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ABSTRACT
The past several decades have seen significant development in the design and numerical

analysis of particle methods for approximating solutions of PDEs. In these methods, a

numerical solution is sought as a linear combination of Dirac delta-functions located

at certain points. The locations and coefficients (weights) of the delta-functions are first

chosen to accurately approximate the initial data and then are evolved in time according

to the system of ODEs obtained from a weak formulation of the considered problem.

The main advantage of the particle methods is their low numerical diffusion that allows

them to capture a variety of nonlinear waves with a high resolution. Even though the

most “natural” application of the particle methods is linear transport equations, over

the years, the range of these methods has been extended for approximating solutions

of convection–diffusion and dispersive equations and general nonlinear problems.

In this chapter, we provide a mathematical introduction to deterministic particle

methods and review different aspects of their practical implementation such as

recovering an approximate solution from its particle distribution and an investigation

of various particle redistribution algorithms.
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1 INTRODUCTION

In recent years, particle methods have become a useful tool for approximating

solutions of PDEs and been successfully used to treat a broad class of problems

arising in astrophysics, plasma physics, solid state physics, medical physics and

fluid dynamics (see, e.g., Choquin and Huberson, 1989; Chorin and Marsden,

1993; Evans and Harlow, 1957; Harlow, 1956, 1964; Hermeline, 1989;

Hockney and Eastwood, 2010; Leonard, 1980, 1985 and references therein). In

these methods, the solution is sought as a linear combination of Dirac distribu-

tions whose positions and coefficients represent locations and weights of the par-

ticles, respectively. The solution is then found by following the time evolution of

the locations and the weights of the particles according to a system of ODEs,

obtained by considering a weak formulation of the problem. In order to recover

point values of the computed solution at some time t > 0, the particle solution

needs to be regularized, and hence the performance of the particle method

depends on the quality of the regularization procedures, allowing the recovery

of the approximate solution from its particle distribution. A commonly used reg-

ularization of a particle solution performed by taking a convolution with a

so-called cut-off function, which plays the role of a smooth approximation to

the d-function and after a proper scaling takes into account the tightness of the

particle discretization. When a particle method is applied to problems with non-

smooth data, the reconstruction procedure becomes the most challenging part of

the overall algorithm—it works perfectly fine for smooth functions, but may

break down when applied to nonsmooth (discontinuous) solutions.

Mesh-free particle methods have many advantages compared to Eulerian

(finite-difference, finite-volume, finite-element, etc.) methods. The amount

of numerical viscosity introduced by most nonoscillatory Eulerian discre-

tizations of the convective terms may seriously degrade the accuracy of a

computational method especially if a coarse grid is forced to be used.

Lagrangian-type methods, on the other hand, can ameliorate most of the pro-

blems posed by the presence of numerical viscosity since particles provide a

nondissipative approximation of the convection. Furthermore, in some scien-

tific applications, such as kinetic theory, for instance, FD schemes cannot be

applied to a realistic case, because of the dimensionality of the problem

(Cohen and Robertson, 1971), while in particle schemes, the particles are con-

centrated in the relevant region of the phase space, optimizing the memory

storage of the computer. As mesh-free, particle methods are also very flexible,

and, therefore beneficial, when problems with very complicated geometries

and/or moving boundaries are considered.
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Particle methods have been used for a long time to give a numerical solu-

tion of purely convective problems, such as the incompressible Euler equa-

tion in fluid mechanics (Harlow, 1964; Leonard, 1980, 1985) or the Vlasov

equation in plasma physics (Glassey, 1996). Over the years, the range of

particle methods has been extended to treat other type of equations including

convection–diffusion, dispersive and others, and we refer the reader to

several books and survey monographs, where a large variety of particle-type

methods are being reviewed (see, e.g., Cottet and Koumoutsakos, 2000; Li

and Liu, 2004; Monaghan, 1988 and references therein). Particle method

approximations of hyperbolic PDEs with oscillatory solutions were studied

in Engquist and Hou (1989). A detailed description of particle methods with

an emphasis on vortex methods and smooth particle hydrodynamics (SPH)

and their applications can also be found in Cottet and Koumoutsakos

(2000) and Monaghan (1985b).

It is generally possible to divide the particle methods for convection–
diffusion equations into two classes: stochastic and deterministic ones. The

most widely used treatment of diffusion terms, the random vortex method,

was developed in Chorin (1973). There, diffusion was introduced by adding

a Wiener process to the motion of each vortex. Numerous works followed that

pioneering paper and properties of the random vortex method have been

extensively studied in the literature (for a comprehensive list we refer the

reader to Puckett (1993) and Cottet and Koumoutsakos (2000)). Several

deterministic methods have been explored for treating the diffusion terms in

particle schemes. Among them is the so-called weighted particle method

(Cottet and Mas-Gallic, 1983, 1990; Degond and Mas-Gallic, 1989;

Mas-Gallic and Poupaud, 1988; Mas-Gallic and Raviart, 1986), in which the

convective part of the equation is modelled by the convection of the particles,

while the diffusion part of the equation is taken into account by changing the

particle weights. Another example is the diffusion-velocity method, which is

based on defining the convective field associated with the heat operator

which then allowed the particles to convect in a standard way (Degond and

Mustieles, 1990; Lacombe, 1999; Lacombe and Mas-Gallic, 1999; Lions

and Mas-Gallic, 2001), and others (Cortez, 1997; Eldredge et al., 2002;

Eldridge et al., 2002; Fishelov, 1990; Russo, 1990a,b, 1993). In this case,

the PDE is rewritten as if it was an advection equation with a speed that

depends on the solution and its derivatives. The solution is then obtained by

implementing the particle method with the only difference being that the

point values of the computed solution should be recovered from the particle

distribution at every time step during the time integration (unlike linear

advection problems, in which the solution is recovered only at the final time).

