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Well-Balanced Central-Upwind Schemes
for 2× 2 Systems of Balance Laws

Alina Chertock, Michael Herty and Şeyma Nur Özcan

Abstract In this study, we have developed a well-balanced second-order central-
upwind scheme for 2 × 2 systems of balance laws, in particular, themodels of isother-
mal gas dynamics with source and traffic flow with relaxation to equilibrium veloc-
ities. The new scheme is based on modifications in the reconstruction and evolution
steps of a Godunov-type central-upwind method. The first step of this modification
is to introduce an equilibrium variable obtained from incorporating the source term
into the flux. By reconstructing equilibrium variables and using them in the well-
balanced evolution process, we have illustrated that the proposed scheme being well
balanced, namely, it preserves steady states of the system.

Keywords Well-balanced schemes · 2 × 2 system of balance laws

1 Introduction

We consider a 2 × 2 system of equations of the following type:

{
ρt + f1(ρ, q)x = 0,
qt + f2(ρ, q)x = −s(ρ, q),

(1)
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which can be rewritten in the vector form as

Ut + F(U)x = S(U), (2)

where

U :=
(

ρ

q

)
, F(U) :=

(
f1(ρ, q)
f2(ρ, q)

)
, S(U) :=

(
0

−s(ρ, q)

)
, (3)

are the vectors of the conservative variables, flux, and source terms, respectively,
and x ∈ R and t ∈ R+ are the spatial and time variables. Systems of type (1) are
called balance laws and appear as mathematical models in many applications, see,
e.g., [6, 13, 15, 17, 38]. System (1) is also a common model for gas flow in high-
pressure transmission pipelines [3, 35] and traffic flow [2, 12], bothwill be our primal
motivation for designing of a numericalmethod and validating computational results.

One of themain difficulties onemay encounter when numerically solving systems
(1) is the loss of smoothness of the solution. Typically, the solutions of these systems
possess complicated nonlinear waves such as shocks and rarefaction waves. Captur-
ing such solutions numerically requires the use of high-resolution shock-capturing
techniques, see e.g., [37, 39]. In addition to capturing the discontinuities, preserving
certain steady states is an essential part of such problems. Inmany relevant examples,
small perturbations of the steady states are also obtained as a solution of balance laws
and these perturbations may not be accurately handled on a coarse mesh. Thus, one
needs to implement the so-called well-balanced (WB) schemes which are capable
of balancing flux and source terms exactly and maintain the small perturbations of
the steady states in an accurate and stable way. These methods were first established
in [20] and then developed and used widely in many hyperbolic systems, such as
shallow water equations [1, 4, 8, 10, 11, 16, 21, 30, 32, 34], Euler equations with
gravitation [5, 9, 22, 41–43], etc.

In this paper, we propose a WB Godunov-type finite volume scheme, which con-
serves the steady-state solutions of (1) exactly. These schemes consist of
reconstruction-evolution- projection procedure, in which cell averages of the vari-
ables are employed. In particular, we consider a second-order central-upwind (CU)
scheme which was first introduced in [27] in the context of the hyperbolic conserva-
tion laws and further developed in [24, 25, 28].

The steady states, ρt = qt = 0, of (1) satisfy the following time-independent
system: {

f1(ρ, q)x = 0,
f2(ρ, q)x = −s(ρ, q),

(4)

as well as f1(ρ, q)t = f2(ρ, q)t = s(ρ, q)t = 0, which yields

f1(ρ, q) ≡ Const, f2(ρ, q)+
x∫
s(ρ, q)dξ ≡ Const, ∀x, t. (5)
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Our method is based on incorporating the source term into the flux in the second
equation of the system (1) and introducing a new reconstruction-evolution process
to guarantee that all steady states of (1) are captured exactly. Following [9, 10], we
introduce new equilibrium variables, which are preserved during the reconstruction
and propagate in time according to a modified evolution step.

