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Abstract In this paper, we study the stochastic collocation (SC) methods for un-
certainty quantification (UQ) in hyperbolic systems of nonlinear partial differential
equations (PDEs). In these methods, the underlying PDEs are numerically solved
at a set of collocation points in random space. A standard SC approach is based
on a generalized polynomial chaos (gPC) expansion, which relies on choosing the
collocation points based on the prescribed probability distribution and approximat-
ing the computed solution by a linear combination of orthogonal polynomials in
the random variable. We demonstrate that this approach struggles to accurately cap-
ture discontinuous solutions, often leading to oscillations (Gibbs phenomenon) that
deviate significantly from the physical solutions. We explore alternative SC meth-
ods, in which one can choose an arbitrary set of collocation points and employ
shape-preserving splines to interpolate the solution in a random space. Our study
demonstrates the effectiveness of spline-based collocation in accurately capturing
and assessing uncertainties while suppressing oscillations. We illustrate the supe-
riority of the spline-based collocation on two numerical examples, including the
inviscid Burgers and shallow water equations.

1 Introduction

Numerous scientific problems encompass inherent uncertainties arising from a vari-
ety of factors. Within the context of partial differential equations (PDEs), uncertain-
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ties can be characterized using random variables. This study focuses on hyperbolic
systems of conservation and balance laws, examining their behavior under uncertain
conditions. In the one-dimensional (1-D) case, the formulation of these systems is
expressed as

Ut + F (U)x = S(U), (1)

where x is the spatial variable, t is time, U(x, t; ξ) ∈ Rm is an unknown vector-
function, F (U) : Rm → Rm are the flux functions, and S(U) is a source term.
Furthermore, we assume that ξ ∈ Ξ ⊂ R are real-valued random variable with
(Ξ,F , ν) being the underlying probability space. Here, Ξ is a set of events, F(Ξ)
is the σ-algebra of Borel measurable sets, and ν(ξ) : Ξ → R+ is the probability
density function (PDF), ν ∈ L1(Ξ).

The system (1) emerges in various applications, such as fluid dynamics, geo-
physics, electromagnetism, meteorology, and astrophysics. It is crucial to assess
uncertainties inherent in input quantities, as well as in the initial and boundary
conditions resulting from empirical approximations or measurement errors. This
quantification is vital for performing the sensitivity analysis and offers valuable
insight to improve the accuracy of the studied model.

This paper focuses on developing accurate and robust numerical techniques for
quantifying uncertainties in (1). Among the various existing methods, Monte Carlo-
type methods (see, e.g., [1, 13]) are reliable but computationally intensive due to
the substantial number of realizations required to approximate statistical moments
accurately. Another commonly used approach is based on generalized polynomial
chaos (gPC) methods, in which the solution is expressed as a series of orthogonal
polynomials with respect to the probability density in ξ [11, 14]. There are two types
of gPC methods: intrusive and non-intrusive. Intrusive approaches, such as gPC
stochastic Galerkin (gPC-SG)methods, substitute gPC expansions into the governing
equations. These expansions are then projected using a Galerkin approximation to
derive a system of deterministic PDEs for the expansion coefficients; see, e.g.,
[17, 18]. Solving these coefficient equations provides the statistical moments of
the original solution of the uncertain problem. On the other hand, non-intrusive
algorithms, such as gPC stochastic collocation (gPC-SC) methods, aim to satisfy the
governing equations at discrete nodes, called collocation points, in the random space.
They employ a deterministic numerical solver, utilizing interpolation and quadrature
rules to numerically evaluate the PDF and/or statistical moments [19, 16].

