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Abstract

In this paper, we develop new high-order numerical methods for hyperbolic sys-
tems of nonlinear partial differential equations (PDEs) with uncertainties. The new
approach is realized in the semi-discrete finite-volume framework and it is based on
fifth-order weighted essentially non-oscillatory (WENO) interpolations in (multidimen-
sional) random space combined with second-order piecewise linear reconstruction in
physical space. Compared with spectral approximations in the random space, the pre-
sented methods are essentially non-oscillatory as they do not suffer from the Gibbs
phenomenon while still achieving a high-order accuracy. The new methods are tested
on a number of numerical examples for both the Euler equations of gas dynamics and
the Saint-Venant system of shallow-water equations. In the latter case, the methods
are also proven to be well-balanced and positivity-preserving.
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methods, central-upwind schemes, weighted essentially non-oscillatory (WENO) interpola-
tions.
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1 Introduction

Many important scientific problems contain sources of uncertainties in parameters, initial
and boundary conditions (ICs and BCs), etc. In partial differential equations (PDEs), un-
certainties may be described with the help of random variables. In this paper, the focus
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is placed on hyperbolic systems of conservation and balance laws with uncertainties. Such
systems read as

Ut +∇x · F = S, (1.1)

where U(x, t, ξ) ∈ RN is an unknown vector-function, F (U) : RN → RN are the flux
functions, and S(U ,x, ξ) is a source term. Furthermore, t is time and x ∈ Rd are spatial
variables. Without loss of generality we assume that ξ ∈ Ξ ⊂ Rs are real-valued random
variables. We denote by (Ξ,F , ν) the underlying probability space, where Ξ is a set of events,
F(Ξ) is the σ-algebra of Borel measurable sets, and ν(ξ) : Ξ → R+ is the probability density
function, ν ∈ L1(Ξ).

The system (1.1) arises in many applications, including fluid dynamics, geophysics, elec-
tromagnetism, meteorology, and astrophysics, to name a few. Quantifying uncertainties that
appear as input quantities, as well as in the ICs and BCs due to empirical approximations or
measuring errors, is essential as it helps to perform sensitivity analysis and provides guidance
to improve models.

We are interested in developing highly accurate and robust numerical methods for (1.1).
Several methods have already been developed. Monte Carlo-type methods (see, e.g., [2, 31–
35]) are reliable but not computationally efficient due to the large number of realizations
required to achieve accurate approximation of statistical moments. Another widely used
approach for solving (1.1) is the generalized polynomial chaos (gPC), where the solution
is sought in terms of a series of orthogonal polynomials with respect to the probability
density in ξ; see, e.g., [26, 38, 55, 56]. There are two types of gPC methods: intrusive and
non-intrusive ones. In non-intrusive algorithms, such as stochastic collocation (gPC-SC)
methods, one seeks to satisfy the governing equations at a discrete set of nodes in the
random space, employing the same numerical solver as for the deterministic problem and
then using interpolation and quadrature rules to evaluate statistical moments numerically;
see, e.g., [38, 43, 45, 54–56]. In intrusive approaches, such as stochastic Galerkin (gPC-SG)
methods, the gPC expansions are substituted into the governing equations and projected by
a Galerkin approximation to obtain deterministic equations for the expansion coefficients;
see, e.g., [7–9,13,15–17,22,38,39,41,47,48,52,53,57]. Solving the coefficient equations yields
the statistical moments of the original uncertain problem solution.

Several challenges are associated with applying the gPC-SC and gPC-SG methods to
nonlinear hyperbolic systems (1.1). It is well-known that spectral-type gPC-based methods
exhibit fast convergence when the solution depends smoothly on the random parameters.
However, one of the main problems in using these methods is related to the lack of smoothness
of their solutions, which may break down in finite time as a result of the development of
shock and contact waves. Although these discontinuities appear in spatial variables, their
propagation speed can be affected by uncertainty, causing discontinuities in random variables
and triggering aliasing errors [6] and Gibbs-type phenomena [27] (see also [1, 4, 20, 49]).
Another open question in gPC-based stochastic methods is the representation of strictly
positive quantities such as gas density or water depth and/or the enforcement of discrete
bound-preserving constraints; see, e.g., [7,8,17,26,39]. It can also be shown that gPC-based
methods, which are highly accurate for moment estimation, might fail to approximate the
probability density function, even for the one-dimensional (1-D) noise [10]. An additional
numerical difficulty associated with implementing the gPC-SG methods is posed by the fact
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that the deterministic Jacobian of the projected system differs from the random Jacobian
of the original system. Therefore, when applied to general nonlinear hyperbolic systems,
the gPC-SG method results in a system for expansion coefficients, which is not necessarily
globally hyperbolic [9]. Consequently, additional effort is needed to develop stable numerical
methods for (potentially ill-posed) systems for the gPC coefficients; see, e.g., [7,8,13,15–17,
26,38–41,48,52,53].

In this paper, we propose a new approach in which we conduct the approximation in the
random space using weighted essentially non-oscillatory (WENO) interpolants rather than
orthogonal polynomial expansions, which are highly oscillatory in the case of nonsmooth
solutions. The new approach is realized in the semi-discrete finite-volume framework. The
system (1.1) is integrated over the (x, ξ)-cells and the solution is obtained in terms of cell
averages, which are evolved in time using numerical fluxes in the x-directions. These fluxes
are evaluated with the help of a second-order piecewise linear reconstruction in x and a
Gauss-Legendre quadrature in ξ is implemented using high-order WENO interpolants. This
allows one to achieve high accuracy in ξ even in the generic case of discontinuous solutions.
We refer the reader to related work in [2,3,14,37,46], where a similar idea has been used in the
framework of stochastic finite-volume methods. In this work, we implement a second-order
finite-volume method in physical space. It is combined with a high-order WENO interpola-
tion in the random space. Notice that by using a high-order WENO interpolation, we not
only keep a high-order approximation in the random space but also properly (without the
Gibbs phenomenon) resolve discontinuities that may propagate into the random directions.

The new family of methods may use different numerical fluxes, piecewise-linear recon-
structions, and high-order interpolations. A particular choice made in this work is the
following. We use the Riemann-problem-solver-free central-upwind (CU) fluxes introduced
in [23, 24]; the generalized minmod reconstruction in x (see, e.g., [29, 36, 44]); the fifth-
order Gauss-Legendre quadrature (for uniformly distributed random variables); and the
recently proposed fifth-order affine-invariant WENO-Z (Ai-WENO-Z) interpolation in ξ
(see [12, 28, 50]), which is a stabilized version of the original WENO-Z interpolation (see,
e.g., [11, 21, 30, 51]). It should be observed that the lack of boundary conditions in the
random space impose an additional difficulty as it requires the development of a special
high-order interpolation technique near the boundary. In this paper, we overcome this diffi-
culty by designing a new one-sided Ai-WENO-Z interpolation. In addition, we restrict our
consideration to the simplest 1-D case (d = s = 1) and two higher-dimensional extensions
(d = 1, s = 2 and d = 2, s = 1), all with uniformly distributed random variables, while pro-
viding ideas how the proposed methods can be extended to different random distributions.
We test the resulting scheme on several numerical examples for both the Euler equations of
gas dynamics and the Saint-Venant system of shallow water equations. For the latter appli-
cation, we use the same technique as in [24] to enforce the well-balanced (WB) property, that
is, to make the scheme capable of exactly preserving “lake-at-rest”/still-water steady-state
solutions.
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2 One-Dimensional Semi-Discrete Scheme

In the 1-D case (d = s = 1), the system (1.1) reduces to

Ut + F (U)x = S(U , x, ξ), (2.1)

which we discretize on a finite-volume mesh with cells Cj,ℓ = [xj− 1
2
, xj+ 1

2
] × [ξℓ− 1

2
, ξℓ+ 1

2
],

j = 1, . . . , Nx, ℓ = 1, . . . , Nξ, taken to be uniform both in x and ξ. Here, xj+ 1
2
− xj− 1

2
≡ ∆x

and ξℓ+ 1
2
− ξℓ− 1

2
≡ ∆ξ, and the cells are centered at (xj, ξℓ) =

(x
j− 1

2
+x

j+1
2

2
,
ξ
ℓ− 1

2
+ξ

ℓ+1
2

2

)
.

The computed cell averages are assumed to be available at a certain time t:

U j,ℓ(t) ≈
1

∆x∆ξ

∫∫
Cj,ℓ

U(x, ξ, t) ν(ξ) dx dξ.

These quantities are evolved in time using a semi-discretization of (2.1):

d

dt
U j,ℓ(t) = −

F j+ 1
2
,ℓ(t)−F j− 1

2
,ℓ(t)

∆x
+Sj,ℓ(t), (2.2)

where F j+ 1
2
,ℓ are numerical fluxes (see §2.1) and Sj,ℓ are approximated cell averages of the

source term:

Sj,ℓ(t) ≈
1

∆x∆ξ

∫∫
Cj,ℓ

S(U , x, ξ) ν(ξ) dx dξ. (2.3)

Note that all indexed quantities that depend on U are time-dependent, but from now on,
this dependence will be omitted for the sake of brevity.

2.1 Numerical Fluxes and Source Terms

The numerical fluxes in (2.2) are obtained by averaging the fluxes in the ξ-direction:

F j+ 1
2
,ℓ =

M∑
i=1

µi ν(ξℓi)F
(
U−

j+ 1
2
,ℓi
,U+

j+ 1
2
,ℓi

)
, (2.4)

where the integration in the ξ-direction has been performed using a Gauss-Legendre quadra-
ture on the cell [ξℓ− 1

2
, ξℓ+ 1

2
] with the weights µi and nodes ξℓi ∈ (ξℓ− 1

2
, ξℓ+ 1

2
), i = 1, . . . ,M .