The rest of the paper is organized as follows. In Sect. 2, we outline a second-
order CU scheme and itsWBmodification with the reconstruction of the equilibrium
variables in place of the conservative ones and revised numerical fluxes. In Sect.3, we
apply the WB scheme to the examples of the gas transmission systems, particularly
the isothermal Euler equationswith source termdepends on friction or bottomprofile.
We also apply themethod to theAw–Rascle–Zhang traffic flowmodelwith relaxation
terms [2].

2 Numerical Method

In this section, we describe a second-order semi-discrete CU scheme originally intro-
duced in [27] and show that it does not balance the source and flux terms exactly at the
discrete level. We, then, present a modification for the reconstruction procedure as
well as the numerical flux used in the CU scheme to guarantee the exact preservation
of the steady states.

2.1 Second-Order Central-Upwind Scheme

Wediscretize the computational domainΩ intofinite volumecells,C j =[x j− 1
2
, x j+ 1

2
]

of size ∆x centered at x j = ( j − 1/2)∆x , j = 1, . . . , N , where N is the total num-
ber of grid cells in Ω .

We assume that the approximated cell averages of the computed solution at fixed
time level t ,

Uj (t) :=
1

∆x

∫

C j

U(x, t)dx, (6)

are known.
Considering the system (1), we write the semi-discrete CU scheme as described

in, e.g., [23, 26, 36]:

d
dt

Uj = −
FFF j+ 1

2
−FFF j− 1

2

∆x
+ Sj , (7)
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where,FFF j+ 1
2
are the numerical fluxes:

FFF j+ 1
2
=

a+
j+ 1

2
F(UE

j ) − a−
j+ 1

2
F(UW

j+1)

a+
j+ 1

2
− a−

j+ 1
2

+ α j+ 1
2
(UW

j+1 − UE
j ),

α j+ 1
2
:=

a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

,

(8)

and Sj is the vector of the cell averages of the source term:

Sj = (0,−s( ρ j , q j ))
T . (9)

In (8), UE
j and UW

j+1 are the left and right point values of the solution at the cell
interfaces x = x j+ 1

2
computed by using the piecewise linear reconstruction:

Ũ(x) = Uj + (Ux ) j (x − x j ), x ∈ C j , (10)

that is,

UE
j := Ũ(x j+ 1

2
− 0) = Uj +

∆x
2

(Ux ) j ,

UW
j+1 := Ũ(x j+ 1

2
+ 0) = Uj+1 − ∆x

2
(Ux ) j+1.

(11)

The reconstruction (10) yields a second-order accurate scheme-provided slopes
(Ux ) j give at least first-order approximations to the derivative Ux (x j , t). To avoid
oscillations, the slopes (Ux ) j are to be computed using a nonlinear limiter applied to
the cell averages Uj . In our experiments reported below, we have used a generalized
minmod limiter (see e.g., [29, 33, 40]):

(Ux ) j = minmod

(

θ
Uj+1 − Uj

∆x
,
Uj+1 − Uj−1

2∆x
, θ

Uj − Uj−1

∆x

)

, θ ∈ [1, 2], (12)

where

minmod(z1, z2, . . .) :=

⎧
⎨

⎩

min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

(13)

and the parameter θ is used to control the amount of the numerical dissipation—the
larger θ results in less dissipative, but more oscillatory scheme.

The one-sided local speeds of propagation, a±
j+ 1

2
, in (8) are obtained from the

largest and smallest eigenvalues λ(U) of the Jacobian matrix ∂F(U)/∂U:
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a+
j+ 1

2
= max

{
λ(UE

j ), λ(U
W
j+1), 0

}
, a−

j+ 1
2
= min

{
λ(UE

j ), λ(U
W
j+1), 0

}
. (14)

Finally, the semi-discrete ODE system, (7) should be integrated in time by an
appropriate accurate and stable ODE solver for which the CFL condition satisfies
(see e.g., [26])

∆t ≤ κ
∆x

max
j

|a±
j+ 1

2
| , κ ≤ 1

2
. (15)

