
Simulating Partial Differential Equations with
Neural Networks

Alina Chertock and Christopher Leonard

Abstract In this paper, we present a novel approach for simulating solutions of partial
differential equations using neural networks. We consider a time-stepping method
similar to the finite-volume method, where the flux terms are computed using neural
networks. To train the neural network, we collect ’sensor’ data on small subsets of
the computational domain. Thus, our neural network learns the local behavior of the
solution rather than the global one. This leads to a much more versatile method that
can simulate the solution to equations whose initial conditions are not in the same
form as the initial conditions we train with. Also, using sensor data from a small
portion of the domain is much more realistic than methods where a neural network
is trained using data over a large domain.

1 Introduction

Consider the time-dependent partial differential equation (PDE)

𝑼𝑡 + ∇𝒙 · 𝑭(𝑼) = 𝜺Δ𝑼, (1)

where 𝑼 = (𝑢1 (𝒙, 𝑡), . . . , 𝑢𝑁𝑒
(𝒙, 𝑡))⊤ is a vector function of the spatial variable

𝒙 = (𝑥1, . . . , 𝑥𝑑) ∈ R𝑑 and the time variable 𝑡 ≥ 0, and 𝑭 = (𝐹1, . . . , 𝐹𝑑)⊤ is the
nonlinear convection flux and 𝜺 = diag(Y1, . . . , Y𝑁𝑒

) is a constant diagonal matrix
with positive entries. Among others, equation (1) is used to describe hyperbolic
systems of conservation laws (𝜺 ≡ 0) and systems of convection-diffusion equations.
Models spanned by (1) are widely used to describe a variety of phenomena in
physical, astrophysical, geophysical, meteorological, biological, chemical, financial,
social, and other scientific areas.

In recent years, machine learning techniques for solving PDEs and learning about
their solutions have been a growing field of interest. This is in part due to the
success machine learning has had in other fields, such as computer vision and speech
recognition. Along with these successes, another motivation to use neural networks
(NNs) is due to the universal approximation theorem, which proves that, under certain
conditions, an artificial NN could approximate any continuous function, [3]. There
are many different approaches to finding numerical solutions to PDEs with the help

Alina Chertock
North Carolina State University, Raleigh, NC, e-mail: chertock@math.ncsu.edu

Christopher Leonard
North Carolina State University, Raleigh, NC, e-mail: cleonar530@gmail.com

1

2 A. Chertock and C. Leonard

of NNs. One of the most popular methods is known as a physics-informed neural
network (PINN), which can be trained to satisfy the differential equation and the
initial and boundary conditions; see, e.g., [5, 9]. While PINN has been successfully
applied to various problems, one of its major drawbacks is that they need to be
retrained for any new initial or boundary conditions. Other approaches use NNs
alongside standard numerical methods and utilize the benefits of physics-informed
and deep learning-based techniques.

In this paper, we train NNs to simulate the solution to PDEs when the underlying
dynamics are unknown. The method of solving systems of ordinary differential
equations (ODEs) with NNs without information about the governing equations has
been introduced in [8]. Then, in [1], a similar method was implemented to simulate
PDEs. Whereas their method uses the entire discrete solution at a given time step
as input into a NN, our approach only considers local data for the NN input. Thus
we can train the NN with data collected on small areas in space and use the NN
to simulate solutions on arbitrarily big domains. This is a much more realistic data
collection setting, allowing one to simulate a wide range of initial value problems.

The outline of this paper is as follows. In Section 2, we briefly introduce NN.
Then, in Section 3, we describe our NN method for solving systems of PDEs in
the form of (1). In Section 4, we illustrate the proposed approach’s performance on
several numerical examples. Lastly, in Section 5, we conclude our paper.