The diffusion-velocity particle method has been also applied to linear and

nonlinear dispersive equations as well as used for direct simulations of soli-

tary waves interactions (see, e.g., Camassa et al., 2005; Chertock and Levy,

2001, 2002; Chertock et al., 2012a,b,c, 2015; Degasperis and Procesi, 1999;

Degasperis et al., 2002; McLachlan and Marsland, 2007).
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One must be aware, however, that the self-adaptivity of the particle posi-

tions to the local flow map comes at the expense of the regularity of the particle

distribution: interparticle distances may change in time, and just as particles

may cluster in the immediate region of the discontinuity they may spread too

far from each other near nonsmooth fronts. This may lead not only to a poor

resolution of the computed solution but also to an extremely low efficiency

of the methods. The latter is related to the fact that the time step for the ODE

solver used to evolve the particle system in time depends, in general, on the dis-

tance between the particles. The success of various particle methods relies thus

not only upon accurate reconstruction procedures used to recover point values

of the numerical solution from its particle distribution but also upon accurate

and efficient redistribution algorithms, which will ensure that different regions

in the computational domain are adequately resolved. A large variety of

remeshing techniques were proposed in the literature over the last decades

including both global interpolation-type methods (see, e.g., Beale and Majda,

1985; Bergdorf and Koumoutsakos, 2006, 2007; Bergdorf et al., 2005;

Chatelain et al., 2007; Cottet and Koumoutsakos, 2000; Cottet and Magni,

2009; Cottet and Poncet, 2004; Cottet and Weynans, 2006; Cottet et al.,

2009, 2014; Hald and del Prete, 1978; Hou, 1990; Koumoutsakos and

Leonard, 1995; Lagaert et al., 2014; Magni and Cottet, 2012; Monaghan,

1985a; Nordmark, 1991; Ould-Salihi et al., 2000; Perlman, 1985; Ploumhans

et al., 2002; Rasmussen et al., 2011; Strain, 1996; van Rees et al., 2011; Wee

and Ghoniem, 2006) and local particle merger algorithms (see, e.g., Chertock

et al., 2007; Lapenta, 2002; Teunissen and Ebert, 2014). It is also well known

that particle methods encounter difficulties in the accurate treatment of bound-

ary conditions, while their adaptivity is often associated with severe particle dis-

tortion that may introduce spurious scales. Recent research efforts that attempt

to address these issues are outlined in Koumoutsakos (2005).

There are many applications for which a hybridization of the Eulerian and

Lagrangian approaches may be beneficial or even crucial for achieving high

resolution of the computed solution since particle methods have their own

applicability limitations if the considered problems involve additional terms

besides linear convection (e.g. collision terms, diffusion, or dispersion, and/or

nonlinear terms). Hybrid methods involve combination of mesh-based

schemes and particle methods in an effort to utilize the specific advantages

of each part of the hybrid method in the right place (see, e.g., Chertock and

Kurganov, 2004, 2005, 2006; Chertock et al., 2006, 2008, 2010; Cottet,

1990, 2002; Cui et al., 2015; Harlow, 1964; Ould-Salihi et al., 2000). It should

also be noted that since in many problems where some sharp interfaces are

needed to be captured the use of particle methods may be critical for obtaining

a high resolution of the computed solution due to the low dissipativeness

nature of these methods (see also Enright et al., 2002, 2005; Hieber and

Koumoutsakos, 2005; Krasny, 1986).
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The purpose of this chapter is to provide a mathematical review of deter-

ministic particle methods for advection equations as well as to discuss various

aspects related to the practical implementation of these methods. The chapter

is organized as follows: we start, in Section 2, with a description of determin-

istic particle methods in the context of linear transport equations and provide

a review of major analytical results. We then discuss, in Section 3, various

remeshing techniques that ensure consistent, efficient and accurate simula-

tions by particle methods. We conclude, in Section 4, with particle approxi-

mations for derivative operators, which are presented in the context of

convection–diffusion equations.

2 DESCRIPTION OF THE PARTICLE METHOD

In this section, we describe the derivation of the particle method using the

example of linear transport equation, here written in the divergence form:

ut +—x � ðauÞ+ a0u ¼ S, x2d, t> 0, (1)

and considered subject to initial data

u0ðxÞ :¼ uðx, 0Þ, (2)

where, u is an unknown function of a time variable t and d-spatial variables
x ¼ (x1, …, xd)

T, the velocity vector a ¼ (a1(x, t), …, ad(x, t))
T, the coeffi-

cient a0(x, t) and the source/sink term S(x, t) are given functions.

As it was mentioned earlier, the main idea of the particle methods is to

seek a solution of a PDE as a linear combination of Dirac distributions,

uNðx, tÞ¼
XN
i¼1

wiðtÞ dðx�xiðtÞÞ,

for some set (xi(t), wi(t)) of points xiðtÞ 2d and coefficients wiðtÞ 2
that are chosen at time t ¼ 0 to accurately approximate the initial data

and then evolved in time according to the system of ODEs obtained from

a weak formulation of the underlying PDE. Such solutions are called par-

ticle solutions and the d-functions in the above formula are called particles.

The coefficients wi(t) are called particle weights, since they represent the

amount of the physical quantity u, carried by the ith particle, which is

located at xi(t) at time t, and N is the total number of particles. It should

be emphasized that the introduced particles are mathematical objects rather

than (physical) particles of a certain material. An important step in imple-

mentation of particle methods is the recovery of point values of the com-

puted solution from its particle distribution. In what follow, we describe

each one of the aforementioned steps, i.e., initialization, evolution and

reconstruction.
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2.1 Particle Approximation of the Initial Data

The first step in the derivation of the particle method consists of approximat-

ing the initial data (2) by a linear combination of Dirac distributions:

uN0 ðxÞ¼
XN
i¼1

wið0Þ dðx�xið0ÞÞ, (3)

where wi(0) are given coefficients and xi(0) are the initial locations of the

d-functions. This can be done, for instance, in the sense of measures. Namely,

for any test function f2C0
0ðOÞ, the inner product (u0(�), f(�)) should be

approximated by

Z
O

u0ðxÞfðxÞ dx�ðuN0 ð � Þ,fð � ÞÞ¼
XN
i¼1

wið0ÞfðxÞ: (4)