It is instructive to note that the described scheme does not necessarily preserve the
steady-state solutions (5). To cite an example, we consider the case where f1(ρ, q) =
q and, therefore, q = Const andρ = ρ(x) satisfies the steady state (5). Implementing
the CU scheme (7)–(14) for, say, the first component of the solution will result in the
following semi-discrete approximation:

d ρ j

dt
= − 1

∆x

⎡

⎣
a+
j+ 1

2
qE
j − a−

j+ 1
2
qW
j+1

a+
j+ 1

2
− a−

j+ 1
2

+ α j+ 1
2
(ρW

j+1 − ρE
j )

−
a+
j− 1

2
qE
j−1 − a−

j− 1
2
qW
j

a+
j− 1

2
− a−

j− 1
2

+ α j− 1
2
(ρW

j − ρE
j−1)

⎤

⎦ .

The last equation reduces to

d ρ j

dt
= −

α j+ 1
2
(ρW

j+1 − ρE
j ) − α j− 1

2
(ρW

j − ρE
j−1)

∆x
, (16)

since qE
j = qW

j+1 = qE
j−1 = qW

j = Const. However, in general, the piecewise linear
approximation, (10), forms discontinuities at the cell interfaces, so that the point
values ρW

j+1 and ρE
j (ρW

j and ρE
j−1) are not necessarily equal. Thus, right-hand side

of the ODE (16) does not vanish and the scheme fails to preserve the steady state.

2.2 Well-Balanced Modification

In this section, we present a WB modification of the CU scheme described in the
previous section. To this end, we first define new variables

K := f1(ρ, q), and L := f2(ρ, q)+ R, R :=
x∫
s(ξ, ρ, q)dξ, (17)

and rewrite the system as {
ρt + Kx = 0,

qt + Lx = 0,
(18)
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which can be put into the vector form (2) with the different flux and zero source term:
where U = (ρ, q)T , F(U) = (K , L)T and S(U) ≡ (0, 0)T . Obviously, the steady
state of (18) will be in the following form:

K ≡ Const, L ≡ Const. (19)

2.2.1 Reconstruction

We start by describing a special reconstruction procedure, which is implemented to
obtain the point values, UE

j and UW
j+1, used in (8), and is based on reconstructing

equilibrium variables, K and L , instead of conservative ones, ρ and q. To this end,
we first compute the values K j and L j from the cell averages, ρ j and q j , i.e.,

K j = f1( ρ j , q j ), L j = f2( ρ j , q j )+ R j , (20)

where the values of R j are evaluated by applying the midpoint quadrature rule to the
integral in (17) and using the following recursive relation:

R j =
1
2
(R j− 1

2
+ R j+ 1

2
), R j+ 1

2
= R(x j+ 1

2
) = R j− 1

2
+ ∆x s(x j , ρ j , q j ), (21)

starting from R1/2 ≡ 0.
The point values of K and L at the cell interfaces x = x j± 1

2
are then obtained

from (10)–(13):

K E
j = K j +

∆x
2

(Kx ) j , LE
j = L j +

∆x
2

(Lx ) j ,

KW
j = K j − ∆x

2
(Kx ) j , LW

j = L j − ∆x
2

(Lx ) j .

(22)

Finally, equipped with the values of K E,W
j , LE,W

j , and R j± 1
2
, we compute the cor-

responding point values of ρ and q by solving the following four nonlinear equations
in terms of ρE

j , ρ
W
j , q

E
j , and q

W
j , respectively:

K E
j = f1(ρE

j , q
E
j ), LE

j = f2(ρE
j , q

E
j )+ R j+ 1

2
,

KW
j = f1(ρW

j , q
W
j ), LW

j = f2(ρW
j , q

W
j )+ R j− 1

2
.