2 Neural Networks

An artificial NN is an operator 𝑵Θ (·) with a parameter set Θ = (Θ1, . . . ,Θ𝐻+1),
where Θ[is itself a parameter set for each layer [= 1, 2, ..., 𝐻 +1 (see equation (3)).
The setΘ can have hundreds, thousands, or even millions of parameters, which allows
𝑵Θ to represent a wide range of functions depending on which parameters are chosen.
Typically, the network is provided with a set of input-output pairs {(𝑼in

𝑚,𝑼
out
𝑚)}𝑀

𝑚=1,
to ”learn” which parameters to use by a training process. This training process tries
to find the parameter set Θ such that 𝑼out

𝑚 ≈ 𝑵Θ (𝑼in
𝑚), 𝑚 = 1, . . . , 𝑀 by minimize a

given loss function
𝐿Θ = 𝐿 (𝑁Θ, {(𝑼in

𝑚,𝑼
out
𝑚)}𝑀𝑚=1) (2)

that depends on the NN and the supplied set of data.
Training a NN from a set of input-output data pairs is known as supervised

learning. Other training processes include unsupervised learning and reinforcement
learning. Unsupervised learning is a training algorithm that finds underlying patterns
in the data, such as clusters, and reinforcement learning is an algorithm that uses a
reward system to learn the best parameters for the machine learning model. While
all three learning processes have found success in different applications, supervised
learning has been the most successful approach to training NNs and is used for all
of the models in this paper.

Artificial NNs are built from compositions of smaller functions (see equation (3)).
Each of these smaller functions corresponds to what is known as a layer of the NN.

PDEs with Neural Networks 3

Feedforward NNs are a specific form of a NN where the information is passed in one
direction without looping back. This is opposed to, say, recurrent NNs that contain
cycles in their NN architecture. All examples in this paper will use feedforward NNs,
although many could be extended to other types of architectures, such as recurrent
NNs.

A feedforward NN with 𝐻 hidden layers can be represented as the composition
of parameterized functions

𝑵Θ = 𝑵Θ𝐻+1 ◦𝑵Θ𝐻
◦ ...◦𝑵Θ1 with 𝑵Θ[

(𝑧) = 𝜎[(𝐴[), [= 1, 2, . . . , 𝐻+1, (3)

where 𝐴[is the connection between layers [− 1 and [, and 𝜎[is the activation
function for the layer [. Here, [= 0 corresponds to the input layer and [= 𝐻 + 1
corresponds to the output layer. A layer is said to be fully connected if 𝐴[(𝒛) =

𝑊[𝒛 + 𝒃[, where 𝑊[∈ R𝜔[×𝜔[−1 , 𝒃[∈ R𝜔[. Here, 𝜔[is the number of nodes
for layer [, 𝑊[is known as the weight matrix, and 𝒃[is the bias vector. Another
type of layer is a convolutional layer, which in the simplest case can be defined as
𝐴[(𝒛) = 𝒄[★ 𝒛 + 𝒃[, where 𝒄[∈ R^[, 𝒃[∈ R, and ★ is the cross-correlation
operator. The vector 𝒄[is known as a convolution kernel with a kernel size of ^[.
While the value of 𝒃[is often a scalar value for convolution layers (this is the default
setting in PyTorch [7], and what is used in this paper), it can also be set such that
𝒃 ∈ R𝜔[. The parameters in the sets Θ[are the element values for 𝑊[, 𝒃[, and 𝒄[.
The activation functions 𝜎[, [= 1, . . . , 𝐻 + 1, are functions prescribed before the
training process. Usually, these functions are nonlinear so the NN can learn nonlinear
relationships from the data.

Training the Neural Network

Before we train a NN, we need to define a few hyperparameters:

(a)Loss function: 𝐿Θ (see (2)).
(b)Optimizer: The algorithm used to find the global minimum of the loss function.
(c)Initial learning rate: The initial step size that the optimization algorithm takes.

Depending on the optimization algorithm, the step sizes may change between
steps.

(d)Number of epochs: The number of times the optimization algorithm goes through
the entire training data set. Denote the number of epochs as 𝑀𝑒.

(e)Batch size: The number of samples from the training data that propagates through
the network for each update of the parameters. Denote the batch size as 𝐵𝑠 .

(f) Number of hidden layers: 𝐻.
(g)Linear function for connection between layers 𝐴[(𝑊[or 𝒄[), and their sizes, i.e.

we need to define𝜔[and𝜔[−1 for fully connected layers and ^[for convolutional
layers.

