → Wj × Vj , with Uf , Ff ∈ Wj and Uc, Fc ∈ Vj . The multidimen-
sional homogenization procedure has the same form as in one dimension, i.e.,

L̄j = Lj − CjA
−1
j Bj , F̄j = Fc − CjA

−1
j Ff .(2.7)

For example, in the two-dimensional separable case, the coarse scales Uc, Fc belong
to Vj ⊗ Vj , and the fine scales can be decomposed as

Uf =

⎛
⎝Uff

Ufc

Ucf

⎞
⎠,

Uff ∈ Wj ⊗Wj ,
Ufc ∈ Wj ⊗ Vj ,
Ucf ∈ Vj ⊗Wj .

(2.8)

In this case, the two-dimensional projection operator M2
j can be written as the tensor

product of two one-dimensional projection operators, i.e.,

M2
j = Mj ⊗ Mj =

⎛
⎜⎜⎝
Qj ⊗Qj

Qj ⊗ Pj

Pj ⊗Qj

Pj ⊗ Pj

⎞
⎟⎟⎠.

Remarks.
1. To make sense of (2.5)–(2.6), A−1

j must exist. Since Aj may not be invertible,

L̄j and F̄j do not exist for all elements of Lj+1 ∈ L(Vj+1, Vj+1). A direct
consequence of the Lax–Milgram theorem is that Aj is invertible if Lj+1 is
bounded and strictly positive definite (see Proposition 1 in [14]). In this
case the homogenized operator L̄j remains symmetric and positive definite,
and hence it is possible to apply the homogenization procedure several times:
Lj+1 → L̄j → L̄j−1 → · · · .

2. The coarse grid operator, L̄j , preserves some of the properties of Lj+1. For
example, if Lj+1 is symmetric, then so is L̄j . (In the Haar case, if Lj+1

is triangular, then so is L̄j). If, in addition to being symmetric, Lj+1 is
also positive definite, then the condition number does not increase in the
homogenization procedure, i.e., cond(L̄j) ≤ cond(Lj+1). In certain cases it
is possible to show that some additional structure is preserved. For example,
in [12] it was shown that the action of the homogenization procedure on
the one-dimensional elliptic operator −(aux)x preserves the divergence form
of the operator. This property was then used in [1] to generate a compact
representation of the homogenized operator.

3. A compact representation of the homogenized operator. Our goal in
this section is to increase the efficiency of a successive implementation of the homog-
enization procedure (2.6). We start by assuming that Lj+1 is a matrix of dimen-
sion n × n, and hence the matrix L̄j obtained by algorithm (2.6) is of dimensions
(n/2) × (n/2). Since L̄j = Lj − CjA

−1
j Bj , computing L̄j requires one to invert Aj ,

which is also of dimensions (n/2)× (n/2). Hence, to compute Uj , one needs to invert



70 ALINA CHERTOCK AND DORON LEVY

two matrices of dimension (n/2) × (n/2). This, together with the additional matrix
multiplications, accumulates to a computational work that is equivalent to the one
required to invert the original matrix Lj+1. There is therefore no computational gain
in one application of the homogenization algorithm.

The situation slightly improves if the homogenization algorithm is repeated sev-
eral times. If this is the case, every step requires the inversion of a matrix that is half
the size of the previous one. Only the last step requires inverting the full homogenized
operator. In either way, when the homogenization algorithm is used only once, or even
when it is being used several times, its efficiency depends on being able to generate
a sparse representation of the homogenized operator, L̄j . In general, the matrix A−1

j

is dense, and hence the matrix L̄j is not sparse. However, at least in some cases of
interest such as certain elliptic problems, the elements of L̄j decay exponentially fast
away from the main diagonal [12]. This decay property can be used to generate a
compact representation of the homogenized operator L̄j , which can be obtained as
follows (see, e.g., [1, 12, 14]):

1. Approximate L̄j with a band-diagonal matrix, keeping only ν diagonals that
are symmetrically distributed around the main diagonal and setting to zero
the rest of the elements. For any matrix R we denote this operation by

band(R, ν)ij =

{
Rij if 2|i− j| ≤ ν − 1,
0 otherwise.

(3.1)

If the matrix R is upper (or lower) triangular, then (3.1) is replaced by an
equivalent expression keeping ν diagonals above (or below) the main diagonal.
This approach was proposed in a somewhat related but nevertheless different
context [6] and was then used in [12].

