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Abstract We consider a one-dimensional Saint-Venant system with uncertainty, for
which we derive and analyze a novel stochastic Galerkin method. The proposed
method is based on the truncated generalized polynomial chaos (gPC) expansion,
whose coefficients satisfy a time-dependent system of PDEs, which is hyperbolic
provided the water depth remains nonnegative at all times and for all values of
both spatial and stochastic variables. We numerically solve the resulting system
using a Riemann-problem-solver-free well-balanced and positivity-preserving finite-
volume central-upwind scheme. The novelty of our approach is in the way we
enforce the positivity of the computed water depth—this is achieved by generalizing
the “draining time-step” technique to the system of gPC coefficients. We illustrate
the performance of the proposed method on a number of challenging numerical
examples. Though in some of the considered benchmarks, we obtain accurate mean
and standard deviation of the stochastic solution, we realize that (small) oscillations
appearing near the discontinuities propagate into the stochastic field and cause quite
significant oscillations attributed to the Gibbs phenomenon. This demonstrates the
limitations in the applicability of the stochastic Galerkin method to the problems with
discontinuous solutions. As a possible way to remove (reduce) the aforementioned
Gibbs oscillations, we propose to add an adaptive artificial viscosity to the system of
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gPC coefficients. However, this, like other existing filtering alternatives, affects the
high resolution of the gPC stochastic Galerkin method.

Keywords: Nonlinear hyperbolic systems with uncertainty, generalized polynomial
chaos, stochastic Galerkin method, central-upwind schemes, adaptive artificial vis-
cosity, Gibbs phenomenon.

1 Introduction

In this paper, we study nonlinear hyperbolic systems with uncertainty. In the one-
dimensional (1-D) case, such systems of balance laws read as

𝑼𝑡 + 𝑭(𝑼)𝑥 = 𝑺(𝑼, 𝑥, b), (1)

where 𝑥 is the spatial variable, 𝑡 is time, b is a random variable, 𝑼 = 𝑼(𝑥, 𝑡, b) is
the unknown random vector function, 𝑭 is the flux, and 𝑺 is the source term. The
uncertainty may appear in the system parameters as well as in the initial and/or
boundary data due to empirical approximations, or measuring errors.

Nonlinear hyperbolic systems with uncertainty appear in a wide variety of appli-
cations. Quantifying the uncertainty is important since it helps to conduct sensitivity
analysis and provide guidance on the predictive quality of the models.

In recent years, a wide variety of uncertainty quantification methods for nonlinear
hyperbolic systems has been proposed and investigated. One of the popular class
methods employ Monte Carlo-type simulations, see, e.g., [1, 26–28, 42], which are
robust, but not very efficient due to a possibly large number of realizations required. In
addition to the Monte Carlo methods, a widely used approach for random PDEs is the
generalized polynomial chaos (gPC), where stochastic processes are represented in
terms of orthogonal polynomials series of random variables; see, e.g., [1,30,42] and
references therein. In principle, there are two distinct gPC approaches: intrusive and
non-intrusive ones. In non-intrusive algorithms, like stochastic collocation methods
(see, e.g., [1,2,30,42,43]) one seeks to satisfy the governing equations at a discrete set
of points in the random space and then use global interpolation and quadrature rules
to numerically evaluate statistical moments. Therefore, in the stochastic collocation
approach, as well as in the Monte-Carlo methods, one can use numerical methods
designed for the corresponding deterministic systems; see, e.g., the monographs and
review paper [4, 6, 18, 20, 25, 39, 40] and references therein.

In the case of an intrusive approach, like stochastic Galerkin (SG) methods, gPC
expansions are substituted into the governing equations and projected by a Galerkin
approximation to obtain deterministic equations for the expansion coefficients; see,
e.g., [8, 24, 41, 42]. Solving the coefficient equations gives the stochastic moments
of the random solution. The equations for the expansion coefficients are, in general,
nonlinear and coupled. Nevertheless, the gPC-SG methods are often more accurate
than their non-intrusive counterparts when the the solution is sufficiently smooth
and the same number of modes in the gPC expansion is used. Therefore, the gPC-SG
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methods are expected to achieve a higher accuracy of the numerical solution with a
lower degree of the gPC expansion [13].

Development and implementation of the SG methods for nonlinear hyperbolic
PDEs are, however, especially challenging due to a possible loss of hyperbolicity of
the gPC expansion coefficient system [11, 12]. Several approaches exist to prevent
this loss for specific models; see, e.g., [11, 14, 15, 31, 32], but there is no general
remedy to guarantee the hyperbolicity of the the gPC expansion coefficient system.

This paper focuses on another substantial drawback of the gPC-SG method, which
is related to the Gibbs phenomenon. It is well-known that when spectral methods are
applied to capture solutions containing shock discontinuities, the obtained results will
be oscillatory near jumps unless certain filters (see, e.g., [5,19]) or spectral viscosity
(see, e.g., [36–38]) are implemented for large modes. The latter tools, however, affect
the accuracy of the spectral methods. In the studied gPC-SG methods, the situation
is even more complicated as the aforementioned tools do not directly apply due to
the fact that the expansion coefficients are functions of both 𝑡 and 𝑥, while in standard
spectral methods the coefficients depend on 𝑡 only. Moreover, the size of the PDE
system for the gPC expansion coefficients rapidly grows when the number of modes
increases, which forces one to use a relatively small number of modes, which, in
turn, makes the use of filtering or spectral viscosity even more challenging.

To showcase the outlined difficulties, we consider the Saint-Venant system of
shallow water equations, which is widely used for modeling flows in rivers, lakes,
and coastal areas, as well as in models emerging in oceanography and atmospheric
sciences. In the 1-D case, the studied system reads as

ℎ𝑡 + 𝑞𝑥 = 0,

𝑞𝑡 +
(
ℎ𝑢2 + 𝑔

2
ℎ2

)
𝑥
= −𝑔ℎ𝑍𝑥 ,

(2)

where the water depth ℎ(𝑥, 𝑡, b), velocity 𝑢(𝑥, 𝑡, b), and discharge 𝑞 := ℎ𝑢 are time-
dependent quantities, while the bottom topography 𝑍 (𝑥, b) is independent of time,
and 𝑔 is the acceleration due to gravity.