(h)Activation functions: 𝜎[, [= 1, . . . , 𝐻 + 1.

We will identify the specific hyperparameters used for each example in their respec-
tive sections. We train 𝑵Θ using the following algorithm.

4 A. Chertock and C. Leonard

Algorithm

Input: Data set {(𝑼in
𝑚,𝑼

out
𝑚)}𝑀

𝑚=1, initial NN model 𝑵Θ(0) , and hyperparameters
(a)-(h) from above.
Output: Trained 𝑵Θ.

1. Start: Randomly split the data set {(𝑼in
𝑚,𝑼

out
𝑚)}𝑀

𝑚=1 into three disjoint sets,
the training set of size 𝑀𝑡𝑟 , {𝑼in

𝑚𝑖
,𝑼out

𝑚𝑖
}𝑀𝑡𝑟

𝑖=1 , the validation set of size 𝑀𝑣𝑎𝑙 ,
{𝑼in

𝑚𝑙
,𝑼out

𝑚𝑙
}𝑀𝑣𝑎𝑙

𝑙=1 , and the test set of size 𝑀𝑡𝑒𝑠𝑡 , {𝑼in
𝑚𝑟

,𝑼out
𝑚𝑟

}𝑀𝑣𝑎𝑙

𝑟=1 , where 𝑀 =

𝑀𝑡𝑟 + 𝑀𝑣𝑎𝑙 + 𝑀𝑡𝑒𝑠𝑡 .

a. The optimization algorithm uses the training set to find the parameter set Θ
that minimizes the loss function 𝐿Θ.

b. The validation set checks that the NN can generalize to new data.
c. The test set is used to test the NN on data that does not influence the training

of the NN at all.
2. Iterate: For 𝑒 = 1, 2, . . . , 𝑀𝑒

a. Let 𝑀𝑡𝑟 = (𝛽 − 1)𝐵𝑠 + 𝑟𝑏, where 𝛽, 𝑟𝑏 ∈ N and 𝑟𝑏 ≤ 𝐵𝑠 and randomly split
the training set into 𝛽 separate batches each of size 𝐵𝑠 except the last, which
is of size 𝑟𝑏.

(b) Iterate: For each batch=1,2,. . .,𝛽
• Update the NN parameters using one step of the optimization algorithm.

(c) With the current parameter set Θ(𝑒) , calculate the loss value 𝐿Θ(𝑒) using the
new model 𝑵Θ(𝑒) and the validation set {𝑼in

𝑚𝑙
,𝑼out

𝑚𝑙
}𝑀𝑣𝑎𝑙

𝑙=1 as the input into the
model (see (2)).

(d) If 𝐿Θ(𝑒) < 𝐿Θ(𝑖) for all 𝑖 = 1, . . . , 𝑒 − 1, the set Θ = Θ(𝑒) , i.e. if this loss value
is less than the loss value at the end of every other epoch before it, update Θ.

Remark 1 Finding good hyperparameters is often done by running multiple trials of
the training algorithm using different hyperparameters and identifying which results
in the best outcome.

Remark 2 We will use the PyTorch [7] machine learning framework for all the NN
models in this paper. The initial parameters in the set Θ(0) are the random parameters
set by PyTorch.

3 Simulating PDEs with the Help of Neural Networks

In this section, we assume that equation (1) is discretized using a finite-volume (FV)
approach and demonstrate how its numerical solution can be evolved in time using
NNs. For the rest of this section, we consider (1) in one spatial dimension (𝐷 = 1),
but note that the method is very similar for other dimensions.