Based on (4), we observe that determining the initial weights, wi(0), is exactly

equivalent to solving a standard numerical quadrature problem. One way of

solving this problem is to first divide the computational domain O into a set

of N nonoverlapping subdomains Oi:
SN
i¼1

Oi ¼O, Oi

T
Ol ¼ ∅, 8i 6¼ l. Then

the location of the ith particle, xi(0), is set at the centre of mass of Oi and

the entire mass of u0 in Oi is “placed” into the ith particle so that its initial

weight is

wið0Þ :¼
Z
Oi

u0ðxÞ dx: (5)

For instance, one can take

wið0Þ¼ jOij u0ðxið0ÞÞ,
which will correspond to the midpoint rule for (5). In general, one can build

a sequence of basis functions that will aid in solving the numerical quadra-

ture problem given by (4) (see, e.g., Chertock et al., 2012b,c). One may also

prove (see, e.g., Chertock et al., 2012b; Cottet and Koumoutsakos, 2000;

Raviart, 1985) that uN0 converges weakly to u0 as N!∞, i.e., if

max
i

jOij! 0 as N!∞, (6)

then for all f2C0
0ðOÞ

lim
N!∞

Z
O

ðuN0 ðxÞ�u0ðxÞÞfðxÞ dx¼ 0:
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2.2 Time Evolution of Particles

As it was mentioned earlier, particle methods are obtained by considering a

weak formulation of the underlying problem and therefore we start by defin-

ing a weak solution of (1) and (2). Following Raviart (1985), we denote by

MðOÞ the space of measures defined on O�d , that is, the space dual to

the space C0
0ðOÞ of continuous functions O! with compact support.

A weak solution is then defined as follows.

Definition 1. A function u2Mðd�½0, TÞÞ is called a weak solution of the

Cauchy problem (1) and (2) if

�
Z
d

u0ðxÞ’ðx, 0Þ dx�
ZT
0

Z
d

uðx, tÞ ’tðx, tÞ + aðx, tÞ �—’ðx, tÞ½ � dx dt

+

ZT
0

Z
d

a0ðx, tÞuðx, tÞ’ðx, tÞ dx dt¼
ZT
0

Z
d

Sðx, tÞ’ðx, tÞ dx dt

(7)

holds for any test function ’2C1
0ðd�½0, TÞÞ.

Note that this definition makes sense if u0 2MðdÞ and S2Mðd�½0, TÞÞ.
Equipped with the definition of a weak solution, we now prove the

following proposition, which holds in the homogeneous case of S � 0.

Proposition 1. Let

ut +—x � ðauÞ+ a0ðx, tÞu¼ 0, (8)

be a homogeneous linear transport equation considered subject to the initial
data (3), where wi(0) are given coefficients and xi(0) are the initial locations
of the d-functions. Assume that a0, a1, …,ad 2Cðd�½0, T�Þ. Then a weak
solution weak solution of (8), (3) is given by

uNðx, tÞ¼
XN
i¼1

wiðtÞ dðx�xiðtÞÞ, (9)

where

dxiðtÞ
dt

¼ aðxiðtÞ, tÞ,

dwiðtÞ
dt

+ a0ðxiðtÞ, tÞwiðtÞ¼ 0, i¼ 1, …, N:

(10)

Proof. Let ’2C1
0ðd�½0, TÞÞ. Substituting (9) into the weak formulation (7)

and changing the order of summation and integration yields:
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�
XN
i¼0

wið0Þ’ðxið0Þ,0Þ �
XN
i¼0

ZT
0

wiðtÞ ’tðxiðtÞ, tÞ + aðxiðtÞ, tÞ �—’ðxiðtÞ, tÞ½ � dt

+
XN
i¼0

ZT
0

wiðtÞa0ðxiðtÞ, tÞ’ðxiðtÞ, tÞ dt¼ 0:

(11)

We now add and subtract
PN

i¼0

R T
0
wiðtÞ dxiðtÞ

dt
�—’ðxiðtÞ, tÞ dt in the last equa-

tion, use the fact that the time derivative of ’ along the curve xi ¼ xi(t) is

d’ðxiðtÞ, tÞ
dt

¼’tðxiðtÞ, tÞ+
dxiðtÞ
dt

�—’ðxiðtÞ, tÞ,

and rewrite Eq. (11) as follows:

�
XN
i¼0

wið0Þ’ðxið0Þ, 0Þ�
XN
i¼0

ZT
0

wiðtÞd’ðxiðtÞ, tÞ
dt

dt

+
XN
i¼0

ZT
0

wiðtÞ dxiðtÞ
dt

�aðxiðtÞ, tÞ
� �

�—’ðxiðtÞ, tÞ dt

+
XN
i¼0

ZT
0

wiðtÞa0ðxiðtÞ, tÞ’ðxiðtÞ, tÞ dt¼ 0:

(12)

Integrating by parts the second term in the first row in (12) and rearranging

other terms, we finally obtain

XN
i¼0

ZT
0

wiðtÞ dxiðtÞ
dt

�uðxiðtÞ, tÞ
� �

�—’ðxiðtÞ, tÞ dt

+
XN
i¼0

ZT
0

dwiðtÞ
dt

+wiðtÞa0ðxiðtÞ, tÞ
� �

’ðxiðtÞ, tÞ dt¼ 0:

(13)

Since the functions xi(t) and wi(t) satisfy the system (10), the last equation

holds for any ’ implying that uN defined by (9), (10) is a weak solution of

(8), (3). This completes the proof. □
In the general case of S 6¼ 0, a particle solution of (1), (2) is obtained by

solving the initial-value problem (1), (3), whose solution uN(x, t) is still given
by (9), but the locations and weights of the particles satisfy a different system

of ODEs (compare with the system (10)):
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dxiðtÞ
dt