It is well-known that the random shallow water system (2) is hyperbolic as
long as the water depth ℎ(𝑥, 𝑡, b) ≥ 0. It was also shown in [9] that when the
gPC-SG method is implemented for (2), the obtained system of gPC coefficients is
hyperbolic, provided the same non-negativity condition holds. Nevertheless, it should
be observed that solving the gPC coefficient system numerically is a challenging task:
If one uses 𝐾 + 1 terms in each of the gPC expansions, the resulting gPC coefficient
system for (2) consists of 2(𝐾 + 1) equations. Therefore, the use of any numerical
method that requires information on the full eigenstructure of the underlying system
may not be feasible. Consequently, we follow [9] and numerically solve the gPC
coefficient system using a semi-discrete second-order well-balanced (WB) central-
upwind (CU) scheme, which was developed in the context of the deterministic
Saint-Venant system in [21, 23]. The choice of the CU scheme is motivated by the
fact that this scheme is Riemann-problem-solver-free and thus can be applied as a
“black-box solver” to general hyperbolic systems as long as the largest and smallest
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eigenvalues of its Jacobian can be estimated. Moreover, the CU scheme is WB in the
sense that it is capable of exactly preserving “lake-at-rest” equilibria satisfying

𝑞(𝑥, b) ≡ 0, 𝑤(𝑥, b) := ℎ(𝑥, b) + 𝑍 (𝑥, b) = 𝐶2 (b).

Implementing the WB-CU scheme may be, however, not enough for computing
a reliable solution as negative values of the water depth may appear, and then the
method would fail. This is related to the emergence of spurious oscillations, which
may be generated during the time evolution of the gPC coefficients. In order to
control these oscillations, one may apply filters from [33] as it was done in [9, 10].
This, however, can yield the loss of statistical information on the solution if the
filtering is used to damp large-magnitude oscillations. In this paper, we propose a
different approach for controlling the nonnegativity of the water depth using the
“draining time-step” technique originally developed in the deterministic case in [3].
In addition, we use the positivity correction procedure from [7] to ensure the non-
negativity of the water depth mean, which is the zeroth coefficient in the gPC
expansion of ℎ.

As it was mentioned above, enforcing the positivity of the computed water depth ℎ
guarantees the hyperbolicity of the gPC coefficient system. However, this doesn’t cure
the problem of Gibbs-related oscillations, which can grow rapidly and substantially
affect the accuracy of the numerical solution, even if ℎ is far from zero. Hence,
additionally we need to suppress Gibbs-related oscillations. To achieve this goal, we
add an artificial viscosity in the following way: we add first-order viscosity to the
equations for high modes of the gPC expansion, and a weak local residual (WLR)
based adaptive artificial viscosity (AAV) [22] to the low mode equations. When
computed by the modified scheme, the obtained results are almost oscillation-free.
They are, however, rather smeared and a high accuracy expected to be achieved by
a gPC-SG method may not be reached.

We consider the simplest case of a uniformly distributed b ∈ [−1, 1] and test
the developed gPC-SG method on a number of numerical examples. We demon-
strate that when strong discontinuities are present, the basic CU scheme (without
the added artificial viscosity) produces significant oscillations appearing near the
discontinuities and propagating in both the physical and stochastic fields. It has been
conjectured in the literature (see, e.g., [11,12]) that these oscillations arise from the
loss of hyperbolicity of the gPC-SG system, which is related to the positivity of the
water depth ℎ(𝑥, 𝑡, b). In our numerical examples, we demonstrate that enforcing the
nonnegativity of the computed water depth does not guarantee the lack of oscilla-
tions attributed to the Gibbs phenomenon. Adding the artificial viscosity (or using
another filtering technique) is required to improve the robustness of the gPC-SG
method. At the same time, the artificial viscosity leads to a substantial smoothing
of the computed solutions, which demonstrates the limitations in the ability of the
gPC-SG method to achieve high resolution of discontinuous solutions.
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2 The gPC-SG Formulation – An Overview

In order to describe the uncertainty, we introduce a probability space (Ξ𝜔 ,B(Ξ𝜔), P)
with events 𝜔 ∈ Ξ𝜔 , where Ξ𝜔 is an event space and B is a set of Borel measurable
sets with respect to the probability measure P. Denote by b = b (𝜔) : Ξ𝜔 → Ξ ⊂ R𝑑
a real-valued random variable with the probability density function `(b) : Ξ → R+.

We proceed with a brief description of the gPC-SG method applied to a general
hyperbolic system of balance laws (1). In the gPC expansion, the solution of (1) is
sought in terms of an orthogonal polynomial series in b (see, e.g., [11, 44]):

𝑼(𝑥, 𝑡, b) ≈ 𝑼𝐾 (𝑥, 𝑡, b) =
𝐾∑︁
𝑖=0

𝑼𝑖 (𝑥, 𝑡)Φ𝑖 (b). (3)

Here, {Φ𝑖 (b)}𝐾𝑖=0 are orthonormal polynomials of degree up to 𝐾 ≥ 1 satisfying∫
Ξ

Φ𝑖 (b)Φℓ (b)`(b) db = 𝛿𝑖ℓ , 𝑖, ℓ = 0, 1, . . . ,

where 𝛿𝑖ℓ is the Kronecker symbol. The choice of the polynomials depends on `. For
instance, the Legendre polynomials correspond to a uniform distribution (this is the
case considered in the numerical examples reported in §6); the Hermite polynomials
correspond to a Gaussian distribution; etc. For a comprehensive list of the gPC bases
for some common distributions, we refer the reader to, e.g., [45] and references
therein.