PDEs with Neural Networks 5

3.1 The Finite-Volume Method

We consider the one-dimensional (1-D) version of the system (1) and rewrite it as

𝑼𝑡 + 𝑯(𝑼)𝑥 = 0, 𝑯(𝑼) = 𝑭(𝑼) − 𝜺𝑼𝑥 , (4)

We assume that the computational domain is divided into uniform cells 𝐶 𝑗 =

(𝑥 𝑗− 1
2
, 𝑥 𝑗+ 1

2
) of size Δ𝑥 centered at 𝑥 𝑗 with 𝑥 𝑗+ 1

2
− 𝑥 𝑗− 1

2
≡ Δ𝑥. Then, the com-

puted discrete quantities are the cell averages, 𝑼 𝑗 (𝑡) ≈ 1
Δ𝑥

∫
𝐶 𝑗

𝑼(𝑥, 𝑡) d𝑥, that are
evolved in time by solving the following system of ODEs:

d
d𝑡

𝑼 𝑗 (𝑡) = −
F 𝑗+ 1

2
(𝑡) − F 𝑗− 1

2
(𝑡)

Δ𝑥
, (5)

where F 𝑗+ 1
2

are numerical fluxes across cell interfaces 𝑥 𝑗+ 1
2
. The numerical fluxes

F 𝑗+ 1
2

in (5) are typically computed using point values of the computed solution at
the cell interfaces, that is, F 𝑗+ 1

2
= F (𝑼−

𝑗+ 1
2
,𝑼+

𝑗+ 1
2
), where 𝑼±

𝑗+ 1
2
≈ 𝑼(𝑥 𝑗+ 1

2
± 0, 𝑡),

and the accuracy of the the method depends on the accuracy with which these point
values are reconstructed. Finally, the semi-discrete FV scheme in (5) is a system
of ODEs, which is to be integrated numerically by an accurate ODE solver with
a suitable time step Δ𝑡, which should be chosen to satisfy a proper CFL stability
condition.

3.2 Time-Stepping Neural Network

In this section, we introduce a time stepping NN, 𝑭Θ : R𝑁 𝑓 ×𝑁𝑒 → R𝑁𝑒 , to solve
(5) numerically. The NN is trained such that for stencils of size 𝑁 𝑓 in the spa-
tial domain, 𝑭Θ (𝑼

𝑛

𝑗+𝑁 𝑓 /2, ...,𝑼
𝑛

𝑗−𝑁 𝑓 /2+1) ≈ F
𝑛

𝑗+ 1
2
, where 𝑼

𝑛

𝑗+𝑁 𝑓 /2 is the numeri-
cal solution at time 𝑡 = 𝑡𝑛 and Θ is the NN internal parameter set. We denote
𝑭𝑛

𝑗+ 1
2
B 𝑭Θ𝑥

(𝑼𝑛

𝑗+𝑁 𝑓 /2, ...,𝑼
𝑛

𝑗−𝑁 𝑓 /2+1) and set

𝑼𝑛+1
𝑗 (Θ) = �̄�𝑛

𝑗 − Δ𝑡

𝑭𝑛

𝑗+ 1
2
− 𝑭𝑛

𝑗− 1
2

Δ𝑥
.

We train the networks to find the parameter sets Θ such that 𝑼𝑛+1
𝑗

≈ �̄�𝑛+1
𝑗

.
To train our NN, we must collect data on which it will be trained. To do so,

we assume the initial condition to (1) is some parameterized function, 𝑼0 (𝒙; �̂�)
with parameters �̂� = [𝑝1, . . . , 𝑝𝑁𝑝

]. We then randomly draw 𝑁𝑠 parameter vectors
�̂�𝑖 , 𝑖 = 1 . . . , 𝑁𝑠 , from a uniform distribution, with each parameter 𝑝𝑖

ℓ
∼ U[𝛼ℓ), 𝑖 =

1, . . . , 𝑁𝑠 and ℓ = 1, . . . , 𝑁𝑝 . With the 𝑁𝑠 initial conditions, we simulate the solution
of (1) for 𝑁𝑡 time steps, using highly accurate solvers to collect data at discrete
points in space and time. To collect data, we assume there are ’sensors’ in our spatial
domain, which collect stencil data located around the discrete points for every time

6 A. Chertock and C. Leonard

step of our simulation. Then, we collect the data𝑼𝑛

𝑗𝑠+𝛼, 𝛼 = −𝑁 𝑓 /2, . . . , 𝑁 𝑓 /2, 𝑠 =
1, . . . , 𝑆, 𝑛 = 0, . . . , 𝑁𝑡 at 𝑆 sensor locations {𝑥 𝑗𝑠 }𝑆𝑠=1.