Furthermore, F is computed using the reconstructed one-sided point values of U at (xj+ 1
2
±

0, ξℓi), which are denoted by U±
j+ 1

2
,ℓi
. We use the CU numerical flux from [23]:

F
(
U−

j+ 1
2
,ℓi
,U+

j+ 1
2
,ℓi

)
=
a+
j+ 1

2
,ℓ
F
(
U−

j+ 1
2
,ℓi

)
− a−

j+ 1
2
,ℓ
F
(
U+

j+ 1
2
,ℓi

)
a+
j+ 1

2
,ℓ
− a−

j+ 1
2
,ℓ

+
a+
j+ 1

2
,ℓ
a−
j+ 1

2
,ℓ

a+
j+ 1

2
,ℓ
− a−

j+ 1
2
,ℓ

(
U+

j+ 1
2
,ℓi

−U−
j+ 1

2
,ℓi

)
,

(2.5)
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where a±
j+ 1

2
,ℓ
are the one-sided local speeds of propagation in the x-direction at (xj+ 1

2
, ξℓ),

which can be estimated using the smallest (λ1) and largest (λN) eigenvalues of the Jacobian
∂F
∂U

:

a−
j+ 1

2
,ℓ
= min

{
λ1

(
∂F

∂U

(
U−

j+ 1
2
,ℓ

))
, λ1

(
∂F

∂U

(
U+

j+ 1
2
,ℓ

))
, 0

}
,

a+
j+ 1

2
,ℓ
= max

{
λN

(
∂F

∂U

(
U−

j+ 1
2
,ℓ

))
, λN

(
∂F

∂U

(
U+

j+ 1
2
,ℓ

))
, 0

}
.

(2.6)

Finally, the integral on the right-hand side (RHS) of (2.3) is discretized in two steps.
First, we use the same Gauss-Legendre quadrature as in (2.4) to numerically integrate with
respect to ξ and obtain

Sj,ℓ =
1

∆x

M∑
i=1

µi ν(ξℓi)

x
j+1

2∫
x
j− 1

2

S(U(x, ξℓi , t), x, ξℓi) dx. (2.7)

Second, depending on the system at hand, we choose a proper quadrature for the integrals
on the RHS of (2.7). In the case of the Saint-Venant system considered in §6, a special
quadrature for the geometric source term will be introduced to enforce a WB property of
the resulting scheme.

2.2 Reconstruction of the Point Values

This section describes the reconstruction procedures in both physical and random space. We
use a piecewise linear reconstruction in x and a high-order reconstruction in ξ. The order
of the resulting scheme in ξ depends on the accuracy of the quadratures used to evaluate
the numerical flux and source terms in (2.4) and (2.7). In this paper, we use the fifth-order
Gauss-Legendre quadrature with M = 3 and the corresponding weights

µ1 = µ3 =
5

18
, µ2 =

4

9
, (2.8)

and nodes ξℓi , i = 1, 2, 3 with

ξℓ1 = ξℓ−κ, ξℓ2 = ξℓ, ξℓ3 = ξℓ+κ, κ =

√
3

5
. (2.9)

We will therefore first apply a picewise linear reconstruction in the x-direction to obtain the
one-sided point valuesU±

j+ 1
2
,ℓ
at the midpoints of the cell interfaces (xj+ 1

2
, ξ), ξ ∈ (ξℓ− 1

2
, ξℓ+ 1

2
),

and then use these values to interpolate the one-sided point values U±
j+ 1

2
,ℓ±κ

at the Gauss-

Legendre points (xj+ 1
2
, ξℓ±κ) along the corresponding cell interfaces. The latter is done with

the help of a fifth-order Ai-WENO-Z interpolation [12,28,50] in the ξ-directions.
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2.2.1 Reconstruction in Physical Space

In order to reconstruct the one-sided point values U±
j+ 1

2
,ℓ
, we first compute the slopes

(Ux)j,ℓ ≈ Ux(xj, ξℓ, t) and then use them to obtain

U+
j− 1

2
,ℓ
= U j,ℓ −

∆x

2
(Ux)j,ℓ and U−

j+ 1
2
,ℓ
= U j,ℓ +

∆x

2
(Ux)j,ℓ. (2.10)

These values are second-order accurate and non-oscillatory provided the slopes are approxi-
mated using an appropriate nonlinear limiter with at least the first order accuracy. In this
paper, we use the generalized minmod limiter (see, e.g., [29, 36,44]):

(Ux)j,ℓ = minmod

(
θ
U j,ℓ −U j−1,ℓ

∆x
,
U j+1,ℓ −U j−1,ℓ

2∆x
, θ

U j+1,ℓ −U j,ℓ

∆x

)
, (2.11)

where the minmod function

minmod (c1, c2, . . .) =


min(c1, c2, . . .) if ci > 0, ∀i,
max(c1, c2, . . .) if ci < 0, ∀i,
0 otherwise,

(2.12)

is applied componentwise. The parameter θ ∈ [1, 2] controls the amount of numerical dis-
sipation: larger values yield less dissipative scheme, but the computed quantities might be
oscillatory.

2.2.2 Interpolation in Random Space

Equipped withU±
j+ 1

2
,ℓ
, we proceed with the calculation of the remaining point valuesU±

j+ 1
2
,ℓ±κ

.

For the left-sided values U−
j+ 1

2
,ℓ±κ

, the interpolation is based on U−
j+ 1

2
,ℓ
and its neighboring

(in ξ) values U−
j+ 1

2
,ℓ±1

and U−
j+ 1

2
,ℓ±2

. Similarly, for the right-sided values U+
j+ 1

2
,ℓ±κ

, the inter-

polation is based on U+
j+ 1

2
,ℓ
, U+

j+ 1
2
,ℓ±1

, and U+
j+ 1

2
,ℓ±2

.

The Ai-WENO-Z interpolation is applied in a componentwise manner. We denote by
U a certain component of U throughout the remainder of this section. We describe the
algorithm to calculate the left values U−

j+ 1
2
,ℓ±κ

(the right values U+
j+ 1

2
,ℓ±κ

can be obtained in

a similar way).

Internal points. Away from the ξ-boundaries, the point values U−
j+ 1

2
,ℓ±κ

are obtained

using the “standard” fifth-order Ai-WENO-Z interpolation, which is based on the five point
values U−

j+ 1
2
,ℓ
, U−

j+ 1
2
,ℓ±1

, and U−
j+ 1

2
,ℓ±2

available from (2.10):

U−
j+ 1

2
,ℓ±κ

=
2∑

i=0

ωi,±Pi(ξℓ±κ). (2.13)
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Here, P0(ξ), P1(ξ), and P2(ξ) are the parabolic interpolants obtained on the 3-point stencils{
(xj+ 1

2
, ξℓ−2+i), (xj+ 1

2
, ξℓ−1+i), (xj+ 1

2
, ξℓ+i)

}
for i = 0, 1, and 2, respectively, their correspond-

ing values are

P0(ξℓ±κ) =
3± 2

√
15

40
U−
j+ 1

2
,ℓ−2

− 3± 4
√
15

20
U−
j+ 1

2
,ℓ−1

+
43± 6

√
15

40
U−
j+ 1

2
,ℓ
,

P1 (ξℓ±κ) =
3∓ 2

√
15

40
U−
j+ 1

2
,ℓ−1

+
17

20
U−
j+ 1

2
,ℓ
+

3± 2
√
15

40
U−
j+ 1

2
,ℓ+1

,

P2 (ξℓ±κ) =
43∓ 6

√
15

40
U−
j+ 1

2
,ℓ
− 3∓ 4

√
15

20
U−
j+ 1

2
,ℓ+1

+
3∓ 2

√
15

40
U−
j+ 1

2
,ℓ+2

,

and the weights ωi,± (i = 0, 1, 2) are given by

ωi,± =
αi,±

α0,± + α1,± + α2,±
, αi,± = di,±

[
1 +

(
τ

βi + ε1φ2
i + ε2

)2
]
, τ = |β2 − β0|, (2.14)

with the so-called linear weights

d0,± =
43∓ 6

√
15

240
, d1,± =

77

120
, d2,± =

43± 6
√
15

240
,

selected in a unique way that guarantees the fifth-order accuracy of (2.13) when τ = 0.
In (2.14), φi = 1

5

∑i+2
m=i−2 |U

−
j+ 1

2
,m

− ψi| with ψi = 1
5

∑i+2
m=i−2 U

−
j+ 1

2
,m

and 1 ≫ ε1 ≫ ε2

being two small positive numbers taken ε1 = 10−12 and ε2 = 10−40 in all of the numerical
examples presented in §5 and §6. Finally, βi in (2.14) are the smoothness indicators for the
corresponding interpolants Pi(ξ):

βi =
2∑

ν=1

(∆ξ)2ν−1

ξ
ℓ+1

2∫
ξ
ℓ− 1

2

(
dνPi

dξν

)2

dξ, i = 0, 1, 2. (2.15)

Evaluating the integrals in (2.15) results in

β0 =
13

12

(
U−
j+ 1

2
,ℓ−2

− 2U−
j+ 1

2
,ℓ−1

+ U−
j+ 1

2
,ℓ

)2

+
1

4

(
U−
j+ 1

2
,ℓ−2

− 4U−
j+ 1

2
,ℓ−1

+ 3U−
j+ 1

2
,ℓ

)2

,

β1 =
13

12

(
U−
j+ 1

2
,ℓ−1

− 2U−
j+ 1

2
,ℓ
+ U−

j+ 1
2
,ℓ+1

)2

+
1

4

(
U−
j+ 1

2
,ℓ−1

− U−
j+ 1

2
,ℓ+1

)2

,

β2 =
13

12

(
U−
j+ 1

2
,ℓ
− 2U−

j+ 1
2
,ℓ+1

+ U−
j+ 1

2
,ℓ+2

)2

+
1

4

(
3U−

j+ 1
2
,ℓ
− 4U−

j+ 1
2
,ℓ+1

+ U−
j+ 1

2
,ℓ+2

)2

.