¼ aðxiðtÞ, tÞ,
dwiðtÞ
dt

+ a0ðxiðtÞ, tÞwiðtÞ¼ biðtÞ,
(14)

where bi reflects the contribution of the source term S (see, e.g., Cohen and

Perthame, 2000; Raviart, 1985). To evaluate bi, we consider a particle approx-
imation of S, given by

Sðx, tÞ� SNðx, tÞ :¼
XN
i¼1

biðtÞ dðx�xiðtÞÞ,
where

biðtÞ¼
Z
OiðtÞ

Sðx, tÞ dx� SðxiðtÞ, tÞ jOiðtÞj: (15)

Here, Oi(t) is the subdomain of O that includes the ith particle and should

satisfy the following two properties for all t (not only at t ¼ 0):

O ¼
[N
i¼1

OiðtÞ, OiðtÞ
\

OlðtÞ¼ ∅, 8i 6¼ l, wiðtÞ�
Z
OiðtÞ

uðx, tÞ dx:

These requirements are hard to guarantee, but noticing that in order to use (15)

only the size of Oi(t) is needed, one may apply the Liouville theorem (see,

e.g., Arnold, 2006; Chorin and Marsden, 1993) to obtain the following ODE

d

dt
jOiðtÞj¼—x � aðxiðtÞ, tÞ jOiðtÞj, (16)

which has to be solved together with the system (14) to complete the con-

struction of the particle method.

Remark 1. We note that in the case when the velocity vector field u is

divergence-free, that is, when —x � a � 0, the size of the ith subdomain does

not change, that is, jOi(t)j � jOij 8t. Otherwise, jOi(t)j changes in time and

the coefficients (weights) bi in (15) would depend on t even when the source

S ¼ S(x) only.
Remark 2. It should be observed that in practice, except in very special cases,

the functions xi(t) and wi(t) have to be determined numerically. In fact, the

ODE system (10) can be solved by means of a classical numerical method

using one’s favourite ODE solver.

The above discussion leads to the following algorithm for obtaining a particle

solution of (1) and (2):

l Divide the computational domain O into a set of N nonoverlapping subdo-

mains Oi:
SN
i¼1

Oi ¼O, Oi

T
Ol ¼ ∅, 8i 6¼ l.
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l Replace the initial datum u0 in (2) by its particle approximation uN0 (3) for

some set (xi(0), wi(0)) of points xi(0) in the computational domain O and

weights wi(0) computed according to (5).

l If S � 0 in the right-hand side of Eq. (1), consider the system (8), (3) and

obtain its particle solution (9) by numerically integrating the system of

ODEs (10).

l If S 6¼ 0, replace S(x, 0) with its particle approximation to compute the

coefficients bi(0) according to (15) with t ¼ 0. Consider the system (1),

(3) and obtain its particle solution (9) by numerically solving the system

of ODEs (14)–(16).

Finally, the basic convergence result for particle methods is stated in the fol-

lowing theorem.

Theorem 1. Consider Eq. (8) with the coefficients ai 2 L∞ð0, T;
W1,∞ðOÞÞ, i¼ 1, …, d and a0 2 L∞ðO�ð0, TÞÞ. Let the initial condition
u0 2 C0(O) and its particle approximation is given by (3). Then, for all
’2C0

0ðOÞ

lim
N!∞

Z
O

ðuðx, tÞ�uNðx, tÞÞ’ðxÞ dx¼ 0 uniformly in t2 ½0, T�:

Theorem 1 guarantees that for sufficiently regular coefficients a, a0 and initial

datum w0, the particle solution will converge to the exact one in the sense of

measures. However, the above result is of little use when one is interested in

obtaining point values of the computed solution. In this respect, it is more

useful to associate the particle solution uN(�, t) with a continuous function

uNe ð �, tÞ, which approximates the solution u(�, t) in a more classical sense. In

the next section we provide an example of how such an approximation can

be constructed.

2.3 Particle Function Approximations

The regularization of particle solution is usually performed by taking a convo-

lution product with a mollification kernel (or, so-called, cut-off function),

ze(x), that after a proper scaling takes into account the initial tightness of

the particle discretization, namely,

uðx, tÞ� ueðx, tÞ :¼ðuð�, tÞ 	 zeð � ÞÞðxÞ¼
Z

uðy, tÞzeðx� yÞ dy, (17)

where ze 2C0ðdÞ T L1ðdÞ satisfies the following properties

zeðxÞ : ¼ 1

ed
z

x

e

� �
,

Z
d

zðxÞ dx¼ 1, (18)

and e denotes a characteristic length of the kernel (see, e.g., Raviart, 1985).

The particle approximation of the regularized solution is then defined as
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uðx, tÞ� uNe ðx, tÞ :¼ðuNð �, tÞ 	 zeð � ÞÞðxÞ¼
XN
i¼1

wiðtÞzeðx�xiðtÞÞ: (19)

It is clear from the above discussion that the approximation of the com-

puted solution by formula (19) is one of the key ingredients of the particle

method, and hence the performance of the method depends on the quality of

this smoothing procedure. The error introduced by the quadrature (19) of

the mollified approximation uNe for the function u can be divided into

two parts:

u�uNe ¼ðu�u 	 zeÞ+ ðu�uNÞ 	 ze: (20)

The first term in Eq. (20) denotes the mollification error that can be controlled by

appropriately selecting the kernel properties. The second term denotes the quad-

rature error due to the approximation of the integral in (17) on the particle

location. The accuracy of the particle method will thus be related to the moments

of z that are being conserved, and we say that the kernel is of order k when:Z
d

zðxÞ dx¼ 1,

Z
d

xazðxÞ dx¼ 0, for all multiindexes a such that 1
 jaj 
 k�1,

Z
d

jxjk jzðxÞj dx<∞:

8>>>>>>>>>><
>>>>>>>>>>:

(21)

Example 1 (Gaussian and generalized Gaussian). A (generalized) Gaussian

can be considered as an example of a cut-off function and is obtained by taking

the inverse Fourier transform of the function e�jxj2l , where l2 and x2d:

zlðxÞ¼Cl

Z
d

eix�x e�jxj2l dx: (22)