Once the data is collected, we train the NNs to minimize a loss function of the
form

𝐿Θ =

𝑀∑︁
𝑚=1

∥𝑼𝑛𝑚+1, �̂�𝑖𝑚
𝑗𝑚

−𝑼
𝑛𝑚+1, �̂�𝑖𝑚
𝑗𝑚

∥1 + `

𝑀∑︁
𝑚=1

∥𝑼𝑛𝑚+1, �̂�𝑖𝑚
𝑗𝑚

∥1, (6)

where ∥ · ∥1 is the 𝑙1 norm, and the term on the right is a regularization term
with constant ` used to help stabilize the numerical method. Here, 𝑼𝑛𝑚+1, �̂�𝑖𝑚

𝑗𝑚
and

𝑼
𝑛𝑚+1, �̂�𝑖𝑚
𝑗𝑚

correspond to the NN solution and reference solution, respectively, from
the 𝑚th data in our data set, where 𝑛𝑚 ∈ {0, . . . , 𝑁𝑡 − 1}, 𝑗𝑚 ∈ {1, . . . , 𝑁𝑥}, and
𝑖𝑚 ∈ {1, . . . , 𝑁𝑠}.

4 Numerical Examples

In this section, we illustrate the performance of the method described above when
applied to a 1-D scalar nonlinear equation, as well as a two-dimensional (2-D)
nonlinear system of equations.

To train the NNs, we use a feedforward NN with four hidden layers, alternating
between fully connected and convolutional layers for each layer. For each NN, the
convolutional layers have a kernel of length 5. We use 𝑀 = 200,000 data points
for the NNs, splitting it into training, testing, and validation sets with sizes of
𝑀𝑡𝑟𝑎𝑖𝑛 = 120,000, 𝑀𝑡𝑒𝑠𝑡 = 40,000, and 𝑀𝑣𝑎𝑙 = 40,000 for each of the respective
sets. During the training procedure, we use a data batch size of 32 and train the NNs
for 1000 epochs using the Adam optimizer [7] with an initial learning rate of 10−4.
The loss function for our training algorithm is the one given in (6) with ` = 0.1.
The only changes between the two examples are the number of nodes for each fully
connected layer and the number of inputs and outputs for the NN. We will state these
values in the section of their respective examples.

To collect accurate data to train the NN with, we compute the numerical solution
using the second-order semi-discrete central-upwind (CU) scheme from [4] on a fine
grid with �̃�𝑥 = 𝑚𝑥𝑁𝑥 , where 𝑚𝑥 > 1 and then map the fine grid solution to the
coarser grid we train our NN on. Once the NN is trained, to simulate the solution
from time 𝑡𝑛 to time 𝑡𝑛+1, we use all the appropriate stencils from the solution

𝑼𝑛 = [𝑼𝑛
1 , . . . ,𝑼

𝑛
𝑁𝑥

] ∈ R𝑁𝑥 ,

as one input batch into the NN 𝐹Θ. Thus we benefit from the machine learning
libraries’ parallelization capabilities, instead of looping through the data points
manually to calculate every flux value.

PDEs with Neural Networks 7

4.1 Burgers Equation

In this example, we consider the 1-D viscous Burgers equation with 𝑼 = 𝑢 and
𝑭(𝑼) = 1

2𝑢
2 in (4), subject to the initial conditions

𝑢(𝑥, 0) = 𝑎0 + 𝑎1 cos(𝑥) + 𝑏1 sin(𝑥), (7)

where 𝑎0, 𝑎1, 𝑏1 ∈ [−1, 1), and Y = 0.01. To collect training data for our NN, we
discretize the computational domain 𝑥 ∈ [−𝜋, 𝜋] into 𝑁𝑥 = 100 cells of uniform size
Δ𝑥 = 2𝜋