For the PDE system with random inputs (1), the gPC-SG method seeks to satisfy
the governing equations in a weak form by ensuring that the residual is orthogonal
to the gPC polynomial space. Substituting the approximation 𝑼𝐾 from (3) into (1)
and using the Galerkin projection yield

(𝑼𝑖)𝑡 + (𝑭𝑖)𝑥 = 𝑺𝑖 , 𝑖 = 0, . . . , 𝐾, (4)

where

𝑭𝑖 =

∫
Ξ

𝑭

( 𝐾∑︁
𝑗=0

𝑼 𝑗 (𝑥, 𝑡)Φ 𝑗 (b)
)
Φ𝑖 (b)`(b) db,

𝑺𝑖 =

∫
Ξ

𝑺

( 𝐾∑︁
𝑗=0

𝑼𝑖 (𝑥, 𝑡)Φ𝑖 (b), 𝑥, b
)
Φ𝑖 (b)`(b) db,

𝑖 = 0, . . . , 𝐾. (5)

This is a system of deterministic equations for the gPC expansion coefficients 𝑼𝑖 .
In most cases, the equations in (4) are coupled and 𝑭𝑖 and 𝑺𝑖 in (5) might not be
explicitly written in terms of the solution coefficients 𝑼.
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3 A gPC-SG Formulation for the Shallow Water Equations

In this section, we apply the previously outlined approach to the Saint-Venant system
(2), for which 𝑼 = (ℎ, 𝑞)⊤.

We seek gPC approximations of ℎ and 𝑞 in the form of (3):

ℎ𝐾 (𝑥, 𝑡, b) =
𝐾∑︁
𝑖=0

ℎ̂𝑖 (𝑥, 𝑡)Φ𝑖 (b), 𝑞𝐾 (𝑥, 𝑡, b) =
𝐾∑︁
𝑖=0

𝑞𝑖 (𝑥, 𝑡)Φ𝑖 (b). (6)

Substituting (6) into (2) and conducting the Galerkin projection yield the following
equations for the gPC coefficients ℎ̂𝑖 and 𝑞𝑖 for each 𝑖 = 0, . . . , 𝐾:

( ℎ̂𝑖)𝑡 + (𝑞𝑖)𝑥 = 0,

(𝑞𝑖)𝑡 +
( 𝐾∑︁
𝑘,ℓ=0

𝑞𝑘 �̂�ℓS𝑘ℓ𝑖 +
𝑔

2

𝐾∑︁
𝑘,ℓ=0

ℎ̂𝑘 ℎ̂ℓS𝑘ℓ𝑖
)
𝑥

= −𝑔
𝐾∑︁

𝑘,ℓ=0
ℎ̂𝑘 (𝑍ℓ)𝑥S𝑘ℓ𝑖 ,

(7)

where the corresponding gPC expansions of 𝑢 and 𝑍 are given by

𝑢𝐾 (𝑥, 𝑡, b) =
𝐾∑︁
𝑖=0

�̂�𝑖 (𝑥, 𝑡)Φ𝑖 (b), 𝑍𝐾 (𝑥, b) =
𝐾∑︁
𝑖=0

𝑍𝑖 (𝑥)Φ𝑖 (b),

and S is a symmetric tensor composed of the orthonormal polynomials, that is,

S𝑘ℓ𝑖 =
∫
Ξ

Φ𝑘 (b)Φℓ (b)Φ𝑖 (b)`(b) db.

The system (7) can be rewritten in the following compact form:
�̂�𝑡 + �̂�𝑥 = 0,

�̂�𝑡 +
(
P(�̂�)�̂� + 𝑔

2
P( �̂�) �̂�

)
𝑥
= −𝑔P( �̂�)𝒁𝑥 ,

(8)

where �̂� = ( ℎ̂𝑖)𝐾𝑖=0, �̂� = (𝑞𝑖)𝐾𝑖=0, �̂� = (�̂�𝑖)𝐾𝑖=0 and 𝒁 = (𝑍𝑖)𝐾𝑖=0 are vectors of the gPC
coefficients in R𝐾+1, and an operator P : R𝐾+1 → R(𝐾+1)×(𝐾+1) is defined by

[P(𝜶)]𝑖,ℓ =
𝐾∑︁
𝑘=0

�̂�𝑘S𝑖ℓ𝑘 , 𝑖, ℓ = 0, . . . , 𝐾.

Note that the gPC coefficients �̂�𝑖 are computed by applying the gPC-SG approxima-
tion to ℎ𝑢 = 𝑞, which results in the linear system

𝐾∑︁
𝑘,ℓ=0

ℎ̂𝑘 �̂�ℓS𝑖ℓ𝑘 = 𝑞𝑖 , 𝑖, ℓ = 0, . . . , 𝐾 ⇐⇒ P( �̂�)�̂� = �̂�, (9)
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whose solution can be written as �̂� =
[
P( �̂�)

]−1
�̂�, which requires the matrix P( �̂�)

to be invertible.
We note that in order to develop a numerical method for the system (8), one needs

to ensure its hyperbolicity. The following property has been proved in [9, Theorem
3.1].

Proposition 1. If the matrix P( �̂�) is strictly positive definite, then the system (8) is
hyperbolic.

Next, we establish a sufficient condition for the matrix P( �̂�) to be strictly positive
definite. To this end, we compute the following quadratic form for an arbitrary
nonzero 𝜶 = (�̂�𝑖)𝐾𝑖=0 ∈ R𝐾+1:

𝜶⊤P( �̂�)𝜶 =

𝐾∑︁
𝑖, 𝑗 ,𝑘=0

�̂� 𝑗 �̂�𝑘 ℎ̂𝑖 (𝑥, 𝑡)
∫
Ξ

Φ𝑖 (b)Φ 𝑗 (b)Φ𝑘 (b)`(b) db

=

∫
Ξ

𝐾∑︁
𝑖=0

ℎ̂𝑖 (𝑥, 𝑡)Φ𝑖 (b)
(
�̂�(b)⊤𝜶

)2
`(b) db

=

∫
Ξ

ℎ𝐾 (𝑥, 𝑡, b)
(
�̂�(b)⊤𝜶

)2
`(b) db,

where �̂�(b) = (Φ𝑖)𝐾𝑖=0 ∈ R𝐾+1. Hence, the matrix P( �̂�) will be strictly positive
definite provided ℎ𝐾 (𝑥, 𝑡, b) > 0, which is a physically meaningful condition of
non-negativity of the water depth.

4 Well-Balanced Positivity-Preserving Central-Upwind Scheme

In this section, we present a modified version of the WB-CU scheme from [9] for
the system (7), which can be written in the form (4) with

𝑼𝑖 =

(
ℎ̂𝑖
𝑞𝑖

)
, 𝑭𝑖 =

©«
𝑞𝑖[

P(�̂�)�̂� + 𝑔
2
P( �̂�) �̂�

]
𝑖

ª®¬ , 𝑺𝑖 =

(
0

−
[
𝑔P( �̂�)𝒁𝑥

]
𝑖

)
.