Near the ξ-boundary points. It is important to point out that no BCs are imposed for
the solution of (2.1) in the ξ-direction. Therefore, the computation of the point values in cells
located within the distance of 2∆ξ from the ξ-boundaries should be carried out differently.
We use one-sided stencils to construct the three parabolic interpolants in (2.13).

Assume that ξ ∈ [a, b]: the cells Cj,1 and Cj,2 for all j are located near the ξ = ξ 1
2
= a

boundary. Once again, we only present the algorithm for computing the point values U−
j+ 1

2
,1±κ

7
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and U−
j+ 1

2
,2±κ

, where κ is given in (2.9), and note that the point values U+
j+ 1

2
,1±κ

and U+
j+ 1

2
,2±κ

can be obtained similarly. The corresponding point values in the cells near the ξ = ξNξ+
1
2
= b

boundary are computed mirror-symmetrically.

We obtain the point values U−
j+ 1

2
,1±κ

and U−
j+ 1

2
,2±κ

using the fifth-order Ai-WENO-Z in-

terpolation based on the five point values U−
j+ 1

2
,ℓ
, ℓ = 1, . . . , 5, available from (2.10), and the

parabolic interpolants obtained on the 3-point stencils
{
(xj+ 1

2
, ξ1+i), (xj+ 1

2
, ξ2+i), (xj+ 1

2
, ξ3+i)

}
for i = 0, 1, and 2, respectively. The desired values of U are then computed by

U−
j+ 1

2
,ℓ±κ

=
2∑

i=0

ωi,ℓ±κPi(ξℓ±κ), ℓ = 1, 2,

with

P0(ξ1±κ) =
43∓ 6

√
15

40
U−
j+ 1

2
,1
− 3∓ 4

√
15

20
U−
j+ 1

2
,2
+

3∓ 2
√
15

40
U−
j+ 1

2
,3
,

P1(ξ1±κ) =
123∓ 10

√
15

40
U−
j+ 1

2
,2
− 63∓ 8

√
15

20
U−
j+ 1

2
,3
+

43∓ 6
√
15

40
U−
j+ 1

2
,4
,

P2(ξ1±κ) =
243∓ 14

√
15

40
U−
j+ 1

2
,3
− 163∓ 12

√
15

20
U−
j+ 1

2
,4
+

123∓ 10
√
15

40
U−
j+ 1

2
,5
,

P0(ξ2±κ) =
3∓ 2

√
15

40
U−
j+ 1

2
,1
+

17

20
U−
j+ 1

2
,2
+

3± 2
√
15

40
U−
j+ 1

2
,3
,

P1(ξ2±κ) =
43∓ 6

√
15

40
U−
j+ 1

2
,2
− 3∓ 4

√
15

20
U−
j+ 1

2
,3
+

3∓ 2
√
15

40
U−
j+ 1

2
,4
,

P2(ξ2±κ) =
123∓ 10

√
15

40
U−
j+ 1

2
,3
− 63∓ 8

√
15

20
U−
j+ 1

2
,4
+

43∓ 6
√
15

40
U−
j+ 1

2
,5
.

As in the case of internal points, the nonlinear weights ωi,ℓ±κ (i = 0, 1, 2, ℓ = 1, 2) can
be computed from the corresponding linear weights di,ℓ±κ and the smoothness indicators
βi,ℓ. However, in this case, some of the linear weights are negative, which may lead to
the appearance of nonphysical reconstructed values. In order to avoid such a situation, we
implement the technique from [42] and compute the nonlinear weights in (2.13) by

ωi,ℓ±κ = δ̃ℓ±κ ω̃i,ℓ±κ − δ̂ℓ±κ ω̂i,ℓ±κ,

where

ω̃i,ℓ±κ =
α̃i,ℓ±κ

α̃0,ℓ±κ + α̃1,ℓ±κ + α̃2,ℓ±κ

, α̃i,ℓ±κ = d̃i,ℓ±κ

[
1 +

(
β2,ℓ − β0,ℓ

βi,ℓ + ε1φ2
i + ε2

)2
]
,

ω̂i,ℓ±κ =
α̂i,ℓ±κ

α̂0,ℓ±κ + α̂1,ℓ±κ + α̂2,ℓ±κ

, α̂i,ℓ±κ = d̂i,ℓ±κ

[
1 +

(
β2,ℓ − β0,ℓ

βi,ℓ + ε1φ2
i + ε2

)2
]
,

(2.16)
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and

d̃0,1−κ =
18489− 782

√
15

17787
, d̃1,1−κ =

−711 + 640
√
15

17787
, d̃2,1−κ =

9 + 142
√
15

17787
,

d̃0,1+κ =
77142− 5368

√
15

73767
, d̃1,1+κ =

−2844 + 5048
√
15

73767
, d̃2,1+κ =

−531 + 320
√
15

73767
,

d̃0,2−κ =
38022 + 2648

√
15

73767
, d̃1,2−κ =

36276− 2968
√
15

73767
, d̃2,2−κ =

−531 + 320
√
15

73767
,

d̃0,2+κ =
123− 10

√
15

240
, d̃1,2+κ =

57 + 4
√
15

120
, d̃2,2+κ =

3 + 2
√
15

240
,

d̂0,1−κ =
8769− 1342

√
15

5334
, d̂1,1−κ =

−1662 + 640
√
15

2667
, d̂2,1−κ =

−111 + 62
√
15

5334
,

d̂0,1+κ =
19131− 1564

√
15

17607
, d̂1,1+κ =

−942 + 1244
√
15

17607
, d̂2,1+κ =

−582 + 320
√
15

17607
,

d̂0,2−κ =
9171 + 524

√
15

17607
, d̂1,2−κ =

9018− 844
√
15

17607
, d̂2,2−κ =

−582 + 320
√
15

17607
,

d̂0,2+κ = 0, d̂1,2+κ = 0, d̂2,2+κ = 0,

with

δ̃1−κ =
83 + 8

√
15

40
, δ̃1+κ =

157 + 2
√
15

80
, δ̃2−κ = δ̃1+κ, δ̃2+κ = 1,

δ̂1−κ =
43 + 8

√
15

40
δ̂1+κ =

77 + 2
√
15

80
, δ̂2−κ = δ̂1+κ, δ̂2+κ = 0.

Finally, βi,1 and βi,2 in (2.16) are the smoothness indicators for the corresponding parabolic
interpolants Pi(ξ):

βi,1 =
2∑

ν=1

(∆ξ)2ν−1

ξ 3
2∫

ξ 1
2

(
dνPi

dξν

)2

dξ, βi,2 =
2∑

ν=1

(∆ξ)2ν−1

ξ 5
2∫

ξ 3
2

(
dνPi

dξν

)2

dξ. (2.17)

Evaluating the integrals in (2.17) results in

β0,1 =
1

3

[
10
(
U−
j+ 1

2
,1

)2 − 31U−
j+ 1

2
,1
U−
j+ 1

2
,2
+ 25

(
U−
j+ 1

2
,2

)2
+ 11U−

j+ 1
2
,1
U−
j+ 1

2
,3
− 19U−

j+ 1
2
,2
U−
j+ 1

2
,3
+ 4

(
U−
j+ 1

2
,3

)2]
,

β1,1 =
1

3

[
22
(
U−
j+ 1

2
,2

)2 − 73U−
j+ 1

2
,2
U−
j+ 1

2
,3
+ 61

(
U−
j+ 1

2
,3

)2
+ 29U−

j+ 1
2
,2
U−
j+ 1

2
,4
− 49U−

j+ 1
2
,3
U−
j+ 1

2
,4
+ 10

(
U−
j+ 1

2
,4

)2]
,

β2,1 =
1

3

[
40
(
U−
j+ 1

2
,3

)2 − 139U−
j+ 1

2
,3
U−
j+ 1

2
,4
+ 121

(
U−
j+ 1

2
,4

)2
+ 59U−

j+ 1
2
,3
U−
j+ 1

2
,5
− 103U−

j+ 1
2
,4
U−
j+ 1

2
,5
+ 22

(
U−
j+ 1

2
,5

)2]
,
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β0,2 =
1

3

[
4
(
U−
j+ 1

2
,1

)2 − 13U−
j+ 1

2
,1
U−
j+ 1

2
,2
+ 13

(
U−
j+ 1

2
,2

)2
+ 5U−

j+ 1
2
,1
U−
j+ 1

2
,3
− 13U−

j+ 1
2
,2
U−
j+ 1

2
,3
+ 4

(
U−
j+ 1

2
,3

)2]
,

β1,2 =
1

3

[
10
(
U−
j+ 1

2
,2

)2 − 31U−
j+ 1

2
,2
U−
j+ 1

2
,3
+ 25

(
U−
j+ 1

2
,3

)2
+ 11U−

j+ 1
2
,2
U−
j+ 1

2
,4
− 19U−

j+ 1
2
,3
U−
j+ 1

2
,4
+ 4

(
U−
j+ 1

2
,4

)2]
,

β2,2 =
1

3

[
22
(
U−
j+ 1

2
,3

)2 − 73U−
j+ 1

2
,3
U−
j+ 1

2
,4
+ 61

(
U−
j+ 1

2
,4

)2
+ 29U−

j+ 1
2
,3
U−
j+ 1

2
,5
− 49U−

j+ 1
2
,4
U−
j+ 1

2
,5
+ 10

(
U−
j+ 1

2
,5

)2]
.

In (2.16), φi =
1
5

∑5
m=1 |U

−
j+ 1

2
,m
−ψi|, ψi =

1
5

∑5
m=1 U

−
j+ 1

2
,m
, and the small numbers 1 ≫ ε1 ≫

ε2 > 0 are taken ε1 = 10−12 and ε2 = 10−40 in all of the numerical examples presented in §5
and §6.

3 Higher-Dimensional Extensions

This section discusses extensions of the numerical method introduced in §2 to higher-dimensional
cases. For simplicity of presentation, we will consider two particular multidimensional cases
with d = 1, s = 2 (§3.1) and d = 2, s = 1 (§3.2).