𝑁𝑥
. We then simulate 𝑁𝑠 = 1000 solutions where the parameters 𝑎𝑖0, 𝑎

𝑖
1, 𝑏

𝑖
1 ∼

U[−1, 1), 𝑖 = 1, . . . , 𝑁𝑠 , are used to define the initial conditions. To simulate the
data, we use a fine grid with �̃�𝑥 = 1000 using the second-order semidiscrete CU
scheme [4] for spatial discretization and the IMEX-SSP2(3,3,2) method [6] for time
integration of the ODE system (5). We ran the simulation for 𝑁𝑡 = 500 time steps
collecting the data at every 𝑡𝑛 = 𝑛Δ𝑡, with Δ𝑡 = 0.02 (note that this time step satisfied
the CFL condition on the known solution for all steps for 𝑁𝑥 = 100). To train the NN,
we collect the data 𝑢

𝑛, �̂�𝑖

𝑗 ,𝑖𝑛
= [𝑢𝑛, �̂�

𝑖

𝑗−2 , 𝑢
𝑛, �̂�𝑖

𝑗−1 , 𝑢
𝑛, �̂�𝑖

𝑗
, 𝑢

𝑛, �̂�𝑖

𝑗+1 , �̄�
𝑛, �̂�𝑖

𝑗+2], 𝑢
𝑛+1, �̂�𝑖
𝑗 ,𝑜𝑢𝑡

= �̄�
𝑛+1, �̂�𝑖
𝑗

, for
𝑗 = 10, 20, . . . , 90 and 𝑛 = 0, . . . 𝑁𝑡−1, where �̄�𝑛, �̂�𝑖

𝑗
is the cell average approximation

at (𝑥 𝑗 , 𝑡𝑛) of the 𝑖th simulation. Note that {𝑥10, 𝑥20, . . . , 𝑥90} are our sensor locations.
We use 80 nodes for each fully connected layer for this NN. The number of inputs

into the NN is 4 data points around the cell interfaces and only one output, the NN
flux around that cell interface.

In Fig. 1, we plot the solution computed at time 𝑡 = 10 with the initial data
corresponding to (𝑎0, 𝑎1, 𝑏1) = (0.9,−0.2, 0.4) in (7) by both the NN approach and
CU scheme, along with the reference solution computed by the latter. As one can see,
the NN solution lines up very well with the reference solution and can even produce
a more accurate resolution near the sharp slope than the CU scheme. The run time
for the NN solution is 0.392 seconds with a constant time step Δ𝑡 = 0.02. The run
time for the CU solution is 0.602 when it was implemented with a variable time step
determined by the CFL condition and 0.653 when it was implemented with the same
fixed time step as in the NN simulations. In Fig. 1, we also show the relative 𝑙1 errors
for the CU scheme and the NN method when the numerical solutions computed by
both approaches are compared with the reference solution.

As we can see, the NN can produce an accurate result when the initial condition
is the same as the initial condition in the training data. Below we illustrate that
our method can be generalized to initial conditions that look different from those
in the training data. We consider two different scenarios. In both scenarios, we use
the same NN used to produce the example in Fig. 1; thus, the NN is trained with
the initial data of the form (7). The first initial condition we consider is a periodic
Gaussian function with a period of 2𝜋, on the computational domain [−𝜋, 𝜋]. Thus,
it is smooth, just like the initial conditions of the training data. Another example is
a piece-wise constant function, where the solution maintains a sharp slope.

From Fig. 2, we can see that our method can generalize to new initial conditions.
This is because the NN does not look at the values of the equation on the whole
computational domain but instead uses only local values for its input. Thus, our

8 A. Chertock and C. Leonard

t NN CU Scheme
2 0.0013 0.0018
4 0.0017 0.0045
6 0.0015 0.0044
8 0.0017 0.0039
10 0.0018 0.0034

Fig. 1: Burgers equation: Solution computed with initial condition 𝑢0 (𝑥) = 0.9 − 0.2 cos(𝑥) +
0.4 sin(𝑥) (left) and relative 𝑙1 errors for both NN and CU scheme (right).

method should work if the local values come from the same distribution as the
training data. As a result, our method can simulate the solution for a wider range of
initial conditions than the initial conditions it is trained with.

Fig. 2: Burgers equation: Solutions computed at time 𝑡 = 10 with initial condition (i) 𝑢0 (𝑥) =

0.9𝑒−0.4𝑥2 (left) and (ii) 𝑢0 (𝑥) = 0.6 for 𝑥 ≤ 0 and 𝑢0 (𝑥) = −0.2 for 𝑥 > 0 (right).