2. Another compact representation can be obtained via thresholding, i.e., keep-
ing all the elements that are above a certain given threshold ε. We use the
following notation for this operation:

trunc(R, ε)ij =

{
Rij if |Rij | > ε,
0 otherwise.

(3.2)

In some cases this approach is less practical than the previous one because
one has to search for the small elements of the matrix and to adjust the rest
of the algorithms accordingly.

3. A technique that was introduced in [1] and is similar to the probing method of
[2, 10] is to approximate a matrix by projecting it onto the subspace of matri-
ces with bandwidth ν such that the projected matrix will give the same result
as the original matrix on a given subspace. This subspace is typically chosen
such that it represents a certain class of smooth functions. Hence, in the so-
called band projection method, we are looking for a matrix, bandproj (R, ν),
such that for given linearly independent {vj}νj=1,

Rx = bandproj (R, ν)x(3.3)

for all x ∈ span{v1, . . . , vν}. The results obtained with this method in [1]
were of good quality. However, it is limited to smooth solutions. When the
solutions are not sufficiently regular, which is the case, e.g., with most of our
examples in section 5, the results are not as good. This approach is similar
to the frequency-filtering approach; see, e.g., [25].
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It is important to note that in all the numerical simulations presented in [1, 12, 14],
when several homogenization steps were performed, L̄j was replaced by its sparse
approximation only in the final homogenization step. All other homogenization steps
were computed exactly according to (2.6). Our numerical simulations in section 5
indicate that applying the first approximation method at every homogenization step
produces poor results. A method that is applicable only for the final homogenization
step provides a somewhat moderate gain as far as the efficiency of the algorithm is
concerned, and it remains desirable to find an approximation method that can be
applied at every stage.

In certain cases it is possible to show that the homogenized operator preserves
the structure of the differential operator. For example, in [12] (see also [14]) it was
shown that the one-dimensional elliptic equation

−(au′)′ = f,(3.4)

which is discretized as −∆+diag(a)∆−U = h2F , preserves its divergence form during
the homogenization process. In other words, the homogenized operator can be written
as

L̄j =
1

h2
∆+Hj∆−,(3.5)

where Hj is a diagonally dominant matrix that can be interpreted as the effective
material coefficients related to a. A sparse representation of the homogenized op-
erator L̄j can be obtained by approximating the corresponding Hj matrix (e.g., by
banding according to (3.1)). This approach assumes, of course, that a representation
of the form (3.5) is available. The results of [1, 14] indicate that better results can be
obtained by approximating Hj instead of L̄j , and this is reflected, e.g., by having to
keep fewer diagonals in bandproj (Hj , ν) than in bandproj (L̄j , ν). We will see below
that in multidimensional problems it is less obvious how to generate a sparse approx-
imation of L̄j by approximating the multidimensional generalization of Hj in (3.5).

There are additional approaches for the compact representation of L̄j . For ex-
ample, it is possible to connect the decay rate away from the main diagonal in the
matrices Aj , Bj , and Cj with the number of vanishing moments of the wavelets that
are being used. This strategy is described in [7].

We would like to propose a different approach for obtaining a compact repre-
sentation of the operator L̄j . The idea is to approximate only the high-frequencies
component of the homogenized operator. More specifically, we band the matrix A−1

j

and replace L̄j by an approximated matrix L̄b
j that is defined as

L̄b
j = Lj − Cj band(A−1

j , ν)Bj .(3.6)

We demonstrate below that this seemingly minor modification of the homogenization
algorithm has several advantages over previous ideas. For one, it allows us to in-
voke the approximation at every homogenization step. Also, in two dimensions this
approach significantly simplifies the procedure when compared with banding Hj . A
related idea was proposed in [20] where the matrix A−1

j was replaced by a diagonal
matrix for certain elliptic problems.

One property of L̄j that is preserved with L̄b
j is symmetry as stated in the following

proposition.
Proposition 3.1. If Lj+1 is self-adjoint and Aj is invertible, then L̄b

j is also
self-adjoint.
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Proof. If Lj+1 = L∗
j+1 then MjLj+1M

∗
j is also self-adjoint. Hence, Aj = A∗

j ,

Lj = L∗
j , and Bj = C∗

j . Hence, when Aj is invertible (A−1
j )∗ = A−1

j , and since the
operators band(·, ν) and (·)∗ commute, we have

(L̄b
j)

∗ = L∗
j −B∗

j (band(A−1
j , ν))∗ C∗

j = Lj − Cj band(A−1
j , ν)Bj = L̄b

j .