3.1 Case d = 1 and s = 2

Consider a different version of the studied system (1.1):

Ut + F (U)x = S(U , x, ξ, η), (3.1)

where U = U (x, ξ, η, t) with ξ and η being random variables with joint probability distribu-
tion ν(ξ, η).

In order to develop a finite-volume method for (3.1), we introduce the cells Cj,ℓ,m :=
[xj− 1

2
, xj+ 1

2
] × [ξℓ− 1

2
, ξℓ+ 1

2
] × [ηm− 1

2
, ηm+ 1

2
], j = 1, . . . , Nx, ℓ = 1, . . . , Nξ, m = 1, . . . , Nη, and

evolve the corresponding cell averages,

U j,ℓ,m ≈ 1

∆x∆ξ∆η

∫∫∫
Cj,ℓ,m

U(x, ξ, η, t)ν(ξ, η) dx dξ dη,

in time according to the following semi-discretization of (3.1):

d

dt
U j,ℓ,m = −

F j+ 1
2
,ℓ,m −F j− 1

2
,ℓ,m

∆x
+Sj,ℓ,m, (3.2)

where F j+ 1
2
,ℓ,m are numerical fluxes and Sj,ℓ,m are approximated cell averages of the source

term.
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3.1.1 Numerical Fluxes and Source Terms

Similarly to the 1-D case (d = s = 1) considered in §2.1, the numerical fluxes in (3.2)
approximate the average of the corresponding fluxes, but now in both ξ and η directions:

F j+ 1
2
,ℓ,m =

M∑
i,r=1

µi µr ν(ξℓi , ηmr)F
(
U−

j+ 1
2
,ℓi,mr

,U+
j+ 1

2
,ℓi,mr

)
, (3.3)

where µi, i = 1, . . . ,M are the Gauss-Legendre weights and (ξℓi , ηmr), i, r = 1, . . . ,M are
the corresponding nodes in the cell [ξℓ− 1

2
, ξℓ+ 1

2
]× [ηm− 1

2
, ηm+ 1

2
]. In (3.3),

F
(
U−

j+ 1
2
,ℓi,mr

,U+
j+ 1

2
,ℓi,mr

)
=
a+
j+ 1

2
,ℓ,m

F
(
U−

j+ 1
2
,ℓi,mr

)
− a−

j+ 1
2
,ℓ,m

F
(
U+

j+ 1
2
,ℓi,mr

)
a+
j+ 1

2
,ℓ,m

− a−
j+ 1

2
,ℓ,m

+
a+
j+ 1

2
,ℓ,m

a−
j+ 1

2
,ℓ,m

a+
j+ 1

2
,ℓ,m

− a−
j+ 1

2
,ℓ,m

(
U+

j+ 1
2
,ℓi,mr

−U−
j+ 1

2
,ℓi,mr

) (3.4)

are the CU numerical fluxes with U±
j+ 1

2
,ℓi,mr

being the reconstructed one-sided point values

of U at (xj+ 1
2
± 0, ξℓi , ηmr) and a

±
j+ 1

2
,ℓ,m

being one-sided local speeds of propagation in the

x-direction at (xj+ 1
2
, ξℓ,mr). The latter can be estimated as in (2.6):

a−
j+ 1

2
,ℓ,m

= min

{
λ1

(
∂F

∂U

(
U−

j+ 1
2
,ℓ,m

))
, λ1

(
∂F

∂U

(
U+

j+ 1
2
,ℓ,m

))
, 0

}
,

a+
j+ 1

2
,ℓ,m

= max

{
λN

(
∂F

∂U

(
U−

j+ 1
2
,ℓ,m

))
, λN

(
∂F

∂U

(
U+

j+ 1
2
,ℓ,m

))
, 0

}
.

(3.5)

The source term on the RHS of (3.2) is discretized similarly to (2.7):

Sj,ℓ,m =
1

∆x

M∑
i,r=1

µi µr ν(ξℓi , ηmr)

x
j+1

2∫
x
j− 1

2

S
(
U(x, ξℓi , ηmr , t), x, ξℓi , ηmr

)
dx. (3.6)

A particular WB quadrature for the integral in (3.6) in the case of the Saint-Venant system
will be specified in §6.

3.1.2 Reconstruction of the Point Values

The point values U±
j+ 1

2
,ℓi,mr

used in (3.3)–(3.5) are obtained in two steps, as in §2.2.1, us-
ing a second-order generalized minimod reconstruction in x and a fifth-order Ai-WENO-Z
interpolation in random space. In order to achieve the fifth order of accuracy, we use the
fifth-order Gauss-Legendre quadrature in (3.3) and (3.6) with M = 3, the corresponding
weights (2.8), nodes in ξ given by (2.9), and nodes ηmr , r = 1, 2, 3 with

ηm1 = ηm−κ, ξm2 = ξm, ξm3 = ξm+κ.
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Reconstruction in Physical Space. We first evaluate

U+
j− 1

2
,ℓ,m

= U j,ℓ,m − ∆x

2
(Ux)j,ℓ,m and U−

j+ 1
2
,ℓ,m

= U j,ℓ,m +
∆x

2
(Ux)j,ℓ,m (3.7)

with the help of the generalized minmod limiter:

(Ux)j,ℓ,m = minmod

(
θ
U j,ℓ,m − U j−1,ℓ,m

∆x
,
U j+1,ℓ,m − U j−1,ℓ,m

2∆x
, θ

U j+1,ℓ,m − U j,ℓ,m

∆x

)
,

where the minmod function, defined in (2.12), is applied in a componentwise manner.

Interpolation in Random Space. Equipped with U±
j+ 1

2
,ℓ,m

, we proceed with the cal-

culation of the remaining point values U±
j+ 1

2
,ℓ±κ,m

, U±
j+ 1

2
,ℓ,m±κ

, and U±
j+ 1

2
,ℓ±κ,m±κ

using two

consecutive 1-D fifth-order Ai-WENO-Z interpolations. We will describe how to obtain the
left-sided values U−

j+ 1
2
,ℓ±κ,m

, U−
j+ 1

2
,ℓ,m±κ

, and U−
j+ 1

2
,ℓ±κ,m±κ

using U−
j+ 1

2
,ℓ,m

and its neighboring

values in both the ξ- and η-directions. The right-sided values U+
j+ 1

2
,ℓ±κ,m

, U+
j+ 1

2
,ℓ,m±κ

, and

U+
j+ 1

2
,ℓ±κ,m±κ

can be obtained similarly.

We proceed in the following two steps. (Recall that U denotes any component of U .)
Step 1. We apply the 1-D fifth-order Ai-WENO-Z interpolations described in §2.2.2 in

the ξ- and η-directions to compute the values U−
j+ 1

2
,ℓ±κ,m

and U−
j+ 1

2
,ℓ,m±κ

, respectively.

Step 2. We compute the values U−
j+ 1

2
,ℓ−κ,m±κ

and U−
j+ 1

2
,ℓ+κ,m±κ

by applying the 1-D

fifth-order Ai-WENO-Z interpolation in the η-direction to the sets of point values{
U−

j+ 1
2
,ℓ−κ,m−2

, U−
j+ 1

2
,ℓ−κ,m−1

, U−
j+ 1

2
,ℓ−κ,m

, U−
j+ 1

2
,ℓ−κ,m+1

, U−
j+ 1

2
,ℓ−κ,m+2

}
and {

U−
j+ 1

2
,ℓ+κ,m−2

, U−
j+ 1

2
,ℓ+κ,m−1

, U−
j+ 1

2
,ℓ+κ,m

, U−
j+ 1

2
,ℓ+κ,m+1

, U−
j+ 1

2
,ℓ+κ,m+2

}
,

respectively, which were obtained in Step 1.

Remark 3.1. Alternatively, in Step 2, one can apply the interpolation in the ξ-direction to
the sets of point values{

U−
j+ 1

2
,ℓ−2,m−κ

, U−
j+ 1

2
,ℓ−1,m−κ

, U−
j+ 1

2
,ℓ,m−κ

, U−
j+ 1

2
,ℓ+1,m−κ

, U−
j+ 1

2
,ℓ+2,m−κ

}
and {

U−
j+ 1

2
,ℓ−2,m+κ

, U−
j+ 1

2
,ℓ−1,m+κ

, U−
j+ 1

2
,ℓ,m+κ

, U−
j+ 1

2
,ℓ+1,m+κ

, U−
j+ 1

2
,ℓ+2,m+κ

}
,

to evaluate U−
j+ 1

2
,ℓ±κ,m−κ

and U−
j+ 1

2
,ℓ±κ,m+κ

, respectively. We note that both alternatives for

Step 2 are equally accurate.

Remark 3.2. Note that near the ξ- and η-boundaries, one needs to use one-sided Ai-WENO-
Z interpolation in the corresponding direction, as described in §2.2.2.
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3.2 Case d = 2 and s = 1

In this section, we consider the following version of the system (1.1):

Ut + F (U)x +G(U)y = S(U , x, y, ξ), (3.8)

where U = U(x, y, ξ, t) with x and y being the spatial variables.
In order to develop a finite-volume method for (3.8), we introduce the cells Cj,k,ℓ :=

[xj− 1
2
, xj+ 1

2
] × [yk− 1

2
, yk+ 1

2
] × [ξℓ− 1

2
, ξℓ+ 1

2
], j = 1, . . . , Nx, k = 1, . . . , Ny, ℓ = 1, . . . , Nξ, and

evolve the cell averages

U j,k,ℓ ≈
1

∆x∆y∆ξ

∫∫∫
Cj,k,ℓ

U(x, y, ξ, t) ν(ξ) dx dy dξ

in time according to the following semi-discretization of (3.8):

d

dt
U j,k,ℓ = −

F j+ 1
2
,k,ℓ −F j− 1

2
,k,ℓ

∆x
−

Gj,k+ 1
2
,ℓ − Gj,k− 1

2
,ℓ

∆y
+Sj,k,ℓ, (3.9)

where F j+ 1
2
,k,ℓ and Gj,k+ 1

2
,ℓ are the x- and y-directional numerical fluxes and Sj,k,ℓ are ap-

proximated cell averages of the source term.