4.2 2-D Navier-Stokes Equations

In this final example, we consider the 2-D isentropic Navier-Stokes (N-S) equation
𝜌𝑡 + (𝜌𝑢)𝑥 + (𝜌𝑣)𝑦 = 0,

(𝜌𝑢)𝑡 + (𝜌𝑢2 + 𝜌𝛾)𝑥 + (𝜌𝑢𝑣)𝑦 = Y𝑢𝑥𝑥 ,

(𝜌𝑣)𝑡 + (𝜌𝑢𝑣)𝑥 + (𝜌𝑣2 + 𝜌𝛾)𝑦 = Y𝑣𝑦𝑦 ,

𝑥, 𝑦 ∈ R, 𝑡 > 0,

subject to the initial condition

PDEs with Neural Networks 9

𝜌(𝑥, 𝑦, 0) =

𝜌1, 𝑥 < 0.5 and 𝑦 < 0.5,
𝜌2, 𝑥 < 0.5 and 𝑦 ≥ 0.5,
𝜌3, 𝑥 ≥ 0.5 and 𝑦 < 0.5,
𝜌4, 𝑥 ≥ 0.5 and 𝑦 ≥ 0.5

, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0,

where 𝛾 = 1.4, Y = 0.005, and 𝜌1, 𝜌2, 𝜌3, 𝜌4 ∈ [.5, 1.5). Here, 𝜌, 𝑢, and 𝑣 are
the density, 𝑥- and 𝑦-components of a fluid’s velocity, respectively, and we denote
𝑞1 = 𝜌𝑢, 𝑞2 = 𝜌𝑣, and 𝑼 = [𝜌, 𝑞1, 𝑞2]. To simulate the solution, the numerical
domain [0, 1] × [0, 1] is discretized into 𝑁𝑥 = 𝑁𝑦 = 80 cells, and 𝑁𝑠 = 1000
simulations are run for 𝑁𝑡 = 150 time steps. We collect data after every time step
of size Δ𝑡 = 0.001, and the parameters for the initial conditions are drawn from
the uniform distribution 𝜌𝑖1, 𝜌

𝑖
2, 𝜌

𝑖
3, 𝜌

𝑖
4 ∼ U[0.5, 1.5), for all 𝑖 = 1 . . . , 𝑁𝑠 . The data

collected is

𝑼𝑛, �̂�𝑖

𝑗 ,𝑘,𝑖𝑛𝑥
= [�̄�𝑛, �̂�𝑖

𝑗−2,𝑘 , �̄�
𝑛, �̂�𝑖

𝑗−1,𝑘 , �̄�
𝑛, �̂�𝑖

𝑗 ,𝑘
, �̄�𝑛, �̂�𝑖

𝑗+1,𝑘 , �̄�
𝑛, �̂�𝑖

𝑗+2,𝑘]

𝑼𝑛, �̂�𝑖

𝑗 ,𝑘,𝑖𝑛𝑦
= [�̄�𝑛, �̂�𝑖

𝑗 ,𝑘−2, �̄�
𝑛, �̂�𝑖

𝑗 ,𝑘−1, �̄�
𝑛, �̂�𝑖

𝑗 ,𝑘
, �̄�𝑛, �̂�𝑖

𝑘, 𝑗+1, �̄�
𝑛, �̂�𝑖

𝑘, 𝑗+2]
, 𝑼𝑛+1, �̂�𝑖

𝑗 ,𝑘,𝑜𝑢𝑡
= �̄�𝑛+1, �̂�𝑖

𝑗 ,𝑘
,

for 𝑗 , 𝑘 = 10, 20, . . . , 70, 𝑛 = 0, 1, . . . 𝑁𝑡 − 1, and 𝑖 = 1, . . . , 𝑁𝑠 . Here �̄�𝑛, �̂�𝑖

𝑗 ,𝑘
is

the cell average approximation of 𝑼(𝑥, 𝑦, 𝑡𝑛; �̂�𝑖) over the cell [𝑥 𝑗−1/2, 𝑥 𝑗+1/2] ×
[𝑦𝑘−1/2, 𝑦𝑘+1/2], which is computed using a fine grid simulation with �̃�𝑥 = �̃�𝑦 =

240, using the CU scheme to find the numerical fluxes and the third-order strong
stability-preserving Runge-Kutta method [2] for the time integration.