Clearly, the procedure would significantly simplify when one of the conservative
variables is also an equilibrium one, say, K = f1(ρ, q) = q. In such case, the point
values qE,W

j can be obtained directly from (10)–(13) and thus only two nonlinear
equations should be solved to obtain ρE,W

j for each j . In all of our examples presented
below, the set of nonlinear equations (22) was solved analytically.
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2.2.2 Evolution

We then evolve the cell averages, Uj = ( ρ j , q j )
T , in time by using the following

system of ODEs:
d
dt

Uj = −
FFF j+ 1

2
−FFF j− 1

2

∆x
, (23)

whereFFF j± 1
2
are the numerical fluxes whose two components are given as follows:

F (1)
j+ 1

2
=

a+
j+ 1

2
K E

j − a−
j+ 1

2
KW

j+1

a+
j+ 1

2
− a−

j+ 1
2

+ α j+ 1
2
(ρW

j+1 − ρE
j )H

( |K j+1 − K j |
∆x

· |Ω|
max j {K j , K j+1}

)
,

F (2)
j+ 1

2
=

a+
j+ 1

2
LE

j − a−
j+ 1

2
LW

j+1

a+
j+ 1

2
− a−

j+ 1
2

+ α j+ 1
2
(qW

j+1 − qE
j )H

( |L j+1 − L j |
∆x

· |Ω|
max j {L j , L j+1}

)
,

(24)

and α j+ 1
2
is defined in (8). The second components in the numerical flux functions

(24) are modified (compared to (8)) to accommodate to preserve the steady states.
Namely, a smooth functionH , satisfying

H (φ) = (Cφ)m

1+ (Cφ)m
, H (0) = 0, (25)

is introduced for some constants C > 0 and m > 0. When the solution is a steady
state, e.g., both K E

j = KW
j+1 = K j ≡ Const and LE

j = LW
j+1 = L j ≡ Const,H van-

ishes, so is each component of the numerical flux in (24). Otherwise,H is very close
to 1 and then the scheme reduces to the classical semi-discrete central-upwind scheme

(8). The normalization factors,
|Ω|

max j {K j , K j+1}
and

|Ω|
max j {L j , L j+1}

, where |Ω|
is the size of the computational domain, are introduced in order to make the function
H nondimensional and independent of the choice of C and m. We summarize this
observation in the following theorem.

Theorem 1 The semi-discrete CU scheme, (23 )–(25 ), with the reconstruction
described in Sect.2.2.1 gives an absolute balance between the source and flux terms
and thus preserves the steady state, (5 ), exactly, i.e., the scheme is WB.
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Proof Let us start with assuming that at a certain time level t the solution reaches its
steady state and

K E
j = KW

j+1 = K j ≡ K ∗ and LE
j = LW

j+1 = L j ≡ L∗, ∀ j, (26)

where K ∗ and L∗ are constants. We show that Uj = ( ρ j , q j )
T remains constant

in time, which means the right-hand side of the ODE system (23) diminishes with
given conditions (26). Indeed, identities in (26) implyH = 0, which in turns results
in F (1)

j+ 1
2
= K ∗ and F (2)

j+ 1
2
= L∗. Therefore, both F (1)

j+ 1
2
− F (1)

j− 1
2
= 0 and F (2)

j+ 1
2
−

F (2)
j− 1

2
= 0 and thus from (23) we obtain

d Uj

dt
= 0, ∀ j .

!

3 Computational Results

In this section, we test the performance of the developed WB method and show that
it preserves steady-state solutions exactly for several 2 × 2 systems. In particular,
the system of isothermal Euler equations of gas dynamics with friction and with the
bottom profile and the model for traffic flow with relaxation are studied.

In all of the experiments reported below, we implemented the second-order WB
CU scheme (23)–(25) and compared the obtained results with those computed by the
non well-balanced (NWB) CU scheme (7)–(9). The scheme parameters were taken
as θ = 1.3 in Examples 1, 2 and θ = 1 in Example 3; C = 200 in Examples 1, 3
and C = 400 in Example 2 and m = 1 in (25) in all of the examples. For the time
evolution, we used the third-order strong stability preserving Runge–Kutta method
(see, e.g., [18, 19]) to solve the semi-discreteODE system (23)with theCFL constant
in (15) taken as κ = 0.4 in Examples 1, 3 and κ = 0.1 in Example 2.