We divide the computational domain into the uniform cells 𝐶 𝑗 = [𝑥 𝑗− 1
2
, 𝑥 𝑗+ 1

2
] of

size 𝑥 𝑗+ 1
2
− 𝑥 𝑗− 1

2
= Δ𝑥 centered at points 𝑥 𝑗 =

(
𝑥 𝑗− 1

2
+ 𝑥 𝑗+ 1

2

)
/2, and assume that at

a certain time 𝑡 the cell averages of the computed solution,

(𝑼𝑖) 𝑗 (𝑡) :≈ 1
Δ𝑥

∫
𝐶 𝑗

𝑼𝑖 (𝑥, 𝑡) d𝑥, 𝑖 = 0, . . . , 𝐾,

are available. Then, the semi-discrete WB-CU scheme from [9] reads as
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d
d𝑡

(𝑼𝑖) 𝑗 = −
(F𝑖) 𝑗+ 1

2
− (F𝑖) 𝑗− 1

2

Δ𝑥
+ (𝑺𝑖) 𝑗 , 𝑖 = 0, . . . , 𝐾, (10)

where (F𝑖) 𝑗+ 1
2

are the CU numerical fluxes given by

(F𝑖) 𝑗+ 1
2
=

𝑎+
𝑗+ 1

2
𝑭𝑖

(
(𝑼𝑖)−

𝑗+ 1
2

)
− 𝑎−

𝑗+ 1
2
𝑭𝑖

(
(𝑼𝑖)+

𝑗+ 1
2

)
𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

+
𝑎+
𝑗+ 1

2
𝑎−
𝑗+ 1

2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

[
(𝑼𝑖)+

𝑗+ 1
2
− (𝑼𝑖)−

𝑗+ 1
2

]
,

(11)

and (𝑺𝑖) 𝑗 ≈ 1
Δ𝑥

∫
𝐶 𝑗

𝑺𝑖 d𝑥 are approximated cell averages of the source term. In (11),

(𝑼𝑖)±
𝑗+ 1

2
are one-sided point values of 𝑼𝑖 at the cell interfaces 𝑥 = 𝑥 𝑗+ 1

2
and 𝑎±

𝑗+ 1
2

are
the one-sided local speeds of propagation at the same points. These quantities will
be given below.

Note that from here on we suppress the time-dependence of all of the indexed
quantities in order to shorten the notation.

Piecewise Linear Approximation of ̂𝒁. Before reconstructing the point values
(𝑼𝑖)±

𝑗+ 1
2

we follow [23] and replace the functions 𝒁 with their continuous piecewise
linear approximations (this makes it easier to numerically preserve positivity of the
reconstructed water depths):

𝑍∗
𝑖 (𝑥) = (𝑍𝑖) 𝑗− 1

2
+

[
(𝑍𝑖) 𝑗+ 1

2
− (𝑍𝑖) 𝑗− 1

2

] 𝑥 − 𝑥 𝑗− 1
2

Δ𝑥
, 𝑥 ∈ 𝐶 𝑗 , 𝑖 = 0, . . . , 𝐾,

where (𝑍𝑖) 𝑗+ 1
2

:=
[
(𝑍𝑖) (𝑥 𝑗+ 1

2
−)+(𝑍𝑖) (𝑥 𝑗+ 1

2
+)

]
/2. We then define (𝑍𝑖) 𝑗 := 𝑍∗

𝑖
(𝑥 𝑗 ) =[

(𝑍𝑖) 𝑗+ 1
2
+ (𝑍𝑖) 𝑗− 1

2

]
/2.

Well-Balanced Reconstruction. In order to obtain a WB scheme it is important
to reconstruct the equilibrium variables 𝒘 = �̂� + 𝒁 and �̂� rather than �̂� and �̂�.
We restrict our attention to the second-order scheme and apply the non-oscillatory
minmod reconstruction (see, e.g., [29, 35]) to the cell averages of each of the gPC
coefficients, (𝑤𝑖) 𝑗 := ( ℎ𝑖) 𝑗 + (𝑍𝑖) 𝑗 and ( 𝑞𝑖) 𝑗 , 𝑖 = 0, . . . , 𝐾:

(𝑤𝑖)±
𝑗∓ 1

2
= (𝑤𝑖) 𝑗 ∓

Δ𝑥

2
((𝑤𝑖)𝑥) 𝑗 , (𝑞𝑖)±

𝑗∓ 1
2
= ( 𝑞𝑖) 𝑗 ∓

Δ𝑥

2
((𝑞𝑖)𝑥) 𝑗 ,

where
((𝑤𝑖)𝑥) 𝑗 = minmod

( (𝑤𝑖) 𝑗 − (𝑤𝑖) 𝑗−1

Δ𝑥
,
(𝑤𝑖) 𝑗+1 − (𝑤𝑖) 𝑗

Δ𝑥

)
,

((𝑞𝑖)𝑥) 𝑗 = minmod
( ( 𝑞𝑖) 𝑗 − ( 𝑞𝑖) 𝑗−1

Δ𝑥
,
( 𝑞𝑖) 𝑗+1 − ( 𝑞𝑖) 𝑗

Δ𝑥

)
,
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and the minmod function is defined as minmod(𝑎, 𝑏) := sgn(𝑎)+sgn(𝑏)
2 min( |𝑎 |, |𝑏 |).

We then compute the point values ( ℎ̂𝑖)±
𝑗+ 1

2
= (𝑤𝑖)±

𝑗+ 1
2
− (𝑍𝑖) 𝑗+ 1

2
and hence (𝑼𝑖)±

𝑗+ 1
2
=(

( ℎ̂𝑖)±
𝑗+ 1

2
, (𝑞𝑖)±

𝑗+ 1
2

)⊤.

In what follows, we will denote by 𝑼 ±
𝑗+ 1

2
:=

(
(𝑼0)±

𝑗+ 1
2
, . . . , (𝑼𝐾 )±

𝑗+ 1
2

)⊤ and simi-

larly for �̂� ±
𝑗+ 1

2
, �̂� ±

𝑗+ 1
2
, and �̂� ±

𝑗+ 1
2
.

Positivity Correction. The positivity of the expected value of ℎ𝐾 , that is,

E(ℎ) =
∫
Ξ

ℎ𝐾 (𝑥, 𝑡, b)`(b) db = ℎ̂0 (𝑥, 𝑡),

is a fundamental property, which has to be satisfied at the discrete level. Unfor-
tunately, the use of the minmod or any other standard nonlinear limiter cannot
guarantee positivity of the reconstructed point values of ( ℎ̂0)±

𝑗+ 1
2
. Therefore, we

correct the reconstruction of 𝑤0 following the procedure suggested in [9]:
if (𝑤0)+

𝑗− 1
2
< (𝑍0) 𝑗− 1

2
, then set (𝑤0)+

𝑗− 1
2
= (𝑍0) 𝑗− 1

2
and (𝑤0)−

𝑗+ 1
2
= (𝑍0) 𝑗+ 1

2
+ 2(ℎ0) 𝑗 ;

if (𝑤0)−
𝑗+ 1

2
< (𝑍0) 𝑗+ 1

2
, then set (𝑤0)−

𝑗+ 1
2
= (𝑍0) 𝑗+ 1

2
and (𝑤0)+

𝑗− 1
2
= (𝑍0) 𝑗− 1

2
+ 2(ℎ0) 𝑗 .

This choice guarantees that all of the point values ( ℎ̂0)±
𝑗+ 1

2
= (𝑤0)±

𝑗+ 1
2
− (𝑍0) 𝑗+ 1

2
are

non-negative as long as (ℎ0) 𝑗 ≥ 0 for all 𝑗 .

Computation of the Point Values �̂� ±

𝒋+ 1
2
. In order to compute the point values �̂� ±

𝑗+ 1
2
,

the matrix P
(
�̂�±
𝑗+ 1

2

)
should be invertible (see (9)) and hence the computation of

its inverse should be desingularized in the case of small or zero water depths. Let
us consider the matrix P

(
�̂�+
𝑗+ 1

2

)
(the matrix P

(
�̂�−
𝑗+ 1

2

)
can be treated similarly) and

diagonalize it by P
(
�̂�+
𝑗+ 1

2

)
= 𝑇−1Λ𝑇 , where Λ is a diagonal matrix. If the matrix

Λ contains a small or zero eigenvalue _𝑖0 , we desingularize it as in [9] by replacing
P−1 ( �̂�+

𝑗+ 1
2

)
with

P−1
Y

(
�̂�+
𝑗+ 1

2

)
= 𝑇−1diag

(
1
_0
, . . . ,

√
2_𝑖0√︃

_4
𝑖0
+

[
max{_𝑖0 , Y}

]4
, . . . ,

1
_𝐾

)
𝑇. (12)

We then define
�̂� ±
𝑗+ 1

2
= P−1

Y

(
�̂�±
𝑗+ 1

2

)
�̂� ±
𝑗+ 1

2
. (13)

Note that P( �̂�±
𝑗+ 1

2
) ∈ R(𝐾+1)×(𝐾+1) and hence the diagonalization of these matrices

should be carried out numerically using an appropriate numerical linear algebra tool.

Remark 2. In the numerical results reported in §6, we have set the desingularization
parameter Y = Δ𝑥.
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Computation of the One-Sided Local Speeds 𝒂±
𝒋+ 1

2
. The left- and right-sided

local speeds in (11) can be estimated using the smallest and largest eigenvalues of
the Jacobian of the system (8), for instance, as follows:

𝑎−
𝑗+ 1

2
= min

{
_1

(
J

(
�̂�−
𝑗+ 1

2
, �̂� −

𝑗+ 1
2

) )
, _1

(
J

(
�̂�+
𝑗+ 1

2
, �̂� +

𝑗+ 1
2

) )
, 0

}
,

𝑎+
𝑗+ 1

2
= max

{
_2(𝐾+1)

(
J

(
�̂�−
𝑗+ 1

2
, �̂� −

𝑗+ 1
2

) )
, _2(𝐾+1)

(
J

(
�̂�+
𝑗+ 1

2
, �̂� +

𝑗+ 1
2

) )
, 0

}
.

Well-Balanced Quadrature of the Source Term. The cell averages of the source
term (𝑺𝑖) 𝑗 in (10) should be approximated by an appropriate quadrature. The choice
of the quadrature rule is very important to ensure the WB property of the resulting
scheme. In this work, we use a WB quadrature from [9, equation (4.7)]:

(𝑺𝑖) 𝑗 =
(
0,− 𝑔

Δ𝑥

[
P( 𝒉 𝑗 )

(
𝒁 𝑗+ 1

2
− 𝒁 𝑗− 1

2

) ]
𝑖

)⊤
.

Time Evolution and “Draining Time-Step”. The ODE system (10) needs to be
numerically integrated by an appropriated ODE solver. The simplest one is the
first-order forward Euler one, which reads as

(𝑼𝑖)𝑛+1
𝑗 = (𝑼𝑖)𝑛𝑗 − _𝑛

[
(F𝑖)𝑛

𝑗+ 1
2
− (F𝑖)𝑛

𝑗− 1
2

]
+ Δ𝑡𝑛 (𝑺𝑖)𝑛𝑗 , _𝑛 :=

Δ𝑡𝑛

Δ𝑥
, (14)

where the upper index 𝑛 denotes that the corresponding quantity is evaluated at either
the time level 𝑡 = 𝑡𝑛 or 𝑡𝑛+1 := 𝑡𝑛 +Δ𝑡𝑛. The fully discrete version of the CU scheme
(14) will be, in general, stable if the following CFL condition is satisfied:

Δ𝑡𝑛 ≤ Δ𝑥

max
𝑗

(
𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

) . (15)

The CFL condition (15), however, does not guarantee that the computed water
depths remain non-negative. Therefore, we adopt the “draining time-step” technique
originally introduced in [3] to enforce the non-negativity of the water depth in
deterministic shallow water computations. The implementation of the “draining
time-step” approach to the system (14) is not straightforward since the water depth
ℎ𝐾 is only given in terms of its gPC coefficients. Therefore, we first reconstruct in b
based on the the cell averages of ℎ𝐾 at time 𝑡 = 𝑡𝑛 by

(
ℎ𝐾

)𝑛
𝑗
(b) =

𝐾∑︁
𝑖=0

(ℎ𝑖)𝑛𝑗Φ𝑖 (b). (16)

We also recover the first component of the numerical flux at time 𝑡 = 𝑡𝑛 and introduce

F (1) ,𝑛
𝑗+ 1

2
(b) :=

𝐾∑︁
𝑖=0

(
F (1) ,𝑛
𝑖

)
𝑗+ 1

2
Φ𝑖 (b), (17)
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where (
F (1) ,𝑛
𝑖

)
𝑗+ 1

2
=

𝑎+
𝑗+ 1

2
(𝑞𝑖)−

𝑗+ 1
2
− 𝑎−

𝑗+ 1
2
(𝑞𝑖)−

𝑗+ 1
2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

+
𝑎+
𝑗+ 1

2
𝑎−
𝑗+ 1

2

𝑎+
𝑗+ 1

2
− 𝑎−

𝑗+ 1
2

[
( ℎ̂𝑖)+

𝑗+ 1
2
− ( ℎ̂𝑖)−

𝑗+ 1
2

] (18)

with the reconstructed point values ( ℎ̂𝑖)±
𝑗+ 1

2
and (𝑞𝑖)±

𝑗+ 1
2

evaluated at time 𝑡 = 𝑡𝑛.
Equipped with (16)–(18), we follow [3] and evaluate the “draining time-step”,

which is given by

Δ𝑡drain
𝑗 (b) =

Δ𝑥
(
ℎ𝐾

)𝑛
𝑗
(b)

max
{
0, F (1) ,𝑛

𝑗+ 1
2

(b)
}
+ max

{
0,−F (1) ,𝑛

𝑗− 1
2

(b)
} . (19)

We then introduce the quantities

Δ𝑡𝑛
𝑗+ 1

2
= min
b ∈Ξ

{
min

{
Δ𝑡𝑛,Δ𝑡drain

ℓ

}}
, ℓ = 𝑗 + 1

2
− 1

2
sgn

(
F (1) ,𝑛
𝑗+ 1

2
(b)

)
, (20)

and use them to modify the numerical fluxes for the first component in (14):

( ℎ𝑖)𝑛+1
𝑗 = ( ℎ𝑖)𝑛𝑗 − _𝑛

[ (
F̊ (1) ,𝑛
𝑖

)
𝑗+ 1

2
−

(
F̊ (1) ,𝑛
𝑖

)
𝑗− 1

2

]
,(

F̊ (1) ,𝑛
𝑖

)
𝑗± 1

2
:=

Δ𝑡𝑛
𝑗± 1

2

Δ𝑡𝑛

(
F (1) ,𝑛
𝑖

)
𝑗± 1

2
.

Remark 3. We emphasize that the minimum in (20) has to be numerically computed
over a set of finitely many values of b ∈ Ξ.

Remark 4. The “draining time-step” technique presented above can be directly
extended from the first-order forward Euler ODE solver to higher-order explicit
strong stability preserving (SSP) time discretizations, which are based on convex
combinations of forward Euler steps. In the numerical experiments reported in §6,
we have used the three-stage third-order Runge-Kutta SSP method; see, e.g., [16,17].

5 Adaptive Artificial Viscosity (AAV)

The scheme presented in §4 is WB and positivity-preserving. However, as we will
demonstrate in §6, this is not sufficient to ensure a non-oscillatory nature of the
computed solutions. To address this problem, one can use a filter as it was done
in [9], where the filter from [34] was implemented. This filter helps to reduce
oscillations, but only when they cause appearance of negative water depth values,
while the oscillation in the deep water areas are not affected at all.
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In this section, we propose an alternative approach, which is based on adding an
AAV in the 𝑥-direction to the system (4):

(𝑼𝑖)𝑡 + (𝑭𝑖)𝑥 = 𝑺𝑖 +
𝐶 (Δ𝑥)2

4Δ𝑡

(
Y(𝑼)

(
𝑼𝑖

)
𝑥

)
𝑥
, 𝑖 = 0, . . . , 𝐾, (21)

where Y(𝑼) is a quantity proportional to the WLR, which is computed using the
solution at the current time level 𝑡 = 𝑡𝑛 and the next time level 𝑡 = 𝑡𝑛+1. Therefore,
we numerically solve (21) using the fractional step approach as follows. Given the
solution at time 𝑡 = 𝑡𝑛, we first apply a single time step of an ODE solver to the
system (10)–(11) and obtain the intermediate solution, which we denote by 𝑼∗

𝑖
. We

then solve the nonlinear diffusion equations

(𝑼𝑖)𝑡 =
𝐶 (Δ𝑥)2

4Δ𝑡

(
Y(𝑼)

(
𝑼𝑖

)
𝑥

)
𝑥
, 𝑖 = 0, . . . , 𝐾,

subject to the initial data 𝑼𝑖 (𝑡𝑛) = 𝑼∗
𝑖

and obtain

(𝑼𝑖)𝑛+1
𝑗 = (𝑼𝑖)∗𝑗 +

𝐶

4

[
Ỹ 𝑗+ 1

2

(
(𝑼𝑖)∗𝑗+1 − (𝑼𝑖)∗𝑗

)
− Ỹ 𝑗− 1

2

(
(𝑼𝑖)∗𝑗 − (𝑼𝑖)∗𝑗−1

)]
, (22)

where Ỹ 𝑗+ 1
2

is obtained in two steps. First, we compute the WLR [22]

Y𝑖, 𝑗+ 1
2
=
Δ𝑥

6

[
( ℎ̂𝑖)∗𝑗+1 − ( ℎ̂𝑖)𝑛𝑗+1 + 4

(
( ℎ̂𝑖)∗𝑗 − ( ℎ̂𝑖)𝑛𝑗

)
+ ( ℎ̂𝑖)∗𝑗−1 − ( ℎ̂𝑖)𝑛𝑗−1

]
+ Δ𝑡

4

[
(𝑞𝑖)∗𝑗+1 − (𝑞𝑖)∗𝑗−1 + (𝑞𝑖)𝑛𝑗+1 − (𝑞𝑖)𝑛𝑗−1

]
, 𝑖 = 0, . . . , 𝐾,

(23)

and second, we take the maximum over all of the gPC modes:

𝛿 𝑗 = max
𝑖

|Y𝑖, 𝑗 |, (24)

smooth the resulting quantities, and appropriately scale them to end up with

Ỹ 𝑗+ 1
2
=

1
max 𝑗 |𝛿 𝑗 |

max
(
𝛿 𝑗 , 𝛿 𝑗+1

)
. (25)

In fact, using the same Ỹ 𝑗+ 1
2

given by (23)–(25) for all of the gPC modes may not
be sufficient to suppress the Gibbs oscillations. We therefore use (23)–(25) for small
modes (𝑖 ≤ 𝐾/4) only, while taking a first-order artificial diffusion, that is, setting
Ỹ 𝑗+ 1

2
= 1 in (22) for large modes (𝑖 > 𝐾/4).