Clearly, banding A−1
j generates a compact representation of the homogenized

operator L̄b
j . This can be easily demonstrated in the case of Haar wavelets. We

assume that the number of nonzero diagonals (the width) of the different matrices is
given by the following table:

Matrix Width

Lj+1 α

Aj , Bj , Cj , Lj β

band(A−1
j , ν) ν

L̄b
j δ

The width, α, of the matrix that represents the initial discretization is small for
compact approximation. The width β in this case is α−1

2 +2 if α−1
2 is odd and α−1

2 +1

otherwise. Given a width, ν, of band(A−1
j , ν), the width, δ, of the homogenized matrix,

L̄b
j , is

δ = ν + 2(β − 1) =

{
α + ν + 1 if α−1

2 odd,
α + ν − 1 otherwise,

and this is indeed a sparse representation of L̄b
j .

In two dimensions one has to take into account the block structure that results
from the tensor product between the different matrices. The structure for the banding
operator that was proposed in [1] was the following: given a matrix R in the form of
the tensor product of two N ×N matrices, the two-dimensional banding operator is
defined as

band(R, ν)ij =

{
Rij if 2|i− j − rN | ≤ ν − 1 − |2r|,
0 otherwise

(3.7)

for all r such that |2r| + 1 ≤ ν.
The extension of (3.7) to banding A−1

j is as follows. If the matrix L̄j is of dimen-

sions N2 ×N2, the matrix A−1
j is of dimensions 3N2 × 3N2, and for all r such that

|2r| + 1 ≤ ν,

band(A−1
j , ν)ik =

{
(A−1

j )ik if 2|(i mod N2) − (k mod N2) − rN | ≤ ν − 1 − |2r|,
0 otherwise.

(3.8)

Generally, in more than one dimension, manipulating A−1
j is much simpler than

manipulating Hj . This can be demonstrated, e.g., with the following case study.
Consider the two-dimensional elliptic equation

−∇(a(x, y)∇u) = f,(3.9)
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and assume that its left-hand side is discretized as

Lj+1 = − 1

h2
∆x

+A∆x
− − 1

h2
∆y

+A∆y
−,(3.10)

where A is the appropriately sampled a. It was shown in [14] that for Lj+1 given by
(3.10), the homogenized operator L̄j contains the mixed derivatives,

L̄j = − 1

h2
∆x

+H
xx∆x

− − 1

h2
∆y

+H
yx∆x

− − 1

h2
∆x

+H
xy∆y

− − 1

h2
∆y

+H
yy∆y

−,(3.11)

and hence is of a different form than Lj+1. In general, the divergence form of the
Schur complement is difficult to obtain in the multidimensional case. Equation (3.11)
is the divergence form that corresponds to the elliptic operator in (3.9). Even in this
case, it is not obvious what the resulting form of the different H’s is and how to obtain
a compact representation for them.

For future reference it is important to note that even though we band matrices
of different dimensions in (3.7) and (3.8), the parameter ν in both equations plays an
identical role. If we define the sparsity of a matrix as the ratio between the number
of (presumably) nonzero elements and the total number of elements, then it is easy
to show that due to the structure of the banding and the dimensions of the matrices,
the sparsity of the banded matrices will be exactly the same in both methods (3.7)
and (3.8) for any given value of ν.

In order to get a good approximation of the homogenization solution, the sparse
representation, band(A−1

j , ν), should be a good approximation of A−1
j . We cannot ex-

pect this to be the case for a general operator Lj+1. However, in many cases of interest,
A−1

j is diagonally dominant, and hence it is natural to expect good approximation
properties from (3.6). As an example we study the quality of the approximation (3.6)
when implemented on the elliptic problem

−
(

d

dx
a(x)

d

dx
u

)
= f, a(x) > 0, x ∈ R.(3.12)

We denote the mesh spacing that corresponds to Lj+1 by h and perform the homog-

enization in the Haar basis. We assume that Mja =
(
ã ā

)T
and that the coefficient

a(x) oscillates on the mesh scale, a(xm) = ā+ (−1)mã. Here, ā and ã are assumed to
be positive constants such that 0 ≤ ã < ā. Following [12], we now discretize (3.12) as