Taking an appropriate normalizing coefficient Cl, one can ensure that the

C∞-functions zl, which rapidly decay at ∞, satisfy the conditions (21) with

k ¼ 2l. Thus, these mollifiers are of order l. In particular, when l ¼ 1 we

obtain the first-order Gaussian

z1ðxÞ¼
1

pd=2
e�jxj2 :

When l ¼ 2, (22) reduces to the second-order super-Gaussian, which in the

one-dimensional (1D) case reads

z2ðxÞ¼
1ffiffiffi
p

p 3

2
� x2

� �
e�x2 :
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Example 2 (compactly supported mollifiers). The simplest example of a

compactly supported 1D cut-off function is the quadratic B-spline:

zðxÞ ¼

3

4
� x2, jxj 
 1

2
,

1

2

3

2
�jxj

� �2

,
1

2

 jxj 
 3

2
,

0, otherwise:

8>>>>><
>>>>>:

For this cut-off function k ¼ 2, and thus it is only first-order accurate.

An advantage of compactly supported cut-off functions is that it is easy to

implement the summation in (19) in a very efficient way, which is one of

the crucial points in practical implementation of particle methods. Higher

order compactly supported kernels can be obtained by ensuring that more

moments are conserved and can be found in, e.g., Cottet and Koumoutsakos

(2000), Monaghan (1985a) and Magni and Cottet (2012).

There is an extensive discussion in the literature on the selection of a

cut-off function and its relation to the overall accuracy of particle methods

(Beale and Majda, 1982a,b, 1985; Chorin, 1973; Cottet and Koumoutsakos,

2000; Hald, 1979, 1991; Puckett, 1993 and see also Anderson and Greengard,

1985; Cohen and Perthame, 2000; Degond and Mas-Gallic, 1989; Degond

and Mustieles, 1990; Hald, 1987; Koumoutsakos, 2005; Mas-Gallic and

Raviart, 1986; Monaghan, 1985a,b; Nordmark, 1991; Perlman, 1985; Raviart,

1985). Obviously, the accuracy of the particle method will depend both on

the choice of cut-off function (18) and on its width e as it is given by the fol-

lowing theorem (Raviart, 1985) (note that similar error estimates can also be

obtained for compactly supported cut-off functions, see, e.g., Evans, 1998;

Raviart, 1985).

Theorem 2. Let (21) are satisfied for some integer k� 1. Assume that both z and
the coefficients in (1) are sufficiently smooth, more precisely: z2Wm,∞

ðdÞ T Wm,1ðdÞ for some integer m > d and a1, …, ad, a0 +— � a2 L∞

ð0,T;Wl,∞ðdÞÞ, where l¼ maxðk, mÞ. Then, if the initial datum is also
smooth (u0 2Wl,pðdÞ), then there exists a positive constant C ¼ C(T), such that
for any t 2 [0, T],

k u�uNe kLpðdÞ 
C ek k u0kk,p,d +
h

e

� �m

k u0km,p,d

	 

, (23)

where h > 0 is the size of nonoverlapping d-dimensional cubes covering d.

2.3.1 Accuracy

The two terms in the error estimate (23) may be balanced by choosing an appro-

priate size of e. Intuitively, it is clear that if the smoothing parameter e is too

small in comparison to the minimal distance between particles, the approximate
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solution defined by (19) will vanish away from the e-neighbourhood of the

particles and is thus irrelevant. On the other hand, large values of e will gen-
erate unacceptable smoothing errors. Theoretically e is chosen so that the

smoothing error and the discretization error are of the same order and it is

common to take e� ffiffiffi
h

p
(see, e.g., Chertock and Kurganov, 2006, 2009;

Hald, 1987; Raviart, 1985). It should be noted, however, that it is not clear

what the optimal proportionality constant is. That strongly depends on both

the smoothness of the flow and the cut-off function and its value at the origin.

It has been also observed in various numerical experiments that the overall

accuracy of the particle method can deteriorate over long-time integrations,

see, e.g., the discussion in Beale and Majda (1985), Hald (1987), Hald and

del Prete (1978), Nordmark (1991), Koumoutsakos (2005), Perlman (1985)

and in references therein.

2.3.2 Smooth vs Discontinuous Solutions

The procedure for point values recovery described above provides an optimal

order of accuracy when the captured solution is sufficiently smooth. However,

when a and/or u in (1) are discontinuous, approximation (19) may be inaccu-

rate and even unacceptable, as it has been demonstrated in Chertock and

Kurganov (2006), Chertock et al. (2006) and Chertock and Kurganov

(2004). In order to overcome this difficulty, the convolution procedure (19)

can be, for instance, modified by taking kernels of locally varying width,

whose size was selected in a point-wise manner depending on the distance

between the particles (Bergdorf et al., 2005; Chertock and Kurganov, 2006;

Cottet et al., 2000; Hou, 1990). Another approach for recovering point values

of the computed solution from its particle distribution is based on interpreting

the particle data as integrals of the approximated solution over some non-

overlapping domains around the particles (see, e.g., Chertock and Kurganov,

2004; Chertock et al., 2006). Then, the averaged values of the numerical solu-

tion can be obtained dividing the weights wi(t) by the volumes of the

corresponding domains. We also refer the reader to Cottet and Magni

(2009), where total variation diminishing (TVD) reconstruction formulae for

discontinuous solutions were proposed for particle methods in the context of

nonlinear conservation laws.