Finally, 𝐶 in (21) and (22) is a tunable constant, which is typically selected using
the numerical experiments conducted on coarse meshes, and then used in finer mesh
simulations. In the numerical examples reported in §6, we have used either 𝐶 = 0.1
(in Example 1) or 𝐶 = 0.5 (in Example 2 and 3).
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6 Numerical Results

In this section, we present four numerical examples that demonstrate the perfor-
mance of the gPC-SG methods with and without the added AAV (the methods will
be referred to as gPC-SG-AAV and gPC-SG methods, respectively). In all of the
examples, we present the mean, variance, and 0.05–0.95 quantile of the computed
quantities. We also reconstruct the computed solutions using two different gPC
expansions with either 𝐾 = 8 or 16. To this end, we choose a uniform mesh in
b ∈ [−1, 1] with bℓ = −1 + ℓΔb, ℓ = 0, . . . , 800, where Δb = 1/400, and will plot
the discrete components of the solution and bottom topography at the given time
level 𝑡 = 𝑡𝑛, which are obtained by substituting b = bℓ into (16) to recover the values(
ℎ𝐾

)𝑛
𝑗
(bℓ), and similarly for the other fields.

Recall that the reconstructed values of both
(
ℎ𝐾

)𝑛
𝑗
(b) and F (1) ,𝑛

𝑗+ 1
2

(b) are needed
for the evaluation of the “draining time-step” defined in (19). These values are
computed on a fixed uniform grid in b with Δb = 1/50 when 𝐾 = 8 is used and
Δb = 1/100 when 𝐾 = 16 is used.

In all of the examples, we use the free boundary conditions in the 𝑥-direction.

Example 1 (Stochastic Water Surface). In the first example taken from [9], we
consider a deterministic bottom topography

𝐵(𝑥, b) =


10(𝑥 − 0.3), 0.3 ≤ 𝑥 ≤ 0.4,

1 − 0.0025 sin2 (25𝜋𝑥), 0.4 ≤ 𝑥 ≤ 0.6,
− 10(𝑥 − 0.7), 0.6 ≤ 𝑥 ≤ 0.7,
0, otherwise,

and initial data with a stochastic water surface:

𝑤(𝑥, 0, b) =
{

1 + 0.001(1 + b), 0.1 < 𝑥 < 0.2,
0.5, otherwise,

𝑞(𝑥, 0, b) ≡ 0,

prescribed in the spatial computational domain 𝑥 ∈ [−1, 1].
We compute the solutions by both of the studied gPC-SG and gPC-SC-AAV

methods with 𝐾 = 16 until the final time 𝑡 = 0.8 on a uniform grid with Δ𝑥 =

1/400. In this example, the solution is a small perturbation of the steady state (the
deterministic version of this example was introduced in [23]), so that this is a good
test for WB and positivity-preserving properties of the method, but the solution
contains no strong discontinuities. One therefore expects the gPC-SG method not to
produce large Gibbs-like oscillations, which is confirmed in the obtained numerical
results depicted in Figure 1 (top row). One can also observe that adding the AAV in
this example only leads to certain smearing of the computed solution; see Figure 1
(bottom row).
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Fig. 1 Example 1: Zoomed water surface (left column) and discharge (right column) computed
by the gPC-SG (top row) and gPC-SG-AAV (bottom tow) methods.

Example 2 (Dam Break over Stochastic Continuous Bottom). In the second
example also taken from [9], we consider the following deterministic initial data:

𝑤(𝑥, 0, b) =
{

1, 𝑥 < 0,
0.5, 𝑥 > 0,

𝑞(𝑥, 0, b) ≡ 0,

and stochastic bottom topography:

𝐵(𝑥, b) =
{

0.125
[

cos(5𝜋𝑥) + 2
]
+ 0.125b, |𝑥 | < 0.2,

0.125 + 0.125b, otherwise,

prescribed in the spatial computational domain 𝑥 ∈ [−1, 1].
We compute the solution by the studied gPC-SG method with either 𝐾 = 8 or 16

until the final time 𝑡 = 0.8 on a uniform grid with Δ𝑥 = 1/800. As expected, the gPC-
SG solution contains Gibbs-like oscillations (especially pronounced in the discharge
field), whose magnitude increases when a larger number of modes (𝐾 = 16) is used;
see Figure 2. The oscillations can be even more clearly observed in Figure 3, where
we plot the recovered solution

(
𝑤16)

𝑗
(𝑡 = 0.8, bℓ) and

(
𝑞16)

𝑗
(𝑡 = 0.8, bℓ).

We would like to emphasize that in this example, the bottom topography is
continuous, the water is quite deep (in fact, only initially, the highest point of the
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Fig. 2 Example 2: Water surface (left column) and discharge (right column) computed by the
gPC-SG method with 𝐾 = 8 (top row) and 16 (bottom row).

Fig. 3 Example 2: Recovered water surface (left) and discharge (right) computed by the gPC-SG
method.

bottom barely touches the initial water surface at 𝑥 = 0.5) and no large shock
waves are developed. However, the Gibbs phenomenon can been clearly observed.
This example shows the complexity of the problem when the gPC-based methods
are applied random hyperbolic system with discontinuous solutions, in which case
one would want to suppress the oscillations attributed to the Gibbs phenomenon
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while keeping physically relevant features of the solution—the goal, which is highly
nontrivial to achieve.