− 1

h2
∆+diag(a)∆−U = F.(3.13)

Dropping the diag(·) notation, a direct computation gives the decomposition of
−(∆+a∆−)/h2 in the Haar basis as

Mj

(
− 1

h2
∆+a∆−

)
MT

j =

(
Aj Bj

Cj Lj

)
(3.14)

with

Aj = c
[
ā(∆+∆− −MMT ) + ã(∆+M

T −M∆−)
]
,

Bj = c [(M − ∆+)(ā + ã)∆−],

Cj = −c
[
∆+(ā + ã)(∆− + MT )

]
,

Lj = 2c∆+(ā + ã)∆−.



74 ALINA CHERTOCK AND DORON LEVY

Here, c = −1/(4
√

2h2), M = −3I−S1, Sn is the shift matrix such that S
(n)
k,l = δk+n,l,

and ∆± denotes the usual forward and backward differencing. The expression (3.14)
can be easily computed by decomposing

Mj

(
− 1

h2
∆+a∆−

)
MT

j = − 1

h2
(Mj∆+MT

j )(MjaM
T
j )(Mj∆−MT

j ).

Hence, the homogenized operator is given by

L̄j = Lj − CjA
−1
j Bj(3.15)

= Lj +
1√

2(2h)2
∆+(ā + ã)(∆− + MT )A−1

j (M − ∆+)(ā + ã)∆−.

Equation (3.15) can then be rewritten in the divergence form

L̄j = − 1

(2h)2
∆+H∆−

with

H =
√

2(ā + ã)
[
I − (ā + ã)(∆− + MT )Ã−1

j (M − ∆+)
]

and

Ãj = 2
√

2h2Aj = −1

2

[
ā(∆+∆− −MMT ) + ã(∆+M

T −M∆−)
]
.

With the identities

∆− + MT = −2(I + S−1), M − ∆+ = −2(I + S1),
∆+∆− −MMT = −2(S−1 + 6I + S1), ∆+M

T −M∆− = −2∆+∆−,

we can rewrite H as

H =
√

2(ā + ã)
[
I − (ā + ã)(I + S−1)Ã

−1
j (I + S1)

]
,

where

Ãj = ā(S−1 + 6I + S1) + ã∆+∆−.(3.16)

Since 0 ≤ ã < ā, the sum of the elements off the main diagonal is 2ā + 2ã < 4ā,
while the diagonal elements are 6ā− 2ã > 4ā, and hence the matrix Ãj is diagonally
dominant. Rearranging the terms in (3.16) we have

Ãj = ā(S−1 + 6I + S1) + ã(S1 + S−1 − 2I)

= (6ā− 2ã)(I + q(S1 + S−1)), q =
ā + ã

6ā− 2ã
.

Clearly, |q| < 1/2, and hence the following expansion converges:

Ã−1
j =

1

6ā− 2ã

(
I +

∑
k

(−1)kqk(S1 + S−1)
k

)
.(3.17)
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Here, we see the rapid decay of the entries of Ã−1
j away from the main diagonal.

According to (3.17) Ã−1
j can be written as a converging sequence of the form Ã−1

j =∑
n∈N

anSn with coefficients an that are given by (3.17). Hence

Ã−1
j − band(Ã−1

j , ν) =
∑

|n|> ν−1
2

anSn.

We now denote the approximation of H that is obtained by banding Ã−1
j as H̃, i.e.,

H̃ =
√

2(ā + ã)[I − (ā + ã)(I + S−1)band(Ã−1
j , ν)(I + S1)].

Hence,

H − H̃ =
√

2(ā + ã)2G

with

G = (I + S−1)(Ã
−1
j − band(Ã−1

j , ν))(I + S1)

= 2
∑

|n|> ν−1
2

anSn +
∑

|n|> ν+1
2

an−1Sn +
∑

|n|> ν−3
2

an+1Sn :=
∑

|n|> ν−3
2

γnSn.