Example 1 – Gas dynamics with pipe-wall friction. In this example, we solve the
isothermal Euler equations of gas dynamics with pipe-wall friction, which is used
for the simulation of high-pressure gas transmission systems [7, 35]. The model is
governed by the following system of hyperbolic balance laws:

⎧
⎪⎨

⎪⎩

ρt + qx = 0,

qt +
(
c2ρ + q2

ρ

)

x
= −µ

q
ρ
|q|,

(27)

where ρ(x, t) is the density of the fluid with the velocity u(x, t), q(x, t) is the
momentum, µ > 0 is the friction coefficient (divided by the pipe cross section) and
c > 0 is the speed of sound.
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We first check theWB property of the developed scheme by considering (27) with
c = µ = 1 and subject to the following initial data (given in terms of equilibrium
variables):

K (x, 0) = q(x, 0) = K ∗ = 0.15 and L(x, 0) = L∗ = 0.4, (28)

in a single pipe x ∈ [0, 1]. Here,

K (x, t) = q(x, t) and L(x, t) =
(
c2ρ + q2

ρ

)
(x, t)+ R(x, t), (29)

are the steady states and R(x, t) =
∫ x

µ
q(ξ, t)
ρ(ξ, t)

|q(ξ, t)|dξ .

To run the computations, we divide the interval Ω = [0, 1] into N uniform grid
cells and apply the WB second-order CU scheme (23)–(25) to the system (27) with
zero-order extrapolations for both K and L at the boundaries of the domain. We
compute the solution until the final time T = 1 with N = 100, 200, 400 and 800
and report L1-errors, measured as ∥K (·, T ) − K ∗∥1 and ∥L(·, T ) − L∗∥1, in Table 1
(left). As one can see, on all of these grids, the initial data are preserved within the
machine accuracy. For comparison, we run the same computations using the NWB
CU scheme (7)–(9), in which case the initial equilibria are preserved within the
accuracy of the scheme only, as can be seen in Table 1 (right).

Next, we solve the system (27) with the perturbed initial data as follows:

K (x, 0) = K ∗ + ηe−100(x−0.5)2 = 0.5+ ηe−100(x−0.5)2 , L(x, 0) = L∗ = 0.4,
(30)

with the perturbation constant η > 0. In Fig. 1, we plot the obtained momentum
perturbations computed using both WB and NWB schemes with two different per-
turbation constants, η = 10−3 and η = 10−6 at time T = 0.2 on N = 100 uniform
grid cells. We also calculate a solution using the NWB method on finer grids, i.e.,
N = 1600 for η = 10−3 and N = 3200 for η = 10−6. We observe that for the larger
value of the constant η = 10−3, both the WB and NWB schemes can capture the
perturbation even on a coarse mesh. However, when the perturbation is relatively
small, η = 10−6, the WB scheme still can resolve the perturbation on a coarse grid

Table 1 Example 1: L1-errors of the results from the WB (left) and NWB (right) computations at
time T = 1

N q K

100 1.94E-18 7.77E-18
200 9.71E-19 9.71E-18
400 1.66E-18 9.57E-18
800 2.18E-18 1.18E-17

N q Rate K Rate

100 1.29E-06 – 8.81E-07 –
200 3.30E-07 1.9668 2.25E-07 1.9692
400 8.34E-08 1.9843 5.69E-08 1.9834
800 2.09E-08 1.9965 1.43E-08 1.9924
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Fig. 1 Example 1: Momentum perturbation computed by the WB and NWB schemes at time
T = 0.2 for η = 10−3 (left) and η = 10−6 (right)

(N = 100), while the NWBmethod is not capable of catching it unless it is employed
on a very fine mesh, say N = 3200.

Example 2 – Gas dynamics with the bottom profile. In the second example, we
consider the 2 × 2 system of gas dynamics with bottom profile where the governing
equations are given by

⎧
⎪⎨

⎪⎩

ρt + qx = 0,

qt +
(
c2ρ + q2

ρ

)

x
= −gρhx (x),

(31)

with h(x) being the bottom profile. This case is relevant to the practical applications
when gas pipes are not horizontal. In particular, the gravitational force needs to be
considered in mountainous regions with high-pressure gas transmission.