3.2.1 Numerical Fluxes and Source Terms

Similarly to the d = s = 1 case, the numerical fluxes in (3.9) approximate the average of the
corresponding fluxes in the ξ-direction:

F j+ 1
2
,k,ℓ =

M∑
i=1

µi ν(ξℓi)F
(
U−

j+ 1
2
,k,ℓi

,U+
j+ 1

2
,k,ℓi

)
,

Gj,k+ 1
2
,ℓ =

M∑
i=1

µi ν(ξℓi)G
(
U−

j,k+ 1
2
,ℓi
,U+

j,k+ 1
2
,ℓi

)
.

(3.10)

Here, F and G are the CU numerical fluxes from [25]:

F
(
U−

j+ 1
2
,k,ℓi

,U+
j+ 1

2
,k,ℓi

)
=
a+
j+ 1

2
,k,ℓ

F
(
U−

j+ 1
2
,k,ℓi

)
− a−

j+ 1
2
,k,ℓ

F
(
U+

j+ 1
2
,k,ℓi

)
a+
j+ 1

2
,k,ℓ

− a−
j+ 1

2
,k,ℓ

+
a+
j+ 1

2
,k,ℓ
a−
j+ 1

2
,k,ℓ

a+
j+ 1

2
,k,ℓ

− a−
j+ 1

2
,k,ℓ

(
U+

j+ 1
2
,k,ℓi

−U−
j+ 1

2
,k,ℓi

)
,

G
(
U−

j,k+ 1
2
,ℓi
,U+

j,k+ 1
2
,ℓi

)
=
a+
j,k+ 1

2
,ℓ
G
(
U−

j,k+ 1
2
,ℓi

)
− a−

j,k+ 1
2
,ℓ
G
(
U+

j,k+ 1
2
,ℓi

)
a+
j,k+ 1

2
,ℓ
− a−

j,k+ 1
2
,ℓ

+
a+
j,k+ 1

2
,ℓ
a−
j,k+ 1

2
,ℓ

a+
j,k+ 1

2
,ℓ
− a−

j,k+ 1
2
,ℓ

(
U+

j,k+ 1
2
,ℓi

−U−
j,k+ 1

2
,ℓi

)
,

(3.11)
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where U±
j+ 1

2
,k,ℓi

≈ U(xj+ 1
2
± 0, yk, ξℓi) and U±

j,k+ 1
2
,ℓi

≈ U(xj, yk+ 1
2
± 0, ξℓi), and a

±
j+ 1

2
,k,ℓ

and

a±
j,k+ 1

2
,ℓ
are the x- and y-directional one-sided local speeds of propagation at (xj+ 1

2
, yk, ξℓ) and

(xj, kk+ 1
2
, ξℓ), respectively. They can be estimated using the smallest and largest eigenvalues

of the Jacobians ∂F
∂U

and ∂G
∂U

:

a−
j+ 1

2
,k,ℓ

= min

{
λ1

(
∂F

∂U

(
U−

j+ 1
2
,k,ℓ

))
, λ1

(
∂F

∂U

(
U+

j+ 1
2
,k,ℓ

))
, 0

}
,

a+
j+ 1

2
,k,ℓ

= max

{
λN

(
∂F

∂U

(
U−

j+ 1
2
,k,ℓ

))
, λN

(
∂F

∂U

(
U+

j+ 1
2
,k,ℓ

))
, 0

}
,

a−
j,k+ 1

2
,ℓ
= min

{
λ1

(
∂G

∂U

(
U−

j,k+ 1
2
,ℓ

))
, λ1

(
∂G

∂U

(
U+

j,k+ 1
2
,ℓ

))
, 0

}
,

a+
j,k+ 1

2
,ℓ
= max

{
λN

(
∂G

∂U

(
U−

j,k+ 1
2
,ℓ

))
, λN

(
∂G

∂U

(
U+

j,k+ 1
2
,ℓ

))
, 0

}
.

(3.12)

Finally, the source term on the RHS of (3.9) is discretized as in (2.7):

Sj,k,ℓ =
1

∆x∆y

M∑
i=1

µi ν(ξℓi)

y
k+1

2∫
y
k− 1

2

x
j+1

2∫
x
j− 1

2

S
(
U(x, y, ξℓi , t), x, y, ξℓi

)
dx dy. (3.13)

A particular quadrature for the integrals on the RHS of (3.13) in the case of the Saint-Venant
system will be specified in §6.

3.2.2 Reconstruction of the Point Values

The point values U±
j+ 1

2
,k,ℓi

and U±
j,k+ 1

2
,ℓi

used in (3.10)–(3.12) are computed as follows.

Reconstruction in Physical Space. We first use the generalized minmod limiter to
evaluate

U+
j− 1

2
,k,ℓ

= U j,k,ℓ −
∆x

2
(Ux)j,k,ℓ, U−

j+ 1
2
,k,ℓ

= U j,k,ℓ +
∆x

2
(Ux)j,k,ℓ,

U+
j,k− 1

2
,ℓ
= U j,k,ℓ −

∆y

2
(Uy)j,k,ℓ, U−

j,k+ 1
2
,ℓ
= U j,k,ℓ +

∆y

2
(Uy)j,k,ℓ,

where

(Ux)j,k,ℓ = minmod

(
θ
U j,k,ℓ − U j−1,k,ℓ

∆x
,
U j+1,k,ℓ − U j−1,k,ℓ

2∆x
, θ

U j+1,k,ℓ − U j,k,ℓ

∆x

)
,

(Uy)j,k,ℓ = minmod

(
θ
U j,k,ℓ − U j,k−1,ℓ

∆y
,
U j,k+1,ℓ − U j,k−1,ℓ

2∆y
, θ

U j,k+1,ℓ − U j,k,ℓ

∆y

)
,

and the minmod function, defined in (2.12), is applied in a componentwise manner.

Interpolation in Random Space. Second, equipped with
{
U±

j+ 1
2
,k,ℓ

}
and

{
U±

j,k+ 1
2
,ℓ

}
, the

solution values at the Gauss-Legendre points are obtained (xj+ 1
2
, yk, ξℓ±κ) and (xj, yk+ 1

2
, ξℓ±κ)

using the fifth-order Ai-WENO-Z interpolant in ξ precisely as described in §2.2.2.
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4 Time Evolution

The systems of ordinary differential equations (ODEs) (2.2), (3.2), and (3.9) have to be
numerically integrated using an appropriate ODE solver. In this paper, we use the three-
stage third-order strong stability preserving (SSP) Runge-Kutta method; see, e.g., [18, 19].
The method has been implemented with the CFL number K = 0.45.

4.1 Case d = 1 and s = 1

A fully discrete version of the CU scheme will be, in general, stable if the following CFL
condition is satisfied:

∆t =
K∆x

max
j,ℓ

(
max

{
a+
j+ 1

2
,ℓ
,−a−

j+ 1
2
,ℓ

}) , K ≤ 1

2
. (4.1)

The CFL condition (4.1), however, does not guarantee that components of the computed U ,
which are supposed to be non-negative, remain non-negative. As before, we denote one of
those components of U by U , assume that the corresponding component of the source term
S ≡ 0, and adopt the “draining” timestep technique originally introduced in [5].

We begin with a forward Euler discretization of this component of (2.2),

U j,ℓ(t+∆t) = U j,ℓ(t)−
∆t

∆x

(
Fj+ 1

2
,ℓ(t)−Fj− 1

2
,ℓ(t)

)
, (4.2)

and modify the numerical fluxes on the RHS of (4.2) to ensure U j,ℓ(t +∆t) ≥ 0 as long as
U j,ℓ(t) ≥ 0 for all j, ℓ. To this end, we compute

∆tdrainj,ℓ =
∆xU j,ℓ(t)

max
{
0,Fj+ 1

2
,ℓ(t)

}
+max

{
0,−Fj− 1

2
,ℓ(t)

} ,
introduce the following quantities:

∆tj+ 1
2
,ℓ = min

{
∆t,∆tdrainj0,ℓ

}
, j0 = j +

1

2
− 1

2
sgn

(
Fj+ 1

2
,ℓ(t)

)
,

and replace (4.2) with

U j,ℓ(t+∆t) = U j,ℓ(t)−
∆tj+ 1

2
,ℓ Fj+ 1

2
,ℓ(t)−∆tj− 1

2
,ℓ Fj− 1

2
,ℓ(t)

∆x
. (4.3)

Notice that the last equation can also be obtained by replacing the numerical fluxes in

(4.2) with
∆t

j+1
2 ,ℓ

∆t
Fj+ 1

2
,ℓ(t). One can show that using (4.3) ensures the non-negativity of

U j,ℓ(t + ∆t). An extension to the three-stage third-order SSP Runge-Kutta method is
straightforward: a similar numerical flux modification is carried out at every stage.

4.2 Case d = 1 and s = 2

In this case, a similar time evolution as in §4.1 can be used, with ℓ now being the multi-index
(ℓ,m).
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4.3 Case d = 2 and s = 1

A fully discrete version of the CU scheme will be, in general, stable if the following CFL
condition is satisfied:

∆t = Kmin

{
∆x

max
j,k,ℓ

(
max

{
a+
j+ 1

2
,k,ℓ
,−a−

j+ 1
2
,k,ℓ

}) , ∆y

max
j,k,ℓ

(
max

{
a+
j,k+ 1

2
,ℓ
,−a−

j,k+ 1
2
,ℓ

})
}
, K ≤ 1

2
.