The application of gPC-SG and gPC-SCmethods to nonlinear hyperbolic systems
(1) poses several challenges. Although spectral-type gPC-based methods exhibit
rapid convergence for solutions that depend smoothly on random parameters, a
significant issue arises when solutions contain shock waves and other nonsmooth
structures, which is a generic case for nonlinear hyperbolic PDEs (even if initial
data are smooth). Despite the discontinuities manifesting in the spatial variable, their
propagation speed can be influenced by uncertainty, introducing discontinuities in the
randomvariable and causingGibbs-type phenomena [12].Another unresolvedmatter
involves representing strictly positive quantities, such as water depth in shallowwater
equations, and imposing discrete bound-preserving constraints [5, 6, 15].
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In this paper, we concentrate on alternative spline-based stochastic collocation
(SC) methods, which are positivity-preserving and do not suffer from Gibbs-type
oscillations. The proposed methods utilize a solution obtained by a deterministic
numerical solver implemented repeatedly on an arbitrarily selected set of collocation
points in the random variable ξ. Specifically, at each collocation point, we solve the
corresponding deterministic PDEs by a semi-discrete second-order central-upwind
scheme from [9, 10]. As a result, at the final computational time, for each discrete
value of the spatial variable x, we obtain an approximation ofU as a discrete function
of ξ. Equipped with these point values, we employ spline-based interpolations in
random space and use the obtained global (in ξ) solution to calculate the stochastic
moments. In order to enforce the non-oscillatory and positivity-preserving properties
of the interpolated solution, we use shape-preserving (SP) rational quartic splines
from [21]. We conduct a comparative numerical study of the gPC-based and spline-
based SC approaches to quantify uncertainties in (1). Our findings demonstrate the
superior efficacy of the proposed spline-based SC methods when applied to the
inviscid Burgers and shallow water equations.

2 Methodology

In this section, we describe the gPC- and spline-based SC approaches applied to (1).
We start by selecting a set of collocation points ξ`, ` = 1, . . . , L and numericaly

solving the following deterministic systems:

Ut(x, t; ξ`) + F (U(x, t; ξ`))x = S(U(x, t; ξ`)), ` = 1, . . . , L, (2)

until the final time T (one can use one’s favorite numerical method for solving (2)).
Then, for each discrete node of the spatial variable denoted below by x̃, we use either
the gPC (§2.1) or spline (§2.2) interpolation to approximate the numerical solution
and its stochastic moments, that is, the mean and variance or standard deviation for
each component U of U :

Eξ[U ] :=

∫
Ξ

U(x̃, T ; ξ)ν(ξ)dξ,

Var[U ] := Eξ[U2]− Eξ[U ]2, σ[U ] :=
√

Var[U ].

(3)

2.1 gPC Interpolation

The gPC interpolation in random space represents the solution as a generalized
discrete Fourier series in terms of orthonormal polynomials, {Φi(ξ)}Ni=0, selected
based on the PDF:
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U(x̃, T ; ξ) ≈ UN (x̃, T ; ξ) :=

N∑
i=0

Ûi(x̃, T )Φi(ξ), (4)

where Ûi(x̃, T ) are deterministic Fourier coefficients.
It is well-known that for large values of N , the polynomial interpolation (4) may

be very oscillatory. To minimize the oscillations, one needs to choose the roots of
ΦN+1(ξ) as collocation points ξ`, ` = 1, . . . , L with L = N + 1. In this case, the
Fourier coefficients can be computed with the help of the discrete Fourier transform:

Ûi(x̃, T ) =

N+1∑
`=1

U` Φi(ξ`)ω`, i = 0, . . . , N, (5)

whereU` :≈ U(x̃, T ; ξ`) and ω` are the Gauss quadrature weights corresponding to
the PDF ν(ξ). These coefficients are also used to calculate the stochastic moments
of for each component U of the computed solution U :

Eξ[UN ] = Û0, Var[UN ] =

N∑
i=1

Û2
i .

It should be observed that the gPC interpolation (4) is exponentially accurate for
smooth solutions but suffers from the Gibbs-type phenomenon when discontinuities
appear in the numerical solution, which is a generic case for nonlinear hyperbolic
PDEs. Therefore, in the next two sections, we turn our attention to alternative
interpolation methods that lead to non-oscillatory approximation of U(x̃, T ; ξ).

2.2 Shape-Preserving (SP) Spline Interpolation

In order to suppress Gibbs-type oscillations, one can use cubic B-splines (see, e.g.,
[4, 2, 3, 20]), which also retain the positivity of the interpolated data, but as we
demonstrate in our numerical experiments below, B-spline approximations may
oversmear shock discontinuities. Moreover, B-splines do not necessarily maintain
the monotonicity and/or convexity of the interpolated data.