We use 300 nodes for each fully connected layer for this NN. The number of inputs
into the NN is 12 data points, 4 for each equation around the cell interfaces, and
there were 3 outputs, the NN fluxes around the cell interfaces. In Fig. 3, we consider
the case with 𝜌1 = 0.79, 𝜌2 = 1.32, 𝜌3 = 0.55, and 𝜌4 = 0.99. The reference
solution was found using a fine grid simulation with 800× 800 cells. The plots show
almost no discernible difference between the NN and reference solutions. We also
compute relative 𝑙1 errors for the NN and the CU solution when comparing them
with the reference solution and depicting the results in Table 1, indicating that the
NN solution is comparable to the solution obtained by the CU scheme. The run time
for the NN solution is 3.45 seconds using the GPU and 7.05 seconds using the CPU.
For the CU scheme, the run time is 36.88 second. The NN solution uses a time step
Δ𝑡 = 0.001, which, based on observed simulations, is a much smaller time step than
the CFL condition requires. The CU scheme is run using an adaptive time step based
on the CFL condition.

t NN CU Scheme
𝜌 𝜌𝑢 𝜌𝑣 𝜌 𝜌𝑢 𝜌𝑣

0.05 0.0016 0.0207 0.0497 0.0031 0.0687 0.0700
0.10 0.0019 0.0173 0.0317 0.0035 0.0395 0.0415
0.15 0.0021 0.0147 0.0243 0.0037 0.0289 0.0308
Table 1: Isentropic N-S equations: Relative 𝑙1 errors.

10 A. Chertock and C. Leonard

Fig. 3: Isentropic N-S equations: Density 𝜌 at 𝑡 = 0.15 for the reference solution (left) and NN
solution (right) with 𝜌1 = 0.79, 𝜌2 = 1.32, 𝜌3 = 0.55, and 𝜌4 = 0.99.

5 Conclusion

In this paper, we have shown that we can simulate the solution to time-dependent
PDEs using only solution data and NNs. Specifically, we demonstrated that a NN
could be used to calculate numerical flux values. Since the flux terms do not explicitly
depend on the solution’s spatial location, we used data from a small subset of our
computational domain to train these NNs. Since the NN only learns from local data,
the presented method can generalize to initial conditions not seen in the training set,
allowing one to solve a wide range of problems.

Acknowledgements The work of A. Chertock and C. Leonard were supported in part by NSF
grants DMS-1818684 and DMS-2208438.

References

1. Z. Chen, V. Churchill, K. Wu, and D. Xiu, Deep neural network modeling of unknown partial
differential equations in nodal space, J. Comput. Phys., 449 (2022), pp. Paper No. 110782, 20.

2. S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time dis-
cretization methods, SIAM Rev., 43 (2001), pp. 89–112.

3. K. Hornik, M. Stinchombe, and H. White, Multilayer feedforward networks are universal
approximators, Neural Networks, 2 (1989), pp. 359–366.

4. A. Kurganov, S. Noelle, and G. Petrova, Semidiscrete central-upwind schemes for hyperbolic
conservation laws and Hamilton-Jacobi equations, SIAM J. Sci. Comput., 23 (2001), pp. 707–
740.

5. I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural networks for solving ordinary
and partial differential equations, IEEE Trans. Neural Networks, 9 (1998), pp. 987–1000.

6. L. Pareschi and G. Russo, Implicit-Explicit Runge-Kutta schemes and applications to hyper-
bolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129–155.

7. PyTorch. https://pytorch.org.
8. T. Qin, K. Wu, and D. Xiu, Data driven governing equations approximation using deep neural

networks, J. Comput. Phys., 395 (2019), pp. 620–635.
9. M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics-informed neural networks: a

deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations, J. Comput. Phys., 378 (2019), pp. 686–707.