Here, we consider the system (31) with c = 1, g = 9.81 and an exponential func-
tion

h(x) = e−(x−0.5)2 . (32)

We solve the system on the computational domain x ∈ [0, 1] and subject to the
following initial data (again given in terms of equilibrium variables):

K (x, 0) = q(x, 0) = K ∗ = 1 and L(x, 0) = L∗ = 20, (33)
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Table 2 Example 2: L1-errors of the results from the WB (left) and NWB (right) computations at
time T = 1

N q K

100 3.19E-16 1.17E-15
200 3.90E-16 9.76E-16
400 1.99E-16 8.70E-16
800 1.41E-16 9.45E-16

N q Rate K Rate

100 8.97E-03 – 0.117 –
200 2.25E-03 1.9951 2.98E-02 1.9731
400 5.64E-04 1.9961 7.54E-03 1.9826
800 1.41E-04 2.0000 1.89E-03 1.9972

where

K (x, t) = q(x, t) and L(x, t) =
(
c2ρ + q2

ρ

)
(x, t)+ R(x, t), (34)

and R =
x∫
gρ(ξ, t)hx(ξ)dξ . Since (33) is a steady-state solution of (31), we adopt

it to illustrate that the CU scheme (23)–(25) is WB.
Similarly to the first example, we obtain the solutions of the system (31) by

implementing both the WB and NWB CU schemes on a uniform grid with N =
100, 200, 400 and 800 cells. Table 2 indicates the L1-errors as estimated in the
previous example in measuring the equilibrium states K and L computed by both
the WB (left) and NWB (right) schemes. One can clearly see that while the WB
scheme gives errors within machine accuracy, the NWB method requires very fine
grid, to preserve steady- state solution.

We, then, introduce an initial perturbation on momentum as follows:

K (x, 0) = K ∗ + ηe−100(x−0.5)2 = 1+ ηe−100(x−0.5)2 , L(x, 0) = L∗ = 20, (35)

whereη > 0 is the perturbation constant.Wefirst run the computationswithη = 10−1

andplot the results inFig. 2 (left) obtained at timeT = 0.25byboth theWBandNWB
methods with N = 100 uniform grid cells. In both cases, zero-order extrapolations
are implemented at the boundaries of the computational interval Ω = [0, 1]. For
comparison, we also plot a solution obtained by the NWB scheme with N = 1600.
We observe that, while the WB scheme is capable of resolving the perturbation on
a coarse mesh, the NWB method requires a finer mesh, e.g., N = 1600. In Fig. 2
(right), we illustrate the momentum perturbation at time T = 0.25 obtained by both
theWB andNWB schemes for a smaller value of the perturbation constant η = 10−3.
We note that our WB scheme can capture smaller perturbations of the steady states
on a coarse mesh, N = 100, while to obtain corresponding results with the NWB
method, one needs to use a very refined mesh, N = 6400, which would be costly in
most of the cases.
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Fig. 2 Example 2:Momentumperturbations computed by theWBandNWBschemes for η = 10−1

(left) and η = 10−3 (right) at time T = 0.25

Example 3 – Traffic flow with relaxation to equilibrium velocities. In the last
example, we study a second-order model for traffic flow, which has been introduced
in [2] to model driver-dependent traffic conditions. The model has been investigated
since then by many authors and we refer to [14] for a recent comparison and discus-
sion.

The governing equations are written in terms of the density of cars ρ(x, t) and
the velocity u(x, t), as well as a driver property w(x, t). The latter can be viewed
as distance towards an equilibrium velocity Veq(ρ). For simplicity, we chose as
Veq(ρ) = 1 − ρ, where ρ = 1 represents maximum density and introduce a fixed
relaxation time τ > 0 for all drivers, in which case the model reads as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ρt + (ρu)x = 0,

(ρw)t + (ρuw)x =
ρ

τ
((1 − ρ) − u) ,

w = u + ρ .