It is clear from the expansion in (3.17) that Ã−1
j is generated from an infinitely

long stencil with an exponential decay rate ρ = 2q < 1. Hence, |an| < Kρ|n| with
K = 1/(6ā− 2ã). Therefore, a simple bound for the decay of the elements of H − H̃
away from the main diagonal is

√
2(ā + ã)2|γn| ≤ 4

√
2(ā + ã)2|an| < 4

√
2(ā + ã)2Kρ|n| := K ′ρ|n|

with K ′ = 4
√

2(ā + ã)2K. Due to the circulant structure of H − H̃ we can now
estimate

‖H − H̃‖∞ = 2

∞∑
n= ν−1

2

|γn| < 2K ′
∞∑

n= ν−1
2

ρn = 2K ′ρ
ν−1
2

1

1 − ρ
.(3.18)

Similarly to what was done in [12], the estimate (3.18) can be translated into an
estimate for L̄j− L̄b

j for L̄b
j that is given by (3.6). Assume that v is a smooth function,

and denote it by vi = v(xi). Since H (and H̃) commute with ∆+, we have

(L̄j − L̄b
j)vi = (H − H̃)

1

h2
∆+∆−vi = (H − H̃)v′′(ξ),

where ξ ∈ R. Hence, taking (3.18) into account, we have

|(L̄j − L̄b
j)vi| ≤ 2K ′ρ

ν−1
2

1

1 − ρ
|v′′(ξ)|.(3.19)

Taking the sup over all ξ and the maximum over i we can obtain the following theorem.
Theorem 3.2. Consider (3.12), which is discretized as (3.13) on the line on a

uniform grid with mesh spacing h. Assume that the coefficients oscillate on the mesh



76 ALINA CHERTOCK AND DORON LEVY

scale, a(xm) = ā + (−1)mã. Let L̄j be given by (2.6), and let L̄b
j be given by (3.6).

Finally, assume that v is smooth. Then

‖(L̄j − L̄b
j)v‖∞ ≤ Cρ

ν
2 ‖v′′‖∞, C =

8
√

2(ā + ã)2

(6ā− 2ã)ρ1/2(1 − ρ)
.(3.20)

Remark. Theorem 3.2 is similar to Theorem 2 in [12], which deals with banding Hj

instead of Ã−1
j . The following bound can be obtained when banding Hj :

‖(L̄j − L̄b
j)v‖∞ ≤ Cρ

ν+1
2 ‖v′′‖∞

with the same constant C as in (3.20). Note that this is a correction of the equivalent
expression in [12]. Regarding the proofs of Theorems 1 and 2 in [12] we note the
following: (a) The operator on page 544 has the wrong sign and hence is not elliptic.
This is the reason why the eigenvalue of AJ given in [12, eq. (11)] should be −8ā and
not 8ā as stated (unless the sign of the operator is reversed). (b) The expression on
the bottom of [12, p. 548] should be ∆+M

T −M∆− = −2∆+∆−. (c) The estimate
in [12, eq. (14)] should be |γn| < K ′ρ|n|. (d) The first line of the proof of Theorem 2
in [12, p. 552] reads ‖H − band(H, ν)‖ < K ′ ∑∞

n=ν ρ
n, and this should be corrected

(compare with (3.18)).

4. A fine-scales correction. The fine-scales component of the solution can be
recovered from (2.3) with the notation in (2.4) and is given by

Uf = −A−1
j BjUc + A−1

j Ff .(4.1)

Here Ff = Qf with f ∈ Vj+1 and Ff ∈ Wj . Equation (4.1) holds also in more than
one dimension.

A straightforward observation is that if the homogenization procedure is repeated
several times, then in the last step we already know all the ingredients that are required
for computing Uf via (4.1). This is true for the final homogenization step, because
that is when we invert L̄j to compute Uc, and since Uc, A

−1
j , as well as the other terms

in (4.1), are known at this last step, computing Uf requires no additional excessive
computational cost besides multiplying known matrices. Once Uf is known it can be
combined with Uc to recover a better resolved solution U .

In two dimensions, the fine-scales correction is also given by (4.1). In this case,
the solution should be recovered from four components, as the dimensionality of the
fine-scales part of the solution is three times the dimensionality of the coarse-scales
part of the solution, as given in (2.8).

In some sense, once we involve fine scales in the computation, it is less natural to
address the method as a “subgrid” method. Nevertheless, being able to improve the
solution using the fine scales from the final stage with no additional computational
cost is a positive consequence of this formulation and should not be ignored.