As in the d = s = 1 case, we first introduce the “draining” timestep, which is now

∆tdrainj,k,ℓ =
∆x∆yU j,k,ℓ

fdrain
j,k,ℓ ∆y + gdrainj,k,ℓ ∆x

,

where
fdrain
j,k,ℓ = max

{
0,Fj+ 1

2
,k,ℓ

}
+max

{
0,−Fj− 1

2
,k,ℓ

}
,

gdrainj,k,ℓ = max
{
0,Gj,k+ 1

2
,ℓ

}
+max

{
0,−Gj,k− 1

2
,ℓ

}
.

We then introduce the following quantities:

∆tj+ 1
2
,k,ℓ = min

{
∆t,∆tdrainj0,k,ℓ

}
, j0 = j +

1

2
− 1

2
sgn

(
Fj+ 1

2
,k,ℓ

)
,

∆tj,k+ 1
2
,ℓ = min

{
∆t,∆tdrainj,k0,ℓ

}
, k0 = k +

1

2
− 1

2
sgn

(
Gj,k+ 1

2
,ℓ

)
,

and use them to replace the corresponding component of the numerical fluxes in (3.9) with
∆t

j+1
2 ,k,ℓ

∆t
Fj+ 1

2
,k,ℓ and

∆t
j,k+1

2 ,ℓ

∆t
Gj,k+ 1

2
,ℓ.

Remark 4.1. We note that in this paper, the “draining” timestep technique has been applied
to the water depth component of the Saint-Venant system in the numerical examples reported
in §6.4. This helps to prevent the appearance of discrete negative water depth values.

5 Euler Equations of Gas Dynamics

In this section, we illustrate the performance of the proposed numerical method on three
examples for the Euler equations of gas dynamics. We assume that the random variables
ξ, η are uniformly distributed on [−1, 1] so that ν(ξ) = 1

2
if s = 1 and ν(ξ, η) = 1

4
if s = 2.

We take the minmod parameter θ = 1.3.

Example 1 (d = s = 1). We start with the 1-D case, in which the Euler equations of gas
dynamics read as (2.1) with

U = (ρ, ρu,E)⊤, F (U) = (ρu, ρu2 + p, u(E + p))⊤, S ≡ 0. (5.1)

Here, ρ(x, t, ξ) is the density, u(x, t, ξ) is the velocity, E(x, t, ξ) is the total energy, and
p(x, t, ξ) is the pressure, which is related to the conservative quantities through the equation
of state (EOS) for the ideal gas:

p = (γ − 1)

[
E − ρu2

2

]
, (5.2)
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where γ is the specific heat ratio.
We consider the deterministic Sod shock tube problem with γ = 1.4 and the following

Riemann ICs:

(ρ(x, 0), u(x, 0), p(x, 0)) =

{
(1, 0, 1), x < 0.5,

(0.125, 0, 0.1), x > 0.5,
(5.3)

and free BCs, prescribed in the spatial domain x ∈ [0, 1].

Test 1. We first perturb the initial density and replace ρ(x, 0) in (5.3) with

ρ(x, 0, ξ) =

{
1 + σξ, x < 0.5,

0.125, x > 0.5.

We compute the solution until time t = 0.1644 on a uniform mesh with ∆x = 1/200 and
∆ξ = 1/50. The mean, 95%-quantile, and standard deviation of ρ obtained for different
σ = 0.1, 0.2, 0.3, and 0.4 are presented in Figure 5.1. As one can see, a larger initial
perturbation of ρ yields a larger variance and 95%-quantile.

Figure 5.1: Example 1, Test 1: Mean, 95%-quantile, and standard deviation of ρ for different σ.

It is also instructive to observe that the 95%-quantile in the momentum is distributed
over a slightly different domain, while the 95%-quantile is almost invisible in the pressure
and total energy; see Figure 5.2, where the corresponding results for σ = 0.1 are plotted.

Test 2. Next, we consider the original Sod shock tube problem (5.3) with the uncertainty
introduced in the adiabatic constant γ, which is now γ(ξ) = 1.4+0.1ξ. It is easy to see that
the perturbation of γ affects the initial total energy only, and thus, one can expect that this
perturbation will have the largest influence on the total energy. Indeed, this is true, as one
can see in Figure 5.3, where we plot the mean, 95% quantile, and standard deviation of ρ,
ρu, and E computed on a uniform mesh with ∆x = 1/200 and ∆ξ = 1/50.
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Figure 5.2: Example 1, Test 1: Mean, 95%-quantile, and standard deviation of ρu, p, and E for
σ = 0.1.

Figure 5.3: Example 1, Test 2: Mean, 95%-quantile, and standard deviation of ρ, ρu, p, and E.

Example 2 (d = 1 and s = 2). The second example corresponds to the case of one spatial
variable x and two random variables ξ and η. In this case, the studied system is given by
(2.1), (5.1), (5.2) but with all of the quantities depending not only on x, ξ, and t but also
on η.

We consider the same Sod shock tube problem (5.3) studied in Example 1, but with the
uncertainties in both the ICs and adiabatic constant:

(ρ(x, 0, ξ, η), u(x, 0, ξ, η), p(x, 0, ξ, η)) =

{
(1 + 0.1ξ, 0, 1), x < 0.5,

(0.125, 0, 0.1), x > 0.5,
γ(η) = 1.4 + 0.1η.

We compute the solution on a uniform mesh with ∆x = 1/200 and ∆ξ = ∆η = 1/50. The
obtained results are shown in Figure 5.4, where one can see the mean and standard deviation
for ρ, ρu, p, and E. These results confirm that the proposed numerical method can handle
the case of multidimensional random variables.
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Figure 5.4: Example 2: Mean and standard deviation of ρ, ρu, p, and E.

Example 3 (d = 2 and s = 1). In the last numerical example, we consider the case of
two spatial variables x and y and one random variable ξ, for which the Euler equations are
governed by (3.8) with

U = (ρ, ρu, ρv, E)⊤, F (U) =
(
ρu, ρu2 + p, ρuv, u(E + p)

)⊤
,

G(U) = (ρv, ρuv, ρu2 + p, v(E + p))⊤, S ≡ 0,

supplemented with the EOS:

p = (γ − 1)

[
E − ρ(u2 + v2)

2

]
with γ = 1.4. Here, u(x, y, t, ξ) and v(x, y, t, ξ) are the x- and y-velocity components,
respectively.

For the ICs, we take a two-dimensional (2-D) Riemann problem, which is a perturbed
(for nonzero σ) version of configuration 10 from [25]:

(ρ, u, v, p)(x, y, 0, ξ) =


(1, 0, 0.4297(1− σξ), 1), x > 0.5, y > 0.5,

(0.5(1 + σξ), σξ, 0.6076(1− σξ), 1− σξ), x < 0.5, y > 0.5,

(0.2281(1 + σξ), 0,−0.6076(1 + σξ), 0.3333), x < 0.5, y < 0.5,

(0.4562, 0,−0.4297(1 + σξ), 0.3333), x > 0.5, y < 0.5.

We first compute the deterministic solution (σ = 0) on the spatial domain (x, y) ∈ [0, 1]×[0, 1]
until time t = 0.15 on a uniform mesh with ∆x = ∆y = 1/400. The resulting density
component is shown in Figure 5.5 (left). We then use a quite large erturbation with σ = 0.5
and repeat the same numerical experiment using ∆ξ = 1/10. The mean of the obtained
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density is quite different from the deterministic case; see Figure 5.5 (middle). We also
present the computed standard deviation in Figure 5.5 (right), where one can see the areas
in which the uncertainties influence the solution the most.

Figure 5.5: Example 3: Deterministic ρ (left), and mean (middle) and standard deviation (right)
of the uncertain ρ.

6 Saint-Venant System of Shallow Water Equations

We proceed by considering the Saint-Venant system of shallow water equations. There are
several challenges associated with the numerical solution of the Saint-Venant system. First,
it contains a geometric source term, which is balanced by the corresponding flux. This
requires the development of the so-called WB schemes, which maintain this delicate balance
at the discrete level. In addition, the water depth may naturally be very small or even zero,
and thus a good numerical method must be able to guarantee the non-negativity of the
computed water depth. The level of complexity increases even further with the presence of
uncertainties as several additional techniques (compared to those presented in §2) need to
be developed. In what follows, we adopt the approach introduced in [24] and extend it to
the 1-D and 2-D Saint-Venant systems with uncertainties.

6.1 Case d = 1 and s = 1

We begin with the 1-D case, in which the Saint-Venant system is given by (2.1) with

U = (h, hu)⊤, F (U) =
(
hu, hu2 +

g

2
h2
)⊤
, S = (0,−ghZx)

⊤, (6.1)

where h(x, t, ξ) is the water depth, u(x, t, ξ) is the velocity, Z(x, ξ) is a time-independent
bottom topography, and g is the constant acceleration due to gravity.

The system (2.1), (6.1) admits several steady states, among which the simplest ones are
the so-called “lake-at-rest” equilibria:

u(x, ξ) ≡ 0, w(x, ξ) := h(x, ξ) + Z(x, ξ) = ŵ(ξ), (6.2)
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where ŵ is an arbitrary function of ξ and the equilibrium variable w represents the water
surface. We will say that the scheme is WB if it is capable of preserving the “lake-at-rest”
states (6.2) at the discrete level.

We follow the steps described in §2 to develop a scheme for (2.1), (6.1). However, in
order to ensure the WB property, we do not reconstruct the point values of h—we instead
reconstruct the water surface w := h+Z. At the same time, we note that some of the point
values w+

j− 1
2
,ℓi

and w−
j+ 1

2
,ℓi
, reconstructed using (2.10)–(2.12) followed by the Ai-WENO-Z

interpolation introduced in §2.2.2, may not satisfy the water depth positivity requirement.
We thus enforce the non-negativity of the point values of h in the simplest way by setting

h+
j− 1

2
,ℓi

= max
{
w+

j− 1
2
,ℓi
, Zj− 1

2
,ℓi

}
− Zj− 1

2
,ℓi
, h−

j+ 1
2
,ℓi

= max
{
w−

j+ 1
2
,ℓi
, Zj+ 1

2
,ℓi

}
− Zj+ 1

2
,ℓi
,

where Zj± 1
2
,ℓi

:= Z(xj± 1
2
, ξℓi).