2.3.3 Efficiency

Besides the accuracy of particle methods, the computational speed is also

important. The most time-consuming aspect in particle simulations is accu-

rately evaluating the long-range interactions of particles that appear in the

summation formula (19). The direct method of computing values of the

cut-off function requires OðN2Þ flops, where N is the total number of parti-

cles. There is a number of fast summation algorithms known to reduce the

computational cost of the particle method to OðN logNÞ. Example of such
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methods include particle-mesh techniques that account for particles in close

proximity in terms of grid spacing (see, e.g., Hockney and Eastwood, 2010

and references therein). There are also mesh-free fast summation techniques

that are based on the concept of multipole end Taylor expansions (see, e.g.,

Anderson, 1992; Barnes and Hut, 1986; Carrier et al., 1988; Greengard and

Rokhlin, 1988; Lindsay and Krasny, 2001). These methods employ clustering

of particles and use expansions of the potentials around the cluster centres with

a limited number of terms to calculate their far-field influence onto other parti-

cles. These techniques rely on tree data structures to achieve computational effi-

ciency. The tree allows a spatial grouping of the particles, and the interactions

of well-separated particles is computed using their centre of mass or multipole

and Taylor expansions.

3 REMESHING FOR PARTICLE DISTORTION

As evidenced by the foregoing discussion, the time evolution of particle posi-

tions is dictated by the gradients of the flow field and, as the result, interpar-

ticle distances constantly change. This self-adaptation of particles to the local

flow map comes at the expense of the regularity of their distribution since par-

ticles may either spread away from each other or cluster in the regions of the

large velocity gradients or near discontinuities even if the velocity function a
is a smooth function of its arguments. This becomes a critical issue in preserv-

ing the accuracy of particle methods and their efficient implementation.

While the lack of particles in certain areas may result in deterioration of

the accuracy of the method and poor resolution of the computed solution

(appearance of artificial vacuum areas), local particle accumulations may lead

to an extremely low efficiency of the method making it almost impractical.

The latter is related to the fact that the time step of numerical ODE solvers

for (10) (or (14)) depends on the distance between the particles as the stability

condition imposes that no characteristic curves or their trajectories should

intersect in finite time. The latter leads to a time-step constraint of the type

Dt
C k—a k�1
∞ , (24)

where C depends on the specific numerical solver used. As the result, the suc-

cess of various particle methods relies not only upon accurate reconstruction

procedures used to recover numerical solution from its particle distribution

but also upon accurate and efficient particle redistribution algorithms, which

will ensure that different regions in the computational domain are adequately

resolved.

The redistribution of particles is in general performed through interpola-

tion formulae and consists of (occasional) reinitialization (remeshing) of par-

ticle locations onto a new regularized set of particles and recalculating the

particle weights on these new locations. The resulting problem of extracting
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information on a regular grid from a set of scattered points has a long history,

and we refer the reader to an extensive list of redistribution algorithms, which

are based on various techniques ranging from global rezoning using fixed,

one-sided and variable size kernels (see, e.g., Beale and Majda, 1985; Cottet

and Koumoutsakos, 2000; Cottet and Poncet, 2004; Hald and del Prete,

1978; Hou, 1990; Monaghan, 1985a; Nordmark, 1991; Perlman, 1985;

Ploumhans et al., 2002; Strain, 1996) and particle-mesh methods (see, e.g.,

Bergdorf and Koumoutsakos, 2006, 2007; Chatelain et al., 2007; Cottet and

Koumoutsakos, 2000; Cottet and Magni, 2009; Cottet and Poncet, 2004;

Cottet and Weynans, 2006; Cottet et al., 2009, 2014; Koumoutsakos and

Leonard, 1995; Lagaert et al., 2014; Magni and Cottet, 2012; Ould-Salihi

et al., 2000; Ploumhans et al., 2002; Rasmussen et al., 2011; van Rees

et al., 2011; Wee and Ghoniem, 2006) to multilevel adaptive particle

methods (see, e.g., Bergdorf et al., 2005; Koumoutsakos, 2005 and references

therein).

3.1 Particle Weights Redistribution

For completeness of the presentation, we provide here several examples that

illustrate basic, yet commonly used, global and local remeshing ideas. To this

end, we denote by fxigNi¼1 and fx�jgJj¼1, respectively, the old (distorted) and the

new (regular) set of particles, and we denote by wi and w
�
j the corresponding

particle weights at the old and new locations at certain time t. For the sake of

simplicity, we also assume that the new particles, x
�
jðtÞ, lie at the centres of the

nonoverlapping cells, fCjgJi¼1,
SJ
j¼1

Cj ¼O, Cj

T
Cl ¼ ∅, 8j 6¼ l, of size h that

cover the computational domain O.

3.1.1 Convolution

One of the simplest and natural ways of computing new particle weights w
�
j is

to reinitialize particle approximation (19) at the new nodes by just replacing x
by x

�
jðtÞ in the formula, that is,

uNe ðx�j ðtÞ, tÞ¼
XN
i¼1

wiðtÞzeðx�jðtÞ�xiðtÞÞ, j¼ 1, …, J, (25)

see, e.g., Beale and Majda, 1985; Chertock and Kurganov, 2006; Chertock

and Levy, 2001, 2002; Cottet and Koumoutsakos, 2000; Hou, 1990;

Monaghan, 1985a; Nordmark, 1991. Using the relation

w
�
j ðtÞ¼

Z
Cj

uðx, tÞ dx, (26)
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the new weights can be recomputed by, say, the midpoint rule as

w
�
jðt	Þ¼ huNe ðx�jðtÞ, tÞ, 8j¼ 1, …, J, and then the particle method is restarted.