We would also like to note that in some cases, the additional structure of the
problem reduces the advantages in making such a fine-scales correction. For exam-
ple, if one considers hyperbolic problems which are discretized with a semidiscrete
numerical scheme, homogenizing only the spatial part of the operator and evolving
in time using an ordinary differential equation (ODE) solver, one can still improve
the quality of the homogenized operator by adding the fine scales. However, this will
increase the size of the ODE system that then has to be solved, so it might actually
be too computationally expensive to implement this improvement.
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Fig. 1. The one-dimensional elliptic problem (5.1) discretized as (5.2)–(5.3). a(x) is given by
the random distribution (5.4). We show three homogenization steps starting from n = 256.

5. Numerical examples. In this section we demonstrate the performance of
our method on a series of test cases taken from [1, 14]. The examples are a one-
dimensional elliptic model problem with discontinuous or random coefficients, a Helm-
holtz equation in one and two dimensions, and a one-dimensional hyperbolic problem
with variable coefficients.

Example 1: One-dimensional elliptic model problem. We consider the
elliptic problem ⎧⎨

⎩ − d

dx

(
a(x)

du

dx

)
= f(x),

u(0) = u′(1) = 0
(5.1)

with a(x) > 0, which we discretize as

− 1

h2
∆+ai∆−ui = fi, i = 1, . . . , n,(5.2)

with fi = −1 for all i. The boundary conditions are approximated by

u0 = −u1, un+1 = un.(5.3)

In Figure 1 we show the results obtained when the coefficient a(x) is taken as

a(x) = U [0.5, 1].(5.4)
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Here U [b, d] denotes a uniform random distribution in the interval [b, d]. We start
with n = 256 and reduce the number of variables to n = 32 coarse variables using
three homogenization steps.

In Figure 1(a), the operator L̄j is truncated according to (3.1) after the last
homogenization step. ν represents the number of diagonals that is kept in L̄j . In
Figure 1(b) we show the results obtained when L̄j is approximated (again by band
truncation) at every homogenization step. The results are much worse than those in
Figure 1(a). In Figure 1(c) we approximate A−1

j according to (3.1) at every homoge-

nization level. Here, ν is the number of diagonals we choose to keep in A−1
j . Finally,

in Figure 1(d) we show the solution after we apply the fine-scales correction at the
last level. This is done after truncating A−1

j at every step, similarly to what was
shown in Figure 1(c). In this case, due to the regularity of the solution, the fine-scales
correction does not seem to improve the solution. The positive effect of the fine-scales
correction will be more apparent in problems that have nonsmooth solutions.

The “exact solution” is the solution obtained on a coarse grid with the exact
homogenization procedure, i.e., with no intermediate approximations. In Figure 1(d),
the exact solution is the cell averages with n = 64; in all other Figures 1(a)–(c) the
exact solution is the cell averages with n = 32.

In Figure 2 we show the results obtained when the coefficient a(x) is taken as a
slit, i.e.,

a(x) =

{
1/6, 0.45 < x < 0.55,
1 otherwise.

(5.5)

Once again, we reduce the number of variables from n = 256 to n = 32 with three
homogenization steps. The order of the panels is similar to the one in Figure 1. In
this case, the solution is significantly improved with the fine-scales correction. The
interfaces between the smooth regions are captured with a much better resolution.

Example 2: One-dimensional Helmholtz equation. We now consider the
one-dimensional Helmholtz equation⎧⎪⎪⎨

⎪⎪⎩
− d

dx

(
a(x)

du

dx

)
− ω2u = 0,

u(0) = 1,
u′(1) = 0.

(5.6)

We assume that the mass matrix a(x) given by (5.5), set ω = 2π, and discretize (5.6)
as

− 1

h2
∆+ai∆−ui − ω2ui = 0, i = 1, . . . , n.(5.7)

The boundary conditions are approximated by

u0 = 2u(0) − u1, un+1 = un.(5.8)

Once again, the number of variables, n, is reduced from 256 to 32 in three homoge-
nization steps. The results are shown in Figure 3 for ν = 7, 9, 11. The arrangement
of the panels is similar to those in Figure 2. Clearly, the solution is significantly im-
proved with the fine-scales correction, as the resolution of the interfaces between the
smooth regions is significantly better.
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Fig. 2. The one-dimensional elliptic problem (5.1) discretized as (5.2)–(5.3). a(x) is given by
the slit (5.5). We show three homogenization steps starting from n = 256.