We then compute the solution by the proposed gPC-SG-AAV method on the same
mesh and until the same final time. The obtained results are plotted in Figures 4 and
5. As one can see, most of the oscillations have been suppressed by the AAV though
it was applied in the 𝑥-direction and no filters were used in the b-direction (unlike
in the gPC-SG method from [9], where the computed solutions were totally damped
by a positivity enforcing filter).

Fig. 4 Example 2: Water surface (left column) and discharge (right column) computed by the
gPC-SG-AAV method with 𝐾 = 8 (top row) and 16 (bottom row).

Example 3 (Riemann Problem with Stochastic Discontinuous Bottom). In the
third example, which is a modified version of a numerical example from [9, §5.3],
we consider the following deterministic initial data:

(𝑤(𝑥, 0, b), 𝑢(𝑥, 0, b)) =
{
(5, 1), 𝑥 < 0.5,
(1.6,−2), 𝑥 > 0.5,

and stochastic bottom topography:
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Fig. 5 Example 2: Recovered water surface (left) and discharge (right) computed by the gPC-
SG-AAV method.

𝐵(𝑥, b) =
{

1.5 + 0.1b, 𝑥 < 0.5,
1.1 + 0.1b, 𝑥 > 0.5,

prescribed in the spatial computational domain 𝑥 ∈ [0, 1].
We first compute the solution by the gPC-SG method with 𝐾 = 8 until the final

time 𝑡 = 0.15 on a uniform grid with Δ𝑥 = 1/400. The obtained results, plotted
in Figure 6, contain fairly large oscillations, which can be observed even away
from the large gradient areas. When the number of modes is increased to 𝐾 = 16,
the oscillations decay (see Figure 7), but the gPC-SG method becomes inefficient
as the size of the time step, which is selected based on the CFL condition (15),
dramatically reduces at a certain stages of the computation (this occurs, probably,
due to the desingularization (12)–(13)).

We then conduct similar simulations, but using the gPC-SG-AAV method and
depict the obtained results in Figures 8–9 (compare these results with those plotted
in Figures 6–7). As one can see, the use of the AAV helps to significantly reduce
the oscillations in the 𝐾 = 8 case. When 𝐾 = 16, the gPC-SG-AAV solution is
not less oscillatory than its gPC-SG counterpart, but the gPC-SG-AAV method is
substantially more efficient as no slow down due to the decrease of the time step has
been observed.

Example 4 (Riemann Problem with Stochastic Velocity and Discontinuous Bot-
tom). In the final example, we modify Example 3 by adding a perturbation to the
initial velocity with the velocity and bottom topography perturbations being corre-
lated, that is, being dependent on the same random variable b. The modified initial
data are

(𝑤(𝑥, 0, b), 𝑢(𝑥, 0, b)) =
{
(5, 1 + 0.1b), 𝑥 < 0.5,
(1.6,−2 − 0.2b), 𝑥 > 0.5.

We repeat the same four computations as in Example 3 and report the obtained
results in Figures 10–13, which should be compared with the results reported in
Figures 6–9, respectively. As expected, the confidence region is wider in the case of
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Fig. 6 Example 3: Water surface (left column) and discharge (right column) computed by the
gPC-SG method with 𝐾 = 8.

two stochastic variables. One can also observe that the oscillations due to the Gibbs
phenomenon are now also more pronounced: this can be especially clearly seen in
the 3-D plots.

7 Discussion and Conclusions

The goal of this paper has been to demonstrate challenges associated with the imple-
mentation of generalized polynomial chaos stochastic Galerkin (gPC-SG) methods
for the Saint-Venant system with uncertainty. Two major difficulties have been ad-
dressed: the first one is related to the loss of hyperbolicity of the system written in
conservative variables for the gPC coefficients, while the second one is attributed
to the Gibbs phenomenon appearing when strong discontinuities propagate into the
stochastic space.

For this system, it is known that the hyperbolicity is guaranteed by the non-
negativity of the water depth. We have introduced a well-balanced and positivity-
preserving central-upwind scheme, which is a modified version of the scheme from
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Fig. 7 Example 3: The same as in Figure 6, but with 𝐾 = 16.

[9] and ensures that the system for the gPC coefficients remains hyperbolic at the
discrete level.

At the same time, we have illustrated that when the computed solution as well as
the bottom topography are discontinuous, the gPC-SG method develops significant
oscillations despite preserving the hyperbolicity of the gPC coefficient system. They
may lead to appearance of artificially small values of the water depth and nonphysi-
cally large velocities, which slow down the computation to the extend that the method
may become impractical. Our conjecture is that those oscillations are attributed to
the Gibbs phenomenon when using global spectral approximation in the stochastic
variable. As an attempt to damp such oscillations, we have added the adaptive artifi-
cial viscosity (AAV) in the spatial dimension to the system of gPC coefficients. In the
presented numerical examples, the AAV has helped to both reduce the oscillations
and improve the efficiency of the studied gPC-SG method. However, adding AAV
cannot be considered as an ultimate solution to the Gibbs-like oscillation problem
as there are many examples (not shown in this paper), in which the gPC-SG method
with the added AAV still fails to (accurately) compute the numerical solution. Con-
sequently intrusive gPC-SG methods might not be suitable for nonlinear hyperbolic
systems of PDEs with uncertainty.

It should be also observed that the exponential convergence in the stochastic
space cannot be achieved when discontinuous solutions are to be captured. One
therefore should explore the possibilities of using alternative base functions and
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Fig. 8 Example 3: Water surface (left column) and discharge (right column) computed by the
gPC-SG-AAV method with 𝐾 = 8.

reconstructions, like wavelets expansions or piecewise polynomial approximations.
This might be an interesting topic for future research. In addition, non-intrusive
methods like stochastic collocation ones, but without the transforming the values in
the stochastic direction into the gPC coefficients (namely, using splines or WENO-
type interpolations instead) should be investigated as robust and highly accurate
alternative to gPC-SG methods.
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Fig. 9 Example 3: The same as in Figure 8, but with 𝐾 = 16.
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methods for the shallow water equations with dry beds, Commun. Comput. Phys. 10 (2011),
no. 2, 371–404.

4. F. Bouchut, Nonlinear stability of finite volume methods for hyperbolic conservation laws and
well-balanced schemes for sources, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2004.
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