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Abstract

In this work, we introduce a new active flux (AF) method for hyperbolic systems of conserva-
tion laws. Following an AF approach recently proposed in [R. Abgrall, Commun. Appl. Math.
Comput., 5 (2023), pp. 370–402], we consider two different formulations of the studied system (the
original conservative formulation and a primitive one containing nonconservative products), and dis-
cretize them on overlapping staggered meshes using two different numerical schemes. The novelty
of our method is twofold. First, we introduce an original paradigm making use of overlapping finite-
volume (FV) meshes over which cell averages of conservative and primitive variables are evolved
using semi-discrete FV methods: The nonconservative system is discretized by a path-conservative
central-upwind scheme and its solution is used to evaluate very simple numerical fluxes for the dis-
cretization of the original conservative system. Second, to ensure the nonlinear stability of the result-
ing AF method, we design a post-processing, which also guarantees a conservative coupling between
the two sets of variables. We test the proposed semi-discrete FV AF method on a number of bench-
marks for the one- and two-dimensional Euler equations of gas dynamics.

Key words: Active flux methods; overlapping staggered meshes; path-conservative central-upwind
schemes; conservative post-processing. states.

AMS subject classification: 76M12, 65M08, 76N99, 35L65, 35L67.

1 Introduction
This paper focuses on the development of numerical methods for hyperbolic systems of conservation
laws, which in the two-dimensional (2-D) case read as

Ut + F (U )x +G(U )y = 0. (1.1)

Here, x and y are the spatial variables, t is time, U ∈ RM is the vector of conserved variables, F ,G ∈ RM

are the fluxes, whose Jacobians, ∂F
∂U
, ∂G
∂U
∈ RM×M, are assumed to be real-diagonalizable, and M ∈ N with

M ≥ 1 is the number of equations in the system.
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It is well-known that solutions of nonlinear hyperbolic conservation laws may become nonsmooth
even when the initial and boundary data are infinitely smooth. Therefore, the solution of (1.1) has to be
defined in a weak (integral) sense, and hence conservative finite-volume (FV) methods seem to be one
of the natural choices to be considered. In these methods, the computational domain is covered by FV
cells and the numerical solution is realized in terms of its cell averages, which are evolved in time using
an integral form of (1.1). For a variety of existing FV methods, we refer the reader to [21,24,29,47] and
references therein.

In this work, we are interested in active flux (AF) methods, which were first introduced in [18,19] as
an extension of the scheme proposed in [48] for linear hyperbolic partial differential equations (PDEs).
The key idea of AF methods is to evolve several pieces of information on the computed solution, namely,
both cell averages and point values at cell interfaces. This gives additional degrees of freedom, which
can be used not only to enhance the accuracy of the resulting scheme, but also to successfully hybridize
conservative and nonconservative numerical methods. As demonstrated in [4], nonconservative methods
cannot be used for accurately solving hyperbolic systems of conservation laws since nonconservative
numerical schemes typically converge to non-entropy (non-physical) weak solutions. However, in the
AF framework, highly accurate nonconservative methods can be used to evolve the cell interface point
values, while the convergence toward the physically relevant solutions is guaranteed by a conservative
evolution of the cell averages. In the past decade, a variety of AF methods have been developed; see,
e.g., [1–3, 5, 6, 13, 40, 52].

A similar idea of obtaining additional degrees of freedom by evolving several pieces of information
was used in the methods on overlapping cells. These methods include both FV [31,33,34,50] and discon-
tinuous Galerkin [32, 50, 51] ones. In the FV methods on overlapping cells, hierarchical reconstruction
limiters are used to achieve high-order non-oscillatory approximations of the computed solution, whose
cell averages on overlapping cells are evolved in time.

In this paper, we incorporate the overlapping FV approach into the AF framework to develop a novel
second-order semi-discrete FV AF method. To this end, we first consider the following nonconservative
system, which is equivalent to (1.1) for smooth solutions:

Vt + F̃ (V )x + G̃(V )y = B(V )Vx +C(V )Vy, (1.2)

where V ∈ RM is the vector of primitive variables, F̃ , G̃ : RM → RM, and B,C ∈ RM×M. To cite an
example, one may consider the Euler equations of gas dynamics, which read as (1.1) with

U = (ρ, ρu, ρv, E)⊤, F (U ) = (ρu, ρu2+ p, ρuv, u(E+ p))⊤, G(U ) = (ρu, ρuv, ρv2+ p, v(E+ p))⊤, (1.3)

where ρ is the density, u and v are the x- and y-velocities, E is the total energy, and p is the pressure. We
use the classical closure, obtained with the help of the equation of state of ideal fluids,

E =
p
γ − 1

+
1
2
ρ(u2 + v2), (1.4)

in which γ is the specific heat ratio. The system (1.1), (1.3)–(1.4) can be rewritten in the nonconservative
form in many different ways, for instance, using the primitive variables ρ, u, v, and p, for which the
corresponding nonconservative system reads as (1.2) with

V = (ρ, u, v, p)⊤, F̃ (V ) =
(
ρu,

u2

2
, 0, pu

)⊤
, G̃(V ) =

(
ρu, 0,

v2

2
, pv

)⊤
,
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Bx(V ) =


0 0 0 0

0 0 0 − 1
ρ

0 0 −u 0

0 −(γ − 1)p 0 0


, By(V ) =


0 0 0 0

0 −v 0 0

0 0 0 − 1
ρ

0 0 −(γ − 1)p 0


.