Example 3: Two-dimensional Helmholtz equation. We consider the two-
dimensional Helmholtz equation

∇ · (a(x, y)∇u) + ω2u = 0(5.9)

with periodic boundary conditions in the y-direction and u(0, y) = 1, ux(1, y) = 0 on
the other two boundaries. This problem corresponds to a plane time-harmonic wave
of amplitude one entering the domain at x = 0 and leaving at x = 1. Following [1]
we discretize (5.9) as

1

h2
∆x

+ail∆
x
−uil +

1

h2
∆y

+ail∆
y
−uil + ω2uil = 0, i, l = 1, . . . , n,(5.10)

ui,0 = ui,n, ui,n+1 = ui,1, un+1,l = un,l, u0,l = 2 − u1,l.

Here, ∆x
± denotes the usual forward (+) or backward (−) differencing in the x-

direction, and a similar notation holds for the y-direction. We solve (5.10) for ω = 3π,
n = 48, and a slit-type a(x, y) that is given by
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Fig. 3. The one-dimensional Helmholtz equation (5.6) with a slit mass matrix (5.5), discretized
as (5.7)–(5.8). We show three homogenization steps starting from n = 256.

a(x, y) =

{
10−4, 0.4 < x < 0.5, |y − 0.5| > 0.05,
1 otherwise.

(5.11)

The results obtained with one, two, and three homogenization steps according to (2.7)
are shown in Figure 4. In Figure 5 we show what happens when the operator L̄j is
truncated after one homogenization step according to (3.7) with ν = 5, 7, 9. Note the
large oscillations for ν = 5, 7. In Figure 6 we show the results obtained when trun-
cating A−1

j during the first homogenization step according to (3.8). Here, ν = 1, 3, 5.
Clearly, ν = 5 gives results that are nearly identical to the exact homogenized solution.
This case of ν = 5 corresponds to a compression rate of approximately 2.2% of the
original size of A−1

j . This has to be compared with the case of ν = 9 in banding L̄j ,

which is the first instance in which the results are good when truncating L̄j . The case
of ν = 9 corresponds to a compression rate of approximately 6.7% of the original size
of L̄j . In banding A−1

j even the results with ν = 1 are fine in most of the domain,
and this is for a compression rate of approximately 0.2%. In Figure 7 we perform two
homogenization steps starting from n = 64. In this figure we compare banding L̄j

only in the last homogenization step with banding A−1
j in both homogenization steps.

In both cases we choose ν = 5, 7, 9. Clearly, the results with banding A−1
j are signif-

icantly better and provide a good approximation already for ν = 5. In Figure 8 we
demonstrate the fine-scales correction of section 4 with this two-dimensional problem.
Here, we implement the fine-scales correction after one homogenization step in which
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Fig. 4. Results for the two-dimensional Helmholtz example (5.9)–(5.11) showing the solution
of the original discretization of dimension 48×48 and the coarse scales solution after one, two, and
three homogenization steps.

we wither band L̄j or A−1
j (in both cases with ν = 7). The figure shows that in both

cases, the results improve as a result of the fine-scales correction. This should be
compared with the “exact” solution of the original discretization that is given in the
upper-left image in Figure 4. Finally, in Figure 9 we show the sparse structure of the
operators L̄j and A−1

j . In each matrix we present elements larger than 0.1% of the
max value.

Example 4: Hyperbolic problems. We consider the one-dimensional inho-
mogeneous advection equation

∂u

∂t
+ a(x)

∂u

∂x
= f(x, t),(5.12)

which is augmented with the initial data u(x, 0) and subject to the boundary condition
u(0, t) = 0. Here, we assume that the coefficient a(x) is positive and bounded.

There are different ways of homogenizing (5.12). We follow [1, 14] and consider
a semidiscrete approximation of (5.12) in which the time derivative is kept and the
spatial operator is discretized. The homogenization is then conducted only on the
spatial operator. Alternatively, one can discretize (5.12) both in space and in time
and homogenize the resulting two-dimensional operator.

Following [1, 14] we write a semidiscrete approximation of (5.12) as
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Fig. 5. Results for the two-dimensional Helmholtz example (5.9)–(5.11) with one homogeniza-
tion step starting from n = 48. The upper-left image shows the solution obtained with an untruncated
operator. In the other images, L̄j is truncated with different values of ν according to (3.7). Note
the completely different vertical scale in the upper-right image.

∂ui

∂t
+

1

h
ai∆−ui = fi(t), i = 1, . . . , n, u0 = −u1, ui(0) = bi,(5.13)

with ai = a((i − 1/2)h). We assume f ≡ 0 and compute the solution at T = 1 with
initial data that is taken as

u(x, 0) =

{
sin2(4πx), 0 ≤ x ≤ 0.25,
0, 0.25 < x ≤ 1.

(5.14)

We homogenize the spatial operator only and solve the resulting system of ODEs with
a fourth-order Runge–Kutta solver.

In Figure 10 we present the results obtained for a(x) that is given by (5.5). The
solution is shown for n = 128 (left column) and n = 256 (right column). Figures
10(a)–(b) show the exact homogenized solution that is obtained with two homoge-
nization steps. Figures 10(c)–(d) show the result that is obtained when truncating the
operator L̄j at the last stage only. Figures 10(e)–(f) show the results obtained when
truncating A−1

j at every homogenization level. Since all the matrices involved in this
computation are lower triangular, the parameter ν counts the number of diagonals we
keep in the truncation starting from the main diagonal.
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Fig. 6. Results for the two-dimensional Helmholtz example (5.9)–(5.11) with one homogeniza-
tion step starting from n = 48. The upper-left image shows the solution obtained with an untruncated
operator. In the other images, A−1

j is truncated with different values of ν according to (3.8).

Figure 11 presents the results obtained for a(x) = U [0.1, 2] (a uniform random
distribution). The solution is shown for n = 256 (left column) and n = 512 (right
column). The order of the panels is similar to Figure 10. In both examples not only
does the truncation of A−1

j reduce the complexity of the computations, but it also
provides a substantial improvement in the quality of the results.

Finally, we would like to note that it is still possible to increase the quality of the
approximation with a fine-scales correction. However, since this correction applies to
the homogenized operator, is will not help a lot in this case. It is still required to
solve a system of ODEs, which due to the fine-scales correction will double its size.

6. Conclusions. In this paper we showed how to improve the efficiency of cer-
tain wavelet-based numerical homogenization algorithms with a new compact repre-
sentation of the homogenized operator. Our method becomes particularly simple in
two dimensions when it is difficult to find the divergence form of the Schur comple-
ment. Some theoretical aspects of the method were demonstrated in Theorem 3.2 for
a one-dimensional problem on an infinite domain. While proving this theorem, we
also corrected some of the mistakes in [12].

It is important to note that at present, there is no theoretical understanding why
this class of methods is successful with handling multidimensional problems. Such
theoretical issues, as well as the implementation of this technique to problems of
significant physical interest, remain the subject of future work.
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Fig. 7. Results for the two-dimensional Helmholtz example (5.9)–(5.11) using two homoge-
nization steps starting from n = 64. Left column: A−1

j is truncated in both homogenization steps

according to (3.8). Right column: L̄j is truncated only in the last homogenization step according to
(3.7). For both matrices, ν = 5, 7, 9.
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tion step starting from n = 48 with a fine-scales correction. Left: L̄j is truncated according to (3.7).

Right: A−1
j is truncated according to (3.8). In both cases, ν = 7.
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Fig. 9. The structure of the operators (a) L̄j and (b) A−1
j after one homogenization step for

the two-dimensional Helmholtz example (5.9)–(5.11). Elements larger than 0.1% of max value are
shown.
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Fig. 10. Hyperbolic equation (5.12) at T = 1 with a as in (5.5) and initial conditions (5.14).
Left column: n = 128. Right column: n = 256. (a)–(b): Exact homogenized solution with two
homogenization levels. (c)–(d): Approximation of L̄j at the last stage. (e)–(f): Approximation of

A−1
j at every level. ν is the number of diagonals we keep starting from the main diagonal.
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Fig. 11. Hyperbolic equation (5.12) at T = 1 with a uniformly distributed in [0.1, 2] and initial
conditions (5.14). Left column: n = 256. Right column: n = 512. (a)–(b): Exact homogenized
solution with two homogenization levels. (c)–(d): Approximation of L̄j at the last stage. (e)–(f):

Approximation of A−1
j at every level. ν is the number of diagonals we keep starting from the main

diagonal. Note the different scale in (d).
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