Therefore, in this paper, we use (provably) SP rational quartic interpolation splines
from [21], specifically designed to preserve the shape of positive, monotonic, and
convex solutions. These SP splines also ensure C2 continuity of the constructed
interpolant.

Let us describe the SP spline for a certain component U of U . We denote by
∆ξ` := ξ`+1 − ξ`, ` = 1, . . . , L− 1, and introduce the following quantities:
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δ` :=
1

∆ξ` +∆ξ`−1

(
U`+1 − U`

∆ξ`
− U` − U`−1

∆ξ`−1

)
,

A1 := ∆ξ1δ2, A` := ∆ξ`δ`,

B`−1 := ∆ξ`−1δ`, BL−1 := ∆ξL−1δL−1,

` = 2, . . . , L− 1.

For each subinterval [ξ`, ξ`+1], ` = 1, 2, . . . , L − 1, the computed solution is inter-
polated by the spline given by

U(x̃, T ; ξ) ≈ S (x̃, T ; ξ) := (1− τ`)U` + τ`U`+1

−
∆ξ`(1− τ`)τ`

[
(1− τ`)2A` + λ`(1− τ`)τ`A`B` + τ2`B`

]
Q`

,

where

Q` = 1 + (1− τ`)τ`
[
(1− τ`)(B`λ` + µ`) + τ`(A`λ` + µ`+1)

]
,

where τ` := (ξ − ξ`)/∆ξ`, and λ` and µ` are two local tension shape parameters.
Note that specific choices of λ` and µ` guarantee the preservation of monotonicity,
positivity, and convexity of the interpolation spline; see [21].

Once the spline function is constructed, one can use one’s favorite quadrature rule
to numerically approximate the stochastic moments in (3).

3 Numerical Examples

In this section, we illustrate the performance of the gPC and spline-based SC ap-
proaches on numerical examples for the inviscid Burgers and shallow water equa-
tions. We consider a random variable ξ uniformly distributed on the interval [−1, 1]
(ξ ∈ U [−1, 1]), which induces the usage of the Legendre polynomials Φi(ξ) in the
generalized Fourier expansion (4) and Gauss-Legendre quadratures for computing
the gPC coefficients in (5). For the spline interpolation, we take equally-spaced col-
location nodes ξ`, but note that in principle, they can be chosen arbitrarily. Recall
that the SP splines require a specific choice of the local tension parameters λ` and
µ` to guarantee the shape-preserving properties of the constructed interpolant; see
[21, Formulae (12), (19), (24), and (28)] for details.

In this work, we use semi-discrete second-order central-upwind schemes from
[9, 10] to numerically solve the deterministic systems (2). The semi-discretization
results in the system of ODEs, which is integrated in time using the three-stage
third-order strong stability preserving (SSP) Runge-Kutta method (see, e.g., [7, 8])
with the time step chosen according to the CFL number 0.45. The central-upwind
scheme employs the generalized minmod limiter with parameter θ = 1.3; see [9, 10]
for details.
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Example 1—Burgers Equation

We start with the inviscid Burgers equation,

Ut +

(
U2

2

)
x

= 0, (6)

considered subject to the following stochastic initial data:

U(x, 0; ξ) =

{
2, x > 0.1ξ,

1, x < 0.1ξ.
(7)

The problem is numerically solved in the physical domain x ∈ [−1, 1] with free
boundary conditions.

To numerically solve the problem (6)–(7), we choose L = 16 collocation points
and perform deterministic simulations on a uniform spatial mesh consisting of cells
of size ∆x = 1/800 until the final time T = 0.5. In Fig. 1, we plot the solution
U(x, 0.5; ξ) obtained by interpolating the computed data in the random variable ξ by
the gPC and spline-based approaches. For the latter, we present results produced by
both the B-splines and SP splines. As one can see, the gPC approach exhibits Gibbs-
type oscillations near the discontinuity, whereas both spline-based approximations
are oscillation-free. Fig. 2a additionally shows the profile of U(0.734, 0.5; ξ) to
provide more evidence that the shock propagates from the physical space to the
random space. From this figure, one can also observe that B-splines smear the
discontinuity compared to the SP splines. The mean and variance values obtained
with all three approaches appear similar, as demonstrated in Fig. 2b and 2c.

(a) (b) (c)

Fig. 1: Example 1: U(x, 0.5; ξ) obtained using (a) gPC expansion, (b) B-splines,
and (c) SP splines.
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(a) (b) (c)

Fig. 2:Example 1: (a)U(0.734, 0.5; ξ), (b)mean, and (c) standard deviation obtained
using the gPC expansion and splines.

Example 2—Shallow Water Equations

In this example, we consider the Saint-Venant system of shallow water equations
given by (1) with

U = (h, hu)>, F (U) =
(
hu, hu2 +

g

2
h2
)>
, S = (0,−ghZx)>,

where h(x, t; ξ) is the water depth, u(x, t; ξ) is the velocity, Z(x; ξ) is the bottom
topography, and g is the constant acceleration due to gravity (we take g = 1).

The Saint-Venant system is considered in the physical domain x ∈ [−1, 1] subject
to free boundary condition, deterministic initial data for the water surfacew = h+Z
and velocity u,

w(x, 0; ξ) =

{
1, x < 0,

0.5, x > 0,
u(x, 0; ξ) ≡ 0,

and stochastic bottom topography

Z(x) =

{
0.125ξ + 0.125(cos(5πx) + 2), |x| < 0.2,

0.125ξ + 0.125, otherwise.

We numerically solve the deterministic systems (2) on a uniform mesh consisting
of cells of size ∆x = 1/400 until the final time T = 0.8 on a set of colocation
points. Here, we examine the performance of the proposed methods with the number
of collation points set to either L = 16 or L = 32.

In Fig. 3, we plot the water surfacew(x, 0.8; ξ). It is evident that the gPC solution
exhibits oscillations near the discontinuity location (x ≈ 0.694). These oscillations
become less pronounced as the number of collocation points increases, indicating
an improvement in capturing of the stochastic behavior with increased resolution.
When a spline interpolation is employed, these oscillations are suppressed. Note that
the oscillations visible near x ≈ 0 in Fig. 3b and 3c appear in the solution (not
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a feature of the interpolation). Similar results are obtained for water discharge hu
(not shown for the sake of brevity). We additionally plot w(0.694, 0.8; ξ) in Fig. 4
to provide a more clear picture. The expected value and standard deviation are also
shown in Fig. 4: for all approaches, similar results are observed.

(a) (b) (c)

Fig. 3: Example 2:w(x, 0.8; ξ) obtained using (a) gPC expansion, (b) B-splines, and
(c) SP splines with different number of collocation points L.

4 Conclusions

In this paper, we have studied the stochastic collocation (SC) methods for uncertainty
quantification (UQ) in hyperbolic systems of nonlinear PDEs. We have numerically
solved the underlying PDEs at a set of collocation points in random space. Then,
we have used a standard SC approach based on a gPC expansion, which relied
on choosing the collocation points based on the prescribed probability distribution
and approximating the computed solution by a linear combination of orthogonal
polynomials. We have illustrated that this approach struggles to accurately capture
discontinuous solutions, leading to oscillations (Gibbs-type phenomenon) that sig-
nificantly deviate from the exact solutions. We have explored alternative SCmethods
using uniformly distributed collocation points and employing spline interpolations
in a random space. Our study has demonstrated the effectiveness of spline-based
collocation in accurately capturing and assessing uncertainties while suppressing
oscillations. We have illustrated the superiority of the spline-based collocation on
two numerical examples, including the inviscid Burgers and shallow water equa-



Spline-Based Stochastic Collocation Methods for Uncertainty Quantification 9

(a) (b) (c)

Fig. 4:Example 2: (a)w(0.694, 0.8; ξ), (b)mean, and (c) standard deviation obtained
using the gPC expansion and splines.

tions. The future work will include higher-dimensional extensions of spline-based
SC methods.
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