3.1.2 Interpolation

Another widespread redistribution procedure is based on a classical inter-

polation rule:

w
�
j ðtÞ¼

XN
i¼1

wiðtÞF jx�jðtÞ�xiðtÞj
h

 !
, j¼ 1, …, J, (27)

where F is an interpolation kernel whose properties determine the type and

the quality of the redistribution procedure and is typically designed to con-

serve a certain number of moments of the particle distribution (see, e.g.,

Chertock and Kurganov, 2006, 2009; Chertock et al., 2007; Cottet and

Koumoutsakos, 2000; Hockney and Eastwood, 2010; Monaghan, 1985a;

Peskin, 2002; Schoenberg, 1973). This technique (unlike the previously

described convolution approach) is in particularly appealing in applications,

where, conservation of total amount of u may be crucial for designing a good

numerical method. In the context of redistribution of particles, the conserva-

tion requirement can be stated as

XJ
j¼1

w
�
j ðtÞ¼

XN
i¼1

wiðtÞ: (28)

There are many choices for F(r) that ensure (28) and we consult here (Peskin,

2002) to bring two particular examples: a first order:

FðrÞ¼

1

8
5�2r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7 + 12r�4r2

p� �
, if jrj< 1,

1

8
3�2r�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + 4r�4r2

p� �
, if 1< jrj< 2,

0, otherwise

8>>>>><
>>>>>:

and a second-order kernel:

FðrÞ¼

fðrÞ, jrj< 1,

1

6
r3�7

8
r2 +

7

12
r +

21

16
�3

2
fðr�1Þ, 1< jrj< 2,

� 1

12
r3 +

3

4
r2�23

12
r +

9

8
+
1

2
fðr�2Þ, 2< jrj< 3,

0, otherwise,

8>>>>>>>>><
>>>>>>>>>:

192 Handbook of Numerical Analysis



with

fðrÞ¼ 1

12
r3�11

56
r2�11

42
r +

61

112

+
1

336

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�112r6 + 336r5 + 500r4�1560r3�748r2 + 1584r + 243Þ

q
:

Remark 3. Both the convolution and redistribution techniques described above

are global (all particle locations and weights are changed) and are not limited to

uniform auxiliary grids and allow to obtain point values of the computed parti-

cle approximation at any prescribed set of points. These methods would, in gen-

eral, work perfectly fine in smooth regions, yet may smear out discontinuities

that may appear in the solution or develop oscillations near nonsmooth fronts.

Remark 4. The time scale on which remeshing is done is mostly empirical. It is

clearly correlated to the strain rate (velocity gradient) of the flow and con-

strained by (24). A simple rule that proved to be efficient in various calculations

is to remesh every few time steps or even at the end of every time step. It

should be observed, however, that if a redistribution procedure is applied

too often, the overall resolution of the computed solution may deteriorate.

Therefore, one has to come up with an (ad hoc) strategy on when to redistribute

particles, for instance, one may apply the redistribution procedure either

when the smallest/largest distance between the particles becomes smaller/

larger than a prescribed critical value. Additional strategies can be found in,

e.g., Nordmark (1991), Beale and Majda (1985), Cottet and Koumoutsakos

(2000), Chertock and Kurganov (2009), Chertock et al. (2007), Chertock and

Kurganov (2006), Chertock and Levy (2002), Chertock and Levy (2001),

Magni and Cottet (2012), Cottet and Magni (2009) and references therein.

3.2 Particle Merger—A Local Redistribution Technique

The major drawback of the aforementioned global redistribution techniques

is numerical diffusion brought to the particle method every time the locations

of the particles are changed and the weights are recalculated. This may be

unavoidable in the case of spreading particles, but when the particles cluster,

another redistribution technique—merger of clustering particles—may be

used to improve the efficiency of the particle method (see, e.g., Chertock

et al., 2007; Lapenta, 2002; Teunissen and Ebert, 2014). Particle merger

techniques seem also to work perfectly well for the models with point mass

concentrations and strong singularity formations (d-functions along the sur-

face as well as at separate points) as it was demonstrated in Chertock et al.

(2007), where a sticky particle method was introduced in the context of the

Euler equations of pressureless gas dynamics (Brenier and Grenier, 1998;

Zeldovich, 1970).
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The simplest particle merger algorithm can be described as follows

(Chertock et al., 2007). When at a certain time t, the distance jxi(t) � xj(t)j
is smaller than a prescribed (ad hoc) parameter for some i and j, then the

ith and jth particles are merged into a new particle located, say, at the centre

of mass of the replaced particles, i.e.,

x
� ¼ wiðtÞxiðtÞ+wjðtÞxjðtÞ

wiðtÞ+wjðtÞ
and carrying the weight

w
� ¼wiðtÞ +wjðtÞ:

The cell occupied by the new particle is then set to be the union of Oi(t)
and Oj(t):

jO� j¼ jOiðtÞj+ jOjðtÞj:
It should be noted that this particle merging procedure also serves as an

excellent discontinuities detector—as long as the number of particles stays

equal to the initial number of particles, the solution can be assumed continu-

ous, but after the merger occurs, we assume that a discontinuity has been

already formed. Moreover, by keeping a record of the location of particle,

one may track the discontinuity location as well. Obviously, in large time

simulations, the overall accuracy of the method may decrease due to particle

mergers, since the overall number of particles decreases in time. In such a

case, one would need to periodically add new particles into the smooth parts

of the solution.

4 APPLICATIONS TO CONVECTION–DIFFUSION
EQUATIONS

Even though the most natural application of the particle methods is pure trans-

port equations, over the years, the range of these methods has been extended.

Many practical problems involve additional terms, besides convection (e.g.

collision terms or diffusion), and hence, a demand for particle methods, which

are capable to treat diffusion, dispersion and general nonlinear terms was cre-

ated. As a consequence, the original particle method has been modified in a

number of different ways, and several approaches have been suggested for

approximating derivatives as the latter became a key aspect in the develop-

ment of particle methods.

The most widely used treatment of diffusion terms, the random vortex

method, was introduced in Chorin (1973). In this method, the diffusion is trea-

ted by adding a Wiener process to the motion of each particle. This way the

diffusion only affects the position of particles, xi(t), while the particle weights,
wi(t), remain constant in time. Numerous works followed this pioneering
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paper (see, e.g., Anderson and Greengard, 1985; Beale and Majda, 1982a,b,

1985; Goodman, 1987; Gustafson and Sethian, 1991; Hald, 1979, 1991;

Leonard, 1985; Long, 1988; Nordmark, 1991). Properties of the random vortex

method have been also extensively studied in the literature. For a comprehen-

sive list we refer to Cottet and Koumoutsakos (2000) and Puckett (1993).

Deterministic particle approximations of the derivative operators can be

constructed, for instance, through the integral approximations. This can be

easily achieved by taking the derivatives in Eq. (19) as convolution and deriv-

ative operators commute in unbounded or periodic domains. These approxi-

mations can be cast in a conservative formulation and have been

implemented in various versions of particle methods (like, e.g., SPH

Monaghan, 1985b, 1988). An alternative formulation involves the develop-

ment of integral operators that are equivalent to differential operators. We

review here both approaches in the context of convection–diffusion while

leaving the discussion of other particle approximations out of the scope of this

paper.

4.1 Particle Methods for Convection–Diffusion Equations

We consider the following convection–diffusion equation:

ut +—x � ðauÞ¼ nDu, n> 0, (29)

which is studied subject to the initial condition (2) and explore two determin-

istic methods for treating the diffusion terms in particle schemes.

4.1.1 Weighted Particle Method

In the so-called weighted particle method proposed in Degond and Mas-Gallic

(1989) (see also Cottet and Mas-Gallic, 1983; Mas-Gallic and Raviart, 1986),

the convective part of the equation is modelled by the convection of particles,

while the diffusion part is taken into account by changing the weights of the

particles. This deterministic particle method is then based on the following

integro-differential approximation of the convection–diffusion equation (29):

ust +—x � ðausÞ¼ nDsus, (30)

where

Dsus :¼ 1

s2

Z
d

�sðx� yÞ uðyÞ�uðxÞð Þ dy, (31)

and the function

�sðxÞ¼
1

sd
�

x

s

� �
,

where �2 L1ðdÞ is an even function, that is, �(�x) ¼ �(x) for all x2d.
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The main idea of the weighted particle method is to apply the particle

method to Eq. (30) (instead of the original equation (29)) and to treat the mod-

ified viscosity nDsus as a source term. Substituting the particle expansion (9)

into a weak formulation of (31) leads to the following system of ODEs for the

particle locations and their weights:

dxiðtÞ
dt

¼ aðxiðtÞ, tÞ,
dwiðtÞ
dt

¼ biðtÞ, i¼ 1, …, N,

where

biðtÞ¼
n
s2
XN
j¼1

�sðxiðtÞ�xjðtÞÞ wjðtÞjOiðtÞj�wiðtÞjOjðtÞj
� �

,

and jOj(t)j is still given by (16).

Convergence properties of the weighted particle method have been inves-

tigated in Degond and Mas-Gallic (1989), where the convergence of the

solution of problem (30) towards the solution of (29) has been proven and

the stability and convergence results for the weighted particle method in L∞

have been established.

Remark 5. The weighted particle method has been applied to first-order systems

in Degond and Niclot (1989), Mas-Gallic (1987) and Mas-Gallic and Poupaud

(1988) and to the systems of gas dynamics in Gingold and Monaghan (1987).

Remark 6. Starting from this formulation, a general deterministic integral

representation for derivatives of arbitrary order was presented in Eldridge

et al. (2002).

Remark 7. A different technique in which particle methods were used for

approximating solutions of the heat equation and related models (such as the

Fokker-Planck equation, a Boltzmann-like equation—the Kac equation and

Navier–Stokes equations) was introduced in Russo (1990a,b). In these works,

the diffusion of the particles was described as a deterministic process in terms

of a mean motion with a speed equal to the osmotic velocity associated with

the diffusion process. In a following work (Russo, 1993), the method was

shown to be successful for approximating solutions to the 2D Navier–Stokes
equation in an unbounded domain. In this setup, the particles were convected

according to the velocity field while their weights evolved according to the

diffusion term in the vorticity formulation of the Navier–Stokes equations.
We also refer to Fishelov (1990) where a different way to discretize vis-

cous terms of the Navier–Stokes equations was suggested. The idea was to

approximate the Laplacian of the vorticity by the explicit differentiation of

the cut-off function. Another approach (see, for example, Cortez, 1997;

Eldredge et al., 2002; Eldridge et al., 2002) is based on discretization of an

integro-differential equation in which an integral operator approximates the

diffusion operator.
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4.1.2 Diffusion-Velocity Particle Method

Another deterministic approach for approximating solutions of the parabolic

equations with particle methods was introduced in Degond and Mustieles

(1990). Their so-called diffusion-velocity method is based on defining the

convective field associated with the heat operator which then allowed the par-

ticles to convect in a standard way. To this end, Eq. (29) is rewritten as a

purely transport equation:

ut +—x � ðapuÞ¼ 0, where ap ¼ a� n
—xu

u
: (32)

Here, ap depends on u and —xu, therefore, it cannot be considered as a given

function. Moreover, since the product of d-functions is not well defined, the
standard particle method has to be modified. This can be done by defining a

“smoothed” velocity

azðuÞ¼ a� n
u	—xze
u	 ze

, (33)

where ze is a cut-off function defined in (18). Eq. (32) is then replaced by the

following transport equation

ut +—xðazðuÞuÞ¼ 0, (34)

which is called the diffusion-velocity transport equation. The resulting

diffusion-velocity particle method is obtained by considering a particle

approximation as a distribution of the form (19), where xi(t) and wi(t) are

the solutions to

dxi
dt

¼ az uNe ðxiðtÞ, tÞ

 �¼ aðxiðtÞ, tÞ� n

XN
j¼1

wj—xzeðxiðtÞ�xjðtÞÞ

XN
j¼1

wjzeðxiðtÞ�xjðtÞÞ
,

dwiðtÞ
dt

¼ 0,

8>>>>>>>><
>>>>>>>>:

i¼ 1,…,N:

(35)

Notice that in this method, the computed solution uNe should be recovered

from its particle distributions at every time step during the time integration

(35) (unlike for linear transport equations, where the solution is recovered

only at the final time).

The convergence properties of the diffusion-velocity particle method

were investigated, e.g., in Lacombe (1999) and Lacombe and Mas-Gallic

(1999), where short-time existence and uniqueness of solutions for the

resulting diffusion-velocity transport equation were proved. Convergence

results for a porous-media equation were also obtained in Lions and

Mas-Gallic (2001).
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