Once the reconstructed point values of h and hu are available, we need to compute the
corresponding point values of u = (hu)/h. In order to avoid a division by small numbers, as
h may be very small, the computation of u must be desingularized. We use the following
desingularization formula (see [24]):

u =
2h(hu)

h2 + [max(h, ε)]2
, (6.3)

where ε is a small positive number, taken ε = 10−6 is all of the numerical experiments
reported below. For consistency, we then recalculate the corresponding point values of hu
by setting

(hu) := h · u. (6.4)

We note that all of the indexes in formulae (6.3) and (6.4) have been omitted for the sake
of brevity.

Finally, we follow the lines of [24] and design a WB quadrature for the integral on the
RHS of (2.7) of the second component of source term S in (6.1):

x
j+1

2∫
x
j− 1

2

(
− gh(x, ξℓi , t)Zx(x, ξℓi)

)
dx ≈ −g

2

(
h+
j− 1

2
,ℓi

+ h−
j+ 1

2
,ℓi

)(
Zj+ 1

2
,ℓi

− Zj− 1
2
,ℓi

)
. (6.5)

The use of the quadrature (6.5) in (2.7) leads to the WB semi-discrete scheme (2.2), (2.4)–
(2.7), (6.5) as we prove in the following theorem.

Theorem 6.1. Assume that at a certain time level, the discrete solution is at a “lake-at-rest”
steady state, that is,

wj,ℓ = hj,ℓ +Zj,ℓ ≡ ŵℓ, (hu)j,ℓ ≡ 0, ∀j, ℓ.

Then, the RHS of the system of ODEs (2.2) vanishes and hence the proposed semi-discrete
scheme (2.2), (2.4)–(6.5), (6.5) is WB.
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Proof. We first observe that the minmod reconstruction in the x-direction (2.10)–(2.12)
ensures

w−
j+ 1

2
,ℓ
= w+

j+ 1
2
,ℓ
= ŵℓ, u−

j+ 1
2
,ℓ
= u+

j+ 1
2
,ℓ
= 0, ∀j, ℓ. (6.6)

Then, the fifth-order Ai-WENO-Z interpolation described in §2.2.2 results in

w−
j+ 1

2
,ℓ+κ

= w+
j+ 1

2
,ℓ+κ

= wℓ+κ,

w−
j+ 1

2
,ℓ−κ

= w+
j+ 1

2
,ℓ−κ

= wℓ−κ,
u−
j+ 1

2
,ℓ±κ

= u+
j+ 1

2
,ℓ±κ

= 0, ∀j, ℓ, (6.7)

where the values wℓ±κ are independent of j since for the “lake-at-rest” data, the Ai-WENO-Z
interpolation is conducted over the same set of discrete values along x = xj+ 1

2
, ∀j.

Using (6.6) and (6.7) in (2.4)–(2.5) and (2.7), (6.5), we obtain the following formula for

the CU numerical fluxes F j+ 1
2
,ℓ = (F (1)

j+ 1
2
,ℓ
,F (2)

j+ 1
2
,ℓ
)⊤:

F (1)

j+ 1
2
,ℓ
= 0,

F (2)

j+ 1
2
,ℓ
=
µ1g

2

(
wℓ−κ − Zj+ 1

2
,ℓ−κ

)2
+
µ2g

2

(
ŵℓ − Zj+ 1

2
,ℓ

)2
+
µ3g

2

(
wℓ+κ − Zj+ 1

2
,ℓ+κ

)2
,

(6.8)

and the source term Sj,ℓ = (0, S
(2)
j,ℓ )

⊤:

S
(2)
j,ℓ =− µ1g

2

(
2wℓ−κ − Zj+ 1

2
,ℓ−κ − Zj− 1

2
,ℓ−κ

)(
Zj+ 1

2
,ℓ−κ − Zj− 1

2
,ℓ−κ

)
− µ2g

2

(
2ŵℓ − Zj+ 1

2
,ℓ − Zj− 1

2
,ℓ

)(
Zj+ 1

2
,ℓ − Zj− 1

2
,ℓ

)
− µ3g

2

(
2wℓ+κ − Zj+ 1

2
,ℓ+κ − Zj− 1

2
,ℓ+κ

)(
Zj+ 1

2
,ℓ+κ − Zj− 1

2
,ℓ+κ

)
.

(6.9)

Substituting (6.8) and (6.9) into (2.2) and using a simplifying the obtained expressions,
yields

d

dt
U j,ℓ(t) = 0,

which completes the proof of the theorem.

6.2 Case d = 1 and s = 2

We now consider the Saint-Venant system (2.1), (6.1), where all of the quantities depend on
two independent random variables ξ and η in addition to the dependence on the physical
variables x and t. In this case, the “lake-at-rest” equilibria are given by

u(x, ξ, η) ≡ 0, w(x, ξ, η) := h(x, ξ, η) + Z(x, ξ, η) = ŵ(ξ, η),

where ŵ is now an arbitrary function of both ξ and η.
As in §6.1, we reconstruct w and hu and then obtain the non-negative point values of h

by setting

h+
j− 1

2
,ℓi,mr

= max
{
w+

j− 1
2
,ℓi,mr

, Zj− 1
2
,ℓi,mr

}
− Zj− 1

2
,ℓi,mr

,

h−
j+ 1

2
,ℓi,mr

= max
{
w−

j+ 1
2
,ℓi,mr

, Zj+ 1
2
,ℓi,mr

}
− Zj+ 1

2
,ℓi,mr

,
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where Zj± 1
2
,ℓi,mr

:= Z(xj± 1
2
, ξℓi , ηmr), and desingularize the computation of the point values

of u using (6.3) and (6.4). Finally, the WB quadrature (6.5) now reads as

x
j+1

2∫
x
j− 1

2

(
− gh(x, ξℓi , ηmrt)Zx(x, ξℓi , ηmr)

)
dx

≈− g

2

(
h+
j− 1

2
,ℓi,mr

+ h−
j+ 1

2
,ℓi,mr

)(
Zj+ 1

2
,ℓi,mr

− Zj− 1
2
,ℓi,mr

)
.

(6.10)

The use of the quadrature (6.10) in (3.6) leads to the WB semi-discrete scheme (3.2)–(3.6),
(6.10), as stated in the following Theorem 6.2, whose proof is completely analogous to the
proof of Theorem 6.1.

Theorem 6.2. Assume that at a certain time level, the discrete solution is at a “lake-at-rest”
steady state, that is,

wj,ℓ,m = hj,ℓ,m +Zj,ℓ,m ≡ ŵℓ,m, (hu)j,ℓ,m ≡ 0, ∀j, ℓ,m.

Then, the RHS of the system of ODEs (3.7) vanishes and hence the proposed semi-discrete
scheme (3.2)–(3.6), (6.10) is WB.

6.3 Case d = 2 and s = 1

In this section, we consider a 2-D physical domain and one random variable ξ. The shallow
water equations are given by (3.8) with

U = (h, hu, hv)⊤, F (U) =
(
hu, hu2 +

g

2
h2, huv

)⊤
,

G(U) =
(
hv, huv, hv2 +

g

2
h2
)⊤
, S = (0,−ghZx,−ghZy)

⊤,

(6.11)

where h(x, y, ξ, t) is the water depth, u(x, y, ξ, t) and v(x, y, ξ, t) are the x- and y-velocities,
Z(x, y, ξ) is the bottom topography and g is the constant acceleration due to gravity.

The system (1.1), (6.11) also admits the “lake-at-rest” steady states satisfying

u(x, y, ξ) = v(x, y, ξ) ≡ 0, w(x, y, ξ) = ŵ(ξ),

where ŵ is an arbitrary function of ξ.
As in the 1-D case, in order to develop a WB scheme for (3.8), (6.11), we first reconstruct

the point values of w and then calculate the point values of h by enforcing their non-negativity
through

h+
j− 1

2
,k,ℓi

= max
{
w+

j− 1
2
,k,ℓi

, Zj− 1
2
,k,ℓi

}
− Zj− 1

2
,k,ℓi

,

h−
j+ 1

2
,k,ℓi

= max
{
w−

j+ 1
2
,k,ℓi

, Zj+ 1
2
,k,ℓi

}
− Zj+ 1

2
,k,ℓi

,

h+
j,k− 1

2
,ℓi

= max
{
w+

j,k− 1
2
,ℓi
, Zj,k− 1

2
,ℓi

}
− Zj,k− 1

2
,ℓi
,

h−
j,k+ 1

2
,ℓi

= max
{
w−

j,k+ 1
2
,ℓi
, Zj,k+ 1

2
,ℓi

}
− Zj,k+ 1

2
,ℓi
,
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where Zj± 1
2
,k,ℓi

:= Z(xj± 1
2
, yk, ξℓi) and Zj,k± 1

2
,ℓi

:= Z(xj, yk± 1
2
, ξℓi).

Once the reconstructed point values of h, hu, and hv are available, we compute the
corresponding point values of u and v by implementing the same desingularization procedure
as in (6.3):

u =
2h(hu)

h2 + [max(h, ε)]2
, v =

2h(hv)

h2 + [max(h, ε)]2
(6.12)

with a small positive parameter ε taken to be 10−6 in the numerical experiment reported
below. For consistency, we then recalculate the corresponding point values of hu and hv by
setting

(hu) := h · u, (hv) := h · v. (6.13)

As before, the indexes in formulae (6.12) and (6.13) have been omitted for the sake of brevity.
We complete the construction of the scheme by designing a WB quadrature for the

integral on the RHS of (3.13) of the second and third components of source term S in (6.11).
As in the 1-D case, we follow the lines of [24] and obtain

y
k+1

2∫
y
k− 1

2

x
j+1

2∫
x
j− 1

2

(
− gh(x, y, ξℓi , t)Zx(x, y, ξℓi)

)
dx dy

≈− g∆y

2

(
h+
j− 1

2
,k,ℓi

+ h−
j+ 1

2
,k,ℓi

)(
Zj+ 1

2
,k,ℓi

− Zj− 1
2
,k,ℓi

)
,

y
k+1

2∫
y
k− 1

2

x
j+1

2∫
x
j− 1

2

(
− gh(x, y, ξℓi , t)Zy(x, y, ξℓi)

)
dx dy

≈− g∆x

2

(
h+
j,k− 1

2
,ℓi

+ h−
j,k+ 1

2
,ℓi

)(
Zj,k+ 1

2
,ℓi

− Zj,k− 1
2
,ℓi

)
.

(6.14)

The use of the quadrature (6.14) in (3.13) leads to the WB semi-discrete scheme (3.9)–(3.13),
(6.14) as stated in the Theorem 6.3, whose proof is similar to the proof of Theorem 6.1 and
thus omitted for the sake of brevity.

Theorem 6.3. Assume that at a certain time level, the discrete solution is at a “lake-at-rest”
steady state, that is,

wj,k,ℓ = hj,k,ℓ +Zj,k,ℓ ≡ ŵℓ, (hu)j,k,ℓ = (hv)j,k,ℓ ≡ 0, ∀j, k, ℓ.

Then, the RHS of the system of ODEs (3.2) vanishes and hence the proposed semi-discrete
scheme (3.9)–(3.13), (6.14) is WB.

6.4 Numerical Examples

In this section, we illustrate the performance of the proposed numerical method on several
examples for the Saint-Venant system. In all of the examples, we take g = 1, except for
Example 7, in which we take g = 9.812. As before, we assume that the random variables
ξ, η are uniformly distributed on [−1, 1]. We have used the minmod parameter either θ = 1
(Examples 4 and 7) or θ = 1.3 (Examples 5, 6, and 8).
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Example 4 (Accuracy Test, d = s = 1). We begin with experimentally verifying the
fifth order of accuracy in ξ of the proposed finite-volume method. To this end, we consider
the following smooth ICs with uncertainty in the water surface:

w(x, 0, ξ) = 1 + 0.1 tanh(4ξ) + 0.01 sin(2πx), u(x, 0, ξ) ≡ 0.1.

We take a flat bottom topography Z(x, ξ) ≡ 0 and impose periodic BCs on the spatial
domain x ∈ [0, 1].

We compute the numerical solution until time t = 0.01 (at which the solution is still
smooth) on a sequence of uniform meshes with ∆ξ = 2/16, 2/32, 2/64, and 2/128. We
then estimate the L1-errors and experimental convergence rates using the following Runge
formulae, which are based on the solutions computed on the three consecutive uniform grids
with the mesh sizes ∆ξ, 2∆ξ, and 4∆ξ and denoted by (·)∆ξ, (·)2∆ξ, and (·)4∆ξ, respectively:

Error(∆ξ) ≈ δ212
|δ12 − δ24|

, Rate(∆ξ) ≈ log2

(
δ24
δ12

)
.

Here, δ12 := ∥(·)∆ξ − (·)2∆ξ∥L1 and δ24 := ∥(·)2∆ξ − (·)4∆ξ∥L1 . Since spatial discretization
has only the second order of accuracy and temporal discretization has the third order, the
following restrictions are applied when the grid refinement is performed:

∆x ∝ (∆ξ)
5
2 , ∆t ≤ (∆x)

3
2

2max
j,ℓ

{
max

(
a+
j+ 1

2
,ℓ
,−a−

j+ 1
2
,ℓ

)} .
In particular, we take the following sequences of spatial (∆x = 1/200, 1/2400, 1/28800, and
1/345600), and temporary (∆t = 1.38 × 10−4, 3.33 × 10−6, 8.01 × 10−8, and 1.93 × 10−9)
mesh sizes for ∆ξ = 2/16, 2/32, 2/64, and 2/128, respectively.

The computed L1-errors and corresponding convergence rates for water surface and dis-
charge are reported in Table 6.1, where one can clearly see that the fifth order of accuracy
in ξ has been achieved.

∆ξ
w hu

Error Rate Error Rate

2/64 3.76× 10−9 6.34 1.95× 10−9 5.25

2/128 5.79× 10−11 6.18 4.89× 10−11 5.28

Table 6.1: Example 4: The L1-errors and experimental convergence rates for water surface w
and dicharge hu.

Example 5 (Dam Break over Random Bottom Topography, d = s = 1). In this
example proposed in [7, Section 5.1], we consider the deterministic ICs

w(x, 0, ξ) =

{
1, x < 0,

0.5, x > 0,
u(x, 0, ξ) ≡ 0,
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and free BCs, prescribed in the spatial domain x ∈ [−1, 1], while introducing the uncertainty
via the following random bottom topography:

Z(x, ξ) = 0.125ξ +

{
0.125

[
cos(5πx) + 2

]
, |x| < 0.2,

0.125, otherwise.

We compute the numerical solution until time t = 0.8 on a uniform grid with ∆x = 1/800
and ∆ξ = 1/50. The obtained water surface w and discharge hu are shown in Figure 6.1,
where one can observe that the numerical solution computed by the proposed finite-volume
method is substantially less oscillatory than the gPC-SG solutions reported in [7].

Figure 6.1: Example 5: Mean, 95%-quantile, and standard deviation of w (left) and hu (right).

Example 6 (Random Water Surface, d = s = 1). This example is taken from [7,
Section 5.2]. We now consider the deterministic bottom topography

Z(x, ξ) =


10(x− 0.3), 0.3 ≤ x ≤ 0.4,

1− 0.0025 sin2(25πx), 0.4 ≤ x ≤ 0.6,

− 10(x− 0.7), 0.6 ≤ x ≤ 0.7,

0, otherwise,

and the ICs with a randomly perturbed water surface

w(x, 0, ξ) =

{
1.001 + 0.001ξ, 0.1 < x < 0.2,

1, otherwise,
u(x, 0, ξ) ≡ 0.

The spatial domain is x ∈ [−1, 1] and free BCs are implemented at both ends of the interval.
The water surface w and discharge hu, computed on a uniform grid with ∆x = 1/800 and
∆ξ = 1/50 at time t = 1 are plotted in Figure 6.2. The obtained results are similar to those
obtained in [7] using a gPC-SG method, but our results are visibly sharper. We believe that
the filter used in [7] causes additional smearing so that the main advantage of the gPC-SG
method—spectral accuracy in the random space—is lost.
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Figure 6.2: Example 6: Mean, 95%-quantile, and standard deviation of w (left) and hu (right).

Example 7 (Random Water Surface and Discharge, d = 1, s = 2). We take random
ICs for perturbed water surface and discharge,

w(x, ξ, η, 0) = max
{
0.9, Z(x, ξ, η)

}
+

{
0.1(1 + 0.1ξ), − 1.6 < x < −1.4,

0, otherwise,

u(x, ξ, η, 0) = 0.01η,

and the following deterministic bottom topography:

Z(x, ξ, η) =

{
(1− x2), − 1 < x < 1,

0, otherwise,

all considered in the spatial domain is x ∈ [−4, 2] with free BCs implemented at both ends
of the interval.

In this example, the ICs give rise to two waves, which emerge in the area x ∈ [−1.6,−1.4]
and then propagate in the opposite directions. The right-moving wave reaches the initially
dry area and then moves over the “island”, leading to the occurance of wetting/drying
processes. This makes the studied problem numerically challenging. However, the proposed
finite-volume method is capable of robustly capturing the solution as shown in Figure 6.3,
where time snapshots of the mean and standard deviation of the water surface, computed
on a uniform mesh with ∆x = 1/100 and ∆ξ = ∆η = 1/10, are plotted.

Example 8 (Random Bottom Topography, d = 2, s = 1). In the final example, we
consider the deterministic ICs

w(x, y, ξ, 0) =

{
max

{
1.01, Z(x, y)

}
, 0.05 < x < 0.15,

max
{
1, Z(x, y)

}
, otherwise

u(x, y, ξ, 0) ≡ 0,

and the following random bottom topography:

Z(x, y, ξ) = 0.8e−5(x−0.9)2−50(y−0.5)2 + 0.1(ξ + 1),

in the spatial domain (x, y) ∈ [0, 2] × [0, 1] with free BCs prescribed at all sides of its
boundary.
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Figure 6.3: Example 7: Mean and standard deviation of w at t = 0 (top left), 0.5 (top right),
0.75 (bottom left), and 1 (bottom right).

In Figure 6.4, we plot the mean and standard deviation of the water surface computed on
a uniform mesh with ∆x = ∆y = 1/200 and ∆ξ = 1/10 at time t = 1.2. As in Example 3,
the standard deviation identifies the areas in which the uncertainties the solution the most.

Figure 6.4: Example 8: Mean (left) and standard deviation (right) of w.

7 Conclusions

In this paper, we have introduced new well-balanced and positivity preserving finite-volume
methods for nonlinear hyperbolic systems of PDEs with uncertainties. These methods are
based on finite-volume approximation in both the spatial and random directions. In order
to achieve a high order of accuracy, we have applied second-order minmod reconstruction
in physical space and fifth-order Ai-WENO-Z interpolation in random directions. The lack
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of boundary conditions in the random space requires the development of a special high-
order interpolation technique near the boundary. This has been achieved by designing a
new one-sided Ai-WENO-Z interpolation. Even though, our numerical experiments did not
show any sensitivity towards this choice, we note that it may possibly lead to instabilities
if, for instance, strong discontinuities travel to a random boundary. We also note that the
proposed high-order finite-volume method is well suited for hyperbolic systems with low
or medium dimensional uncertainties. In order to overcome the curse of dimensionality, we
suggest to apply GPU parallelization for high-dimensional random spaces. Both the problem
of boundary conditions and curse of dimensionality in random space constitute interesting
topics for future research.
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