We substitute u = w − ρ, introduce a new variable q = ρu = ρ(w − 1) and
rewrite the above system in the conservative form as follows:

⎧
⎪⎨

⎪⎩

ρt + (q + ρ(1 − ρ))x = 0,

qt +
(
q2

ρ
+ q(1 − ρ)

)

x
= −1

τ
q.

(36)

Weobserve that in the limit of small relaxation times (τ → 0), the second equation
in (36) formally ensures q → 0 and ρ ∈ [0, 1], and the model predictions of (36) are
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expected to be close to those of the classical Lighthill–Whitham–Richards (LWR)
model [31] given by ρt + (ρ(1 − ρ))x = 0.

Clearly, q = 0 is a steady-state solution of the system (36) for any constant ρ .

However, for fixed positive τ , the system has steady states deviating from the LWR
model. In view of the previous discussion, we introduce the equilibrium variables K
and L as

K = q + ρ(1 − ρ), L = q2

ρ
+ q(1 − ρ)+ R, (37)

where R(x, t) =
∫ x 1

τ
q(ξ, t)dξ . Then, the steady states are K , L =Const.

We consider the system (36) with τ = 1 and set the following initial data given
with respect to the equilibrium variables:

K (x, 0) = K ∗ = 0.375, L(x, 0) = L∗ = 0.5, (38)

which also satisfy the steady-state solutions of (36).
As before, we first verify that the developedWB CU scheme (23)–(25) is capable

of preserving steady states of the system (36) exactly. To this end, we partition
the computational domain Ω = [0, 1] into N uniform cells and assign zero-order
extrapolations for K and L at the boundaries. We obtain the results at final time
T = 1 by implementing the WB CU scheme with N = 100, 200, 400, and 800 grid
cells. In Table 3 (left), we present the L1-errors computed as before, for equilibrium
variables K and L , that is, ∥K (·, T ) − K ∗∥1 and ∥L(·, T ) − L∗∥1, and observe that
the errors of machine accuracy for the WB scheme. However, we can conclude that
NWB scheme can maintain the steady states only within the order of the scheme, as
seen in Table 3 (right).

We then investigate the performance of the WB scheme by capturing the pertur-
bations of the steady states. Here, we add a small perturbation to the initial value of
the variable q:

q p(x, 0) = q(x, 0)+ ηe−50(x−0.5)2 , (39)

Table 3 Example 3: L1-errors of the results from the WB (left) and NWB (right) computations at
time T = 1

N K L

100 4.21E-17 1.00E-16
200 5.57E-17 8.74E-17
400 1.48E-15 2.46E-15
800 5.50E-17 1.17E-16

N K Rate L Rate

100 2.59E-06 – 8.10E-06 –
200 6.47E-07 2.0011 2.02E-06 2.0035
400 1.61E-07 2.0067 5.04E-07 2.0028
800 4.04E-08 1.9946 1.25E-07 2.0114
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Fig. 3 Example 3: Perturbations on the equilibrium variable K (left column) and L (right column),
computed by the WB and NWB schemes at time T = 0.1 for η = 10−7

where η = 10−7 is taken in this example. In Fig. 3, we plot the perturbations on the
equilibriumvariables K and L , respectively, obtained by bothWBandNWBschemes
with N = 100 and 200 uniform grid cells at time T = 0.1. For observation, we also
plot the solutions computed by NWB method on a very fine mesh with N = 6400.
We conclude that while the WB scheme is capable of capturing the perturbations on
a relatively coarse grid, the NWB scheme needs to be implemented on a much finer
grid.
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4 Conclusion

We have generated a well-balanced second-order central-upwind scheme for 2 × 2
systems of balance laws. This is a first work in a series of well-balanced methods
that preserve general steady states of the underlying system. Particularly, we consider
gas flow in high-pressure transmission pipelines and traffic model with relaxation.
We have presented the results of one-dimensional model, in which, steady states
are captured exactly by the proposed well-balanced scheme. As an ongoing study,
different physical models including the two-dimensional systems will be examined.
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