We discretize systems (1.1) and (1.2) on overlapping meshes using a semi-discrete approach, and
then solve the resulting systems of ordinary differential equations (ODEs) simultaneously. The numer-
ical fluxes for the conservative system (1.1) are taken simply as F (U (V )) and G(U (V )), while the
discretization of the nonconservative system (1.2) is more involved as its solutions cannot be understood
in the sense of distributions. In [16], a concept of Borel measure solutions of nonconservative systems
was introduced (see also [27, 28]) and later utilized to develop path-conservative numerical methods;
see, e.g., [8–10, 37, 38] and references therein. Here, we discretize (1.2) using a modified version of the
Riemann-problem-solver-free path-conservative central-upwind (PCCU) scheme from [10]. The modi-
fication is intended to reduce the amount of numerical dissipation present in the original PCCU scheme
and is carried out by replacing the central-upwind (CU) numerical flux from [26], which was used in [10],
with a less dissipative CU numerical flux from [25].

Since the conservative numerical fluxes do not employ any limiting procedures, one can expect the
computed U to be oscillatory. At At the same time, variables V , computed in a non-oscillatory manner
by the PCCU scheme, may converge to a non-physical weak solution. We therefore introduce a conser-
vative post-processing, which couples the evolution of the two sets of variables. The resulting numerical
solution is (essentially) oscillation-free and the scheme converges to the physically relevant solution of
(1.1). We test the proposed FV AF method on a number of benchmarks for one- and two-dimensional
Euler equations of gas dynamics.

The rest of the paper is organized as follows. In §2, we introduce the new one-dimensional (1-D) FV
AF method, and then extend it to the 2-D case in §3. In §4, we report the results of several numerical
experiments for both 1-D and 2-D Euler equations of gas dynamics. Finally, in §5, we provide concluding
remarks and discuss future perspectives.

2 One-Dimensional Semi-Discrete FV AF Method
In this section, we introduce the new semi-discrete FV AF method for the 1-D version of (1.1):

Ut + F (U )x = 0, (2.1)

whose nonconservative formulation reads as

Vt + F̃ (V )x = B(V )Vx. (2.2)

We consider overlapping FV meshes consisting of uniform cells I j = [x j− 1
2
, x j+ 1

2
], j = 1, . . . ,N and

I j+ 1
2
= [x j, x j+1], j = 0, . . . ,N with x j+1 = x j+ 1

2
+ ∆x/2 = x j + ∆x for all j. As in all FV methods, the

computed quantities are cell averages of U and V , which are obtained on the above two grids, namely,

U j :≈
∫
I j

U (x, t) dx and V j+ 1
2

:≈
∫

I j+ 1
2

V (x, t) dx.
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Note that both U j and V j+ 1
2
, like many other indexed quantities below, depend on time, but we omit this

dependence for the sake of notation brevity.
The semi-discretization of the conservative system (2.1) is obtained by integrating (2.1) in space over

the cells I j, which results in
d
dt

U j = −
1
∆x

[
F j+ 1

2
− F j− 1

2

]
, (2.3)

in which we take the following simple numerical fluxes:

F j+ 1
2
= F

(
U j+ 1

2

)
, U j+ 1

2
:= U

(
V j+ 1

2

)
, (2.4)

where U (V ) denotes the transformation from primitive to conserved variables. Note that for second-
order methods, cell averages and point values formally differ by O((∆x)2), which makes the transforma-
tion used in (2.4) straightforward, while higher order extensions would require a suitable higher order
reconstruction of point values.

The semi-discretization of the nonconservative system (2.2) is obtained through the modified PCCU
scheme and reads

d
dt
V j+ 1

2
= −

1
∆x

[
F̃ j+1 − F̃ j −B j+ 1

2
−

a+j
a+j − a−j

BΨ, j +
a−j+1

a+j+1 − a−j+1
BΨ, j+1

]
, (2.5)

where F̃ j are the CU numerical fluxes from [25] given by

F̃ j =
a+j F̃

(
V −j

)
− a−j F̃

(
V +j

)
a+j − a−j

+
a+j a−j

a+j − a−j

(
V +j − V

−
j − δV j

)
. (2.6)

Here, V ±j are one-sided point values of V obtained using a piecewise linear reconstruction applied to the
local characteristic variables Γ of(1.2). To this end, we follow [36] and introduce

Γ j− 1
2
= Q−1

j+ 1
2
V j− 1

2
, Γ j+ 1

2
= Q−1

j+ 1
2
V j+ 1

2
, Γ j+ 3

2
= Q−1

j+ 1
2
V j+ 3

2
,

where Q j+ 1
2

is a matrix such that Q−1
j+ 1

2
A j+ 1

2
Q j+ 1

2
is a diagonal matrix andA j+ 1

2
= A

(
V j+ 1

2

)
:= ∂F̃
∂V

(
V j+ 1

2

)
−

B
(
V j+ 1

2

)
. Equipped with Γ j− 1

2
, Γ j+ 1

2
, and Γ j+ 3

2
, we apply a generalized minmod limiter (see, e.g., [30,45])

to evaluate

(Γx) j+ 1
2
= minmod

θ Γ j+ 1
2
− Γ j− 1

2

∆x
,
Γ j+ 3

2
− Γ j− 1

2

2∆x
, θ

Γ j+ 3
2
− Γ j+ 1

2

∆x

 , θ ∈ [1, 2],

where the minmod function, defined as

minmod(c1, c2, . . .) =


min

i
ci if ci > 0 ∀i,

max
i

ci if ci < 0 ∀i,

0 otherwise,

is applied in a component-wise manner. We then obtain

Γ+j = Γ j+ 1
2
−
∆x
2

(Γx) j+ 1
2
, Γ−j+1 = Γ j+ 1

2
+
∆x
2

(Γx) j+ 1
2
,
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and hence the corresponding point values of V are

V +j = Q j+ 1
2
Γ+j , V −j+1 = Q j+ 1

2
Γ−j+1.

In (2.5) and (2.6), a±j are the one-sided local speeds of propagation, which can be estimated by

a−j = min
{
λ1(V −j ), λ1(V +j ), 0

}
, a+j = max

{
λM(V −j ), λM(V +j ), 0

}
.

where λ1(V ) ≤ . . . ≤ λM(V ) are the eigenvalues of A(V ). The term δV j in (2.6) represents “built-in”
anti-diffusion and is given by (see [25]),

δV j = minmod
(
V ∗j − V

−
j ,V

+
j − V

∗
j

)
, V ∗j :=

a+j V
+
j − a−j V

−
j − F̃ (V +j ) + F̃ (V −j )

a+j − a−j
.

Finally, the terms B j+ 1
2

and BΨ, j in (2.5) are given by (see [10] for details)

B j+ 1
2
= B

(
V j+ 1

2

)(
V −j+1 − V

+
j
)
, BΨ, j =

1
2

[
B(V −j ) + B

(
V +j

)] (
V +j − V

−
j
)
.

Remark 2.1 We would like to stress that the proposed FV AF method is not tied to the PCCU scheme
and, in principle, one can numerically solve the nonconservative system (2.2) using an alternative
second-order stable numerical method instead.

The ODE systems (2.3) and (2.5) should be numerically solved by a stable and sufficiently accurate
ODE solver. However, the solution obtained upon completion of a time step evolution will have two
significant drawbacks. First, the solution realized by

{
U j(t + ∆t)

}
will likely be oscillatory since no

limiting procedures are employed in the computation of numerical fluxes in (2.4). Second, the solution
realized by

{
V j+ 1

2
(t + ∆t)

}
will not necessarily be conservative, that is,

∑
j U

(
V j+ 1

2
(t + ∆t)

)
may not

be equal to
∑

j U
(
V j+ 1

2
(t)

)
. Therefore, to ensure that the resulting numerical solution is (essentially)

oscillation-free and converges to the physically relevant solution of (2.1), we propose the conservative
post-processing procedure presented in the next subsection.

2.1 Post-Processing
Let us assume that the solution was evolved from time t to t + ∆t with the help of an ODE solver and
denote the obtained solutions by

{
U
∗

j
}

and
{
V
∗

j+ 1
2

}
. Our goal is to modify these values through a suitable

post-processing procedure to obtain non-oscillatory sets of
{
U j(t + ∆t)

}
and

{
V j+ 1

2
(t + ∆t)

}
.

The proposed post-processing can be presented algorithmically through the following four steps.
Step 1. Compute the conserved variables at x = x j+ 1

2
using the transformation from the primitive ones:

U ∗
j+ 1

2
:= U

(
V
∗

j+ 1
2

)
.

Step 2. Perform the piecewise linear reconstruction for U using the slopes computed by the minmod
limiter

(Ux)∗j = 2 minmod

U
∗

j −U
∗

j− 1
2

∆x
,
U ∗

j+ 1
2
− U

∗

j

∆x

 ,



6 R. Abgrall, A. Chertock, A. Kurganov & L. Micalizzi

which results in
U ∗,−

j+ 1
2

:= U
∗

j +
∆x
2

(Ux)∗j, U ∗,+
j+ 1

2
:= U

∗

j+1 −
∆x
2

(Ux)∗j+1. (2.7)

Step 3. Set

U ∗∗
j+ 1

2
:=

1
2

(
U ∗,−

j+ 1
2
+U ∗,+

j+ 1
2

)
, (2.8)

and recompute the primitive variables at x = x j+ 1
2

using the transformation from the conservative ones:

V j+ 1
2
(t + ∆t) = V

(
U ∗∗

j+ 1
2

)
.

Step 4. Correct the conserved variables by setting

U j(t + ∆t) =
1
2

(
U ∗∗

j− 1
2
+U ∗∗

j+ 1
2

)
. (2.9)

It is important to stress that the post-processing is conservative as shown in the next proposition.

Proposition 2.1 The post-processed cell averages of the conserved variables satisfy∑
j

U j(t + ∆t) =
∑

j

U
∗

j .

Proof. The proof consists of simple direct computations (assuming no contributions from the boundary
terms): ∑

j

U j(t + ∆t)
(2.9)
=

1
2

∑
j

U ∗∗
j− 1

2
+

1
2

∑
j

U ∗∗
j+ 1

2
=

∑
j

U ∗∗
j+ 1

2

(2.8)
=

1
2

∑
j

U ∗,−
j+ 1

2
+

1
2

∑
j

U ∗,+
j+ 1

2

(2.7)
=

1
2

∑
j

[
U
∗

j +
∆x
2

(Ux)∗j
]
+

1
2

∑
j

[
U
∗

j+1 −
∆x
2

(Ux)∗j+1

]
=

∑
j

U
∗

j .

□

3 Two-Dimensional Semi-Discrete FV AF Method
We now extend the proposed semi-discrete FV AF method to the 2-D case, in which the conservative
and nonconservative (primitive) formulations of the governing equations are given by (1.1) and (1.2),
respectively.

We consider overlapping Cartesian meshes (see the sketch in Figure 3.1) consisting of uniform cells
I j,k := [x j− 1

2
, x j+ 1

2
] × [yk− 1

2
, yk+ 1

2
], j = 1, . . . ,Nx, k = 1, . . . ,Ny, Ix

j+ 1
2 ,k
= [x j, x j+1] × [yk− 1

2
, yk+ 1

2
], j =

0, . . . ,Nx, k = 1, . . . ,Ny, and Iy
j,k+ 1

2
= [x j− 1

2
, x j+ 1

2
] × [yk, yk+1], j = 1, . . . ,Nx, k = 0, . . . ,Ny with x j+1 =

x j+ 1
2
+ ∆x/2 = x j + ∆x for all j and yk+1 = yk+ 1

2
+ ∆y/2 = yk + ∆y for all k. The computed quantities are

the following cell averages obtained on the above three grids:

U j,k :≈
∫
I j,k

U (x, t) dxdy, V
x
j+ 1

2 ,k
:≈

∫
Ix

j+ 1
2 ,k

V (x, t) dxdy, V
y
j,k+ 1

2
:≈

∫
Iy

j,k+ 1
2

V (x, t) dxdy.
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x

y

x j−1 x j− 1
2

x j x j+ 1
2

x j+1

yk−1

yk− 1
2

yk

yk+ 1
2

yk+1

Figure 3.1: Sketch of the overlapping cells: I j,k (black-bordered); Ix
j− 1

2 ,k
and IX

j+ 1
2 ,k

(red-filled); Iy
j,k− 1

2

and Iy
j,k+ 1

2
(blue-filled).

As in the 1-D case, the semi-discretization of the conservative system (1.1) is obtained by integrating
(1.1) in space over the cells I j,k, which leads to

d
dt

U j,k = −
1
∆x

[
F j+ 1

2 ,k
− F j− 1

2 ,k

]
−

1
∆y

[
G j,k+ 1

2
−G j,k− 1

2

]
,

with the following second-order numerical fluxes:

F j+ 1
2 ,k
= F

(
U j+ 1

2 ,k
)
, U j+ 1

2 ,k
:= U

(
V

x
j+ 1

2 ,k
)

and G j,k+ 1
2
= G

(
U j,k+ 1

2

)
, U j,k+ 1

2
:= U

(
V

y
j,k+ 1

2

)
.

Two independent semi-discretizations of the nonconservative system (1.2) are obtained through the
modified 2-D PCCU scheme applied on the Ix

j+ 1
2 ,k

and Iy
j,k+ 1

2
meshes, respectively, as follows:

d
dt

V
x
j+ 1

2 ,k
= −

1
∆x

[
F̃

x
j+1,k − F̃

x
j,k −B

x
j+ 1

2 ,k
−

ax,+
j,k

ax,+
j,k − ax,−

j,k

Bx
Ψ, j,k +

ax,−
j+1,k

ax,+
j+1,k − ax,−

j+1,k

Bx
Ψ, j+1,k

]
−

1
∆y

[
G̃

x
j+ 1

2 ,k+
1
2
− G̃

x
j+ 1

2 ,k−
1
2
−C x

j+ 1
2 ,k

−

bx,+
j+ 1

2 ,k−
1
2

bx,+
j+ 1

2 ,k−
1
2
− bx,−

j+ 1
2 ,k−

1
2

C x
Ψ, j+ 1

2 ,k−
1
2
+

bx,−
j+ 1

2 ,k+
1
2

bx,+
j+ 1

2 ,k+
1
2
− bx,−

j+ 1
2 ,k+

1
2

C x
Ψ, j+ 1

2 ,k+
1
2

] (3.1)

d
dt

V
y
j,k+ 1

2
= −

1
∆x

[
F̃

y
j+ 1

2 ,k+
1
2
− F̃

y
j− 1

2 ,k+
1
2
−By

j,k+ 1
2

−

ay,+
j− 1

2 ,k+
1
2

ay,+
j− 1

2 ,k+
1
2
− ay,−

j− 1
2 ,k+

1
2

By
Ψ, j− 1

2 ,k+
1
2
+

ay,−
j+ 1

2 ,k+
1
2

ay,+
j+ 1

2 ,k+
1
2
− ay,−

j+ 1
2 ,k+

1
2

By
Ψ, j+ 1

2 ,k+
1
2

]

−
1
∆y

[
G̃

y
j,k+1 − G̃

y
j,k −C

y
j,k+ 1

2
−

by,+
j,k

by,+
j,k − by,−

j,k

Cy
Ψ, j,k +

by,−
j,k+1

by,+
j,k+1 − by,−

j,k+1

Cy
Ψ, j,k+1

]
(3.2)

Once again, we stress that the right-hand sides (RHSs) of (3.1) and (3.2) are computed independently
and thus their computations can be performed in parallel.
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The terms on the RHS of (3.1) are computed in a dimension-by-dimension manner and given by

F̃
x
j,k =

ax,+
j,k F̃

(
V x,−

j,k

)
− ax,−

j,k F̃
(
V x,+

j,k

)
ax,+

j,k − ax,−
j,k

+
ax,+

j,k ax,−
j,k

ax,+
j,k − ax,−

j,k a

(
V x,+

j,k − V
x,−

j,k − δV
x

j,k

)
,

δV x
j,k = minmod

(
V x,∗

j,k − V
x,−

j,k ,V
x,+

j,k − V
x,∗

j,k

)
, V x,∗

j,k =
ax,+

j,k V
x,+

j,k − ax,−
j,k V

x,−
j,k − F̃ (V x,+

j,k ) + F̃ (V x,−
j,k )

ax,+
j,k − ax,−

j,k

,

G̃
x
j+ 1

2 ,k+
1
2
=

bx,+
j+ 1

2 ,k+
1
2
G̃

(
V x,−

j+ 1
2 ,k+

1
2

)
− bx,−

j+ 1
2 ,k+

1
2
G̃

(
V x,+

j+ 1
2 ,k+

1
2

)
bx,+

j+ 1
2 ,k+

1
2
− bx,−

j+ 1
2 ,k+

1
2

+

bx,+
j+ 1

2 ,k+
1
2
bx,−

j+ 1
2 ,k+

1
2

bx,+
j+ 1

2 ,k+
1
2
− bx,−

j+ 1
2 ,k+

1
2

(
V x,+

j+ 1
2 ,k+

1
2
− V x,−

j+ 1
2 ,k+

1
2
− δV x

j+ 1
2 ,k+

1
2

)
,

δV x
j+ 1

2 ,k+
1
2
= minmod

(
V x,∗

j+ 1
2 ,k+

1
2
− V x,−

j+ 1
2 ,k+

1
2
,V x,+

j+ 1
2 ,k+

1
2
− V x,∗

j+ 1
2 ,k+

1
2

)
,

V x,∗
j+ 1

2 ,k+
1
2
=

bx,+
j+ 1

2 ,k+
1
2
V x,+

j+ 1
2 ,k+

1
2
− bx,−

j+ 1
2 ,k+

1
2
V x,−

j+ 1
2 ,k+

1
2
− G̃

(
V x,+

j+ 1
2 ,k+

1
2

)
+ G̃

(
V x,−

j+ 1
2 ,k+

1
2

)
bx,+

j+ 1
2 ,k+

1
2
− bx,−

j+ 1
2 ,k+

1
2

,

Bx
j+ 1

2 ,k
= B

(
V

x
j+ 1

2 ,k
)(
V x,−

j+1,k − V
x,+

j,k

)
, Bx

Ψ, j+ 1
2 ,k
=

1
2

[
B(V x,−

j+ 1
2 ,k

) + B
(
V x,+

j+ 1
2 ,k

)](
V x,+

j+ 1
2 ,k
− V x,−

j+ 1
2 ,k

)
,

Cx
j+ 1

2 ,k
= C

(
V

x
j+ 1

2 ,k
)(
V x,−

j+ 1
2 ,k+

1
2
− V x,+

j+ 1
2 ,k−

1
2

)
,

C x
Ψ, j+ 1

2 ,k+
1
2
=

1
2

[
C(V x,−

j+ 1
2 ,k+

1
2
) +C

(
V x,+

j+ 1
2 ,k+

1
2

)](
V x,+

j+ 1
2 ,k+

1
2
− V x,−

j+ 1
2 ,k+

1
2

)
,

where V x,±
j,k and V x,±

j+ 1
2 ,k+

1
2

are reconstructed point values obtained from the cell averages
{
V

x
j,k
}
. As in

the 1-D case, we compute these values by exploiting the local characteristic decomposition. In the x-
direction, we have

V x,+
j,k = Qx

j+ 1
2 ,k
Γx,+

j,k , V x,−
j+1,k = Qx

j+ 1
2 ,k
Γx,−

j+1,k,

where
Γx,+

j,k = Γx
j+ 1

2 ,k
−
∆x
2

(Γx)x
j+ 1

2 ,k
, Γx,−

j+1,k = Γx
j+ 1

2 ,k
+
∆x
2

(Γx)x
j+ 1

2 ,k

with the slopes computed using the generalized minmod limiter:

(Γx)x
j+ 1

2 ,k
= minmod

θ Γ
x
j+ 1

2 ,k
− Γx

j− 1
2 ,k

∆x
,
Γx

j+ 3
2 ,k
− Γx

j− 1
2 ,k

2∆x
, θ

Γx
j+ 3

2 ,k
− Γx

j+ 1
2 ,k

∆x

 , θ ∈ [0, 1]. (3.3)

In (3.3), one has

Γx
j− 1

2 ,k
=

(
Qx

j+ 1
2 ,k

)−1
V

x
j− 1

2 ,k
, Γx

j+ 1
2 ,k
=

(
Qx

j+ 1
2 ,k

)−1
V

x
j+ 1

2 ,k
, Γx

j+ 3
2 ,k
=

(
Qx

j+ 1
2 ,k

)−1
V

x
j+ 3

2 ,k
,

where the matrix Qx
j+ 1

2 ,k
is such that

(
Qx

j+ 1
2 ,k

)−1
Ax

j+ 1
2 ,k

Qx
j+ 1

2 ,k
is diagonal with Ax

j+ 1
2 ,k
= A

(
V

x
j+ 1

2 ,k
)

:=
∂F̃
∂V

(
V

x
j+ 1

2 ,k
)
− B

(
V

x
j+ 1

2 ,k
)
.

Similarly, in the y-direction, we have

V x,+
j+ 1

2 ,k−
1
2
= Px

j+ 1
2 ,k
Γx,+

j+ 1
2 ,k−

1
2
, V x,−

j+ 1
2 ,k+

1
2
= Px

j+ 1
2 ,k
Γx,−

j+ 1
2 ,k+

1
2
,
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where
Γx,+

j+ 1
2 ,k−

1
2
= Γx

j+ 1
2 ,k
−
∆y
2

(Γy)x
j+ 1

2 ,k
, Γx,−

j+ 1
2 ,k
= Γx

j+ 1
2 ,k
+
∆y
2

(Γy)x
j+ 1

2 ,k

with the slope given by

(Γy)x
j+ 1

2 ,k
= minmod

θ Γ
x
j+ 1

2 ,k
− Γx

j+ 1
2 ,k−1

∆y
,
Γx

j+ 1
2 ,k+1
− Γx

j+ 1
2 ,k−1

2∆y
, θ

Γx
j+ 1

2 ,k+1
− Γx

j+ 1
2 ,k

∆y

 , θ ∈ [0, 1]. (3.4)

In (3.4), one has

Γx
j+ 1

2 ,k−1
= (Px

j+ 1
2 ,k

)−1V
x
j+ 1

2 ,k−1, Γx
j+ 1

2 ,k
= (Px

j+ 1
2 ,k

)−1V
x
j+ 1

2 ,k
, Γx

j+ 1
2 ,k+1
= (Px

j+ 1
2 ,k

)−1V
x
j+ 1

2 ,k+1,

where the matrix Px
j+ 1

2 ,k
is such that (Px

j+ 1
2 ,k

)−1Bx
j+ 1

2 ,k
Px

j+ 1
2 ,k

is diagonal with Bx
j+ 1

2 ,k
= B

(
V

x
j+ 1

2 ,k
)

:=
∂G̃
∂V

(
V

x
j+ 1

2 ,k
)
−C

(
V

x
j+ 1

2 ,k
)
.

The one-sided local speeds of propagation in (3.1) are estimated by

ax,−
j,k = min

{
λ1(V x,−

j,k ), λ1(V x,+
j,k ), 0

}
, ax,+

j,k = max
{
λM(V x,−

j,k ), λM(V x,+
j,k ), 0

}
,

bx,−
j+ 1

2 ,k+
1
2
= min

{
µ1(V x,−

j+ 1
2 ,k+

1
2
), µ1(V x,+

j+ 1
2 ,k+

1
2
), 0

}
, bx,+

j+ 1
2 ,k+

1
2
= max

{
µM(V x,−

j+ 1
2 ,k+

1
2
), µM(V x,+

j+ 1
2 ,k+

1
2
), 0

}
,

where λ1(V ) ≤ . . . ≤ λM(V ) are the eigenvalues ofA(V ) and µ1(V ) ≤ . . . ≤ µM(V ) are the eigenvalues
of B(V ).

The terms on the RHS of (3.2), related to the update ofV
y
j,k+ 1

2
, can be analogously computed through

the same formulae used to evaluate the RHS of (3.1), but with the first index shifted by −1
2 , the second

index shifted by +1
2 , and the superscripts “x” replaced by “y”.

Remark 3.1 We would like to emphasize that, as in the 1-D case, the proposed 2-D FV AF method is
not tied to the PCCU scheme and the nonconservative system (1.2) can be numerically solved by an
alternative second-order stable numerical method.

Finally, the post-processing is carried out in a “dimension-by-dimension” manner by alternating
sweeps in the x-direction, in which we modify the cell averages of U and V

x
, and in the y-direction, in

which we modify the cell averages of U and V
y
. We use the same notation as in the 1-D case:

{
U
∗

j,k
}
,{

V
x,∗
j+ 1

2 ,k
}
, and

{
V

y,∗
j,k+ 1

2

}
denote the solution values evolved from time t to t +∆t by an ODE solver, and our

goal is to post-process them to obtain
{
U j,k(t + ∆t)

}
,
{
V

x
j+ 1

2 ,k
(t + ∆t)

}
and

{
V

y
j,k+ 1

2
(t + ∆t)

}
.

The proposed post-processing can be presented algorithmically through the following eight steps,
with Steps 1–4 corresponding to the post-processing in the x-direction and Steps 5–8 corresponding to
the post-processing in the y-direction.
Step 1. Compute the conserved variables at (x j+ 1

2
, yk) using the transformation from the primitive ones:

U ∗
j+ 1

2 ,k
= U

(
V

x,∗
j+ 1

2 ,k
)
.

Step 2. Perform the piecewise linear reconstruction for U in the x-direction using the slopes computed
by the minmod limiter

(Ux)∗j,k = 2 minmod

U
∗

j,k −U
∗

j− 1
2 ,k

∆x
,
U ∗

j+ 1
2 ,k
− U

∗

j,k

∆x

 ,
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which results in
U ∗,−

j+ 1
2 ,k

:= U
∗

j,k +
∆x
2

(Ux)∗j,k, U ∗,+
j+ 1

2 ,k
:= U

∗

j+1,k −
∆x
2

(Ux)∗j+1,k.

Step 3. Set

U ∗∗
j+ 1

2 ,k
:=

1
2

(
U ∗,−

j+ 1
2 ,k
+U ∗,+

j+ 1
2 ,k

)
,

and recompute the primitive variables at (x j+ 1
2
, yk) using the transformation from the conservative ones:

V
x
j+ 1

2 ,k
(t + ∆t) = V

(
U ∗∗

j+ 1
2 ,k

)
.

Step 4. Correct the conserved variables by setting

Ũ j,k :=
1
2

(
U ∗∗

j− 1
2 ,k
+U ∗∗

j+ 1
2 ,k

)
.

Step 5. Compute the conserved variables at (x j, yk+ 1
2
) using the transformation from the primitive ones:

U ∗
j,k+ 1

2
= U

(
V

y,∗
j,k+ 1

2

)
.

Step 6. Perform the piecewise linear reconstruction for U in the y-direction using the slopes computed
by the minmod limiter

(Uy)∗j,k = 2 minmod

 Ũ j,k −U
∗

j,k− 1
2

∆y
,
U ∗

j,k+ 1
2
− Ũ j,k

∆y

 ,
which results in

U ∗,−
j,k+ 1

2
:= Ũ j,k +

∆y
2

(Uy)∗j,k, U ∗,+
j,k− 1

2
:= Ũ ∗

j,k+1 −
∆y
2

(Uy)∗j,k+1.

Step 7. Set

U ∗∗
j,k+ 1

2
:=

1
2

(
U ∗,−

j,k+ 1
2
+U ∗,+

j,k+ 1
2

)
,

and recompute the primitive variables at (x j, yk+ 1
2
) using the transformation from the conservative ones:

V
y
j,k+ 1

2
(t + ∆t) = V

(
U ∗∗

j,k+ 1
2

)
.

Step 8. Correct the conserved variables by setting

U j,k(t + ∆t) =
1
2

(
U ∗∗

j,k− 1
2
+U ∗∗

j,k+ 1
2

)
.

4 Numerical Examples
In this section, we present the numerical results obtained for the Euler equations of gas dynamics. In the
1-D case, these equations can be written in either the conservative form (2.1) with

U = (ρ, ρu, E)⊤, F (U ) = (ρu, ρu2 + p, u(E + p))⊤,
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and the equation of state E = p
γ−1 +

1
2ρu

2, or the nonconservative form (2.2) with

V = (ρ, u, p)⊤, F̃ (V ) =
(
ρu,

u2

2
, pu

)⊤
, B(V ) =


0 0 0

0 0 − 1
ρ

0 −(γ − 1)p 0

 .
In all of the numerical examples below, the time discretization is performed using the three-stage

third-order strong stability-preserving Runge-Kutta method (see, e.g., [22, 23]) with the time-step se-
lected adaptively with the CFL number set to be 0.25. The minmod parameter has been taken θ = 1.3 in
all of the examples except for Example 5, in which we have used θ = 1.1. In all of the examples, we set
γ = 1.4.

Example 1 (accuracy test for unsteady isentropic vortex). In the first example taken from [7,35,42],
we numerically verify the accuracy of the proposed FV AF method.

We consider a smooth unsteady vortex on the computational domain [−10, 10] × [−10, 10], endowed
with periodic boundary conditions. The initial data are

ρ(x, y, 0) =
(
1 −

(γ − 1)κ2

2γ

) 1
γ−1

, p(x, y, 0) = ργ(x, y, 0),

u(x, y, 0) = 1 − κy, v(x, y, 0) = 1 + κx, κ =
5

2π
e

1−x2−y2
2 .

The exact solution is given by U (x, y, t) = U (x − t, y − t, 0), modulo the periodic boundary conditions.
We compute the solution until the final time t = 0.1 on a sequence of uniform N×N meshes with N =

100, 200, 400, 800, and 1600. The obtained results are reported in Table 4.1, in which we demonstrate
that the expected order of convergence is achieved in the U -solution (we show the ρ-, ρu-, and E-
components), V x-solution (we show the v-component), and V y-solution (we show the p-component).
The same order is observed in all other components not shown here for the sake of brevity.

N ρ-error rate ρu-error rate E-error rate v-error rate p-error rate

100 1.29e-2 – 2.88e-2 – 7.09e-2 – 6.18e-2 – 3.48e-2 –

200 3.46e-3 1.90 6.99e-3 2.05 1.78e-2 2.00 1.59e-2 1.96 8.11e-3 2.10

400 9.72e-4 1.83 1.77e-3 1.98 4.56e-3 1.96 4.13e-3 1.94 1.93e-3 2.07

800 2.50e-4 1.96 4.32e-4 2.03 1.11e-3 2.04 1.04e-3 1.99 4.59e-4 2.07

1600 5.93e-5 2.08 1.02e-4 2.09 2.48e-4 2.16 2.56e-4 2.02 1.07e-4 2.11

Table 4.1: Example 1: L1-errors and corresponding convergence rates for the ρ-, ρu-, and E-
components of the U -solution, v-component of the V x-solution, and p-component of the V y-
solution.

It should be observed that in this example, the solution is smooth and thus it can, in principle, be
computed without the post-processing. We have verified that in this case, the second order of convergence
is also obtained (the results are omitted for the sake of brevity).
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Example 2 (Sod shock-tube problem). In the second example, we consider the Sod shock-tube prob-
lem from [44]. The Riemann initial data,

V (x, 0) =
{

(1, 0, 1)⊤, x < 0.5,
(0.125, 0, 0.1)⊤, otherwise,

are prescribed in the computational domain [0, 1] with the free boundary conditions.
We compute the solution until the final time t = 0.2 on a uniform mesh with N = 200 and plot it in

Figure 4.1 together with the exact solution, obtained using the library NUMERICA [46], and the solution
computed by the FV AF method but without post-processing. As one can see, the FV AF solution
is oscillation-free and its rather sharply resolved discontinuities are located at correct locations thanks
to the conservative post-processing. On the contrary, the FV AF method without the post-processing
produces very large spurious spikes in the U -solution (note that these spikes are located exactly where
the initial condition was discontinuous) and a non-oscillatory V -solution, which apparently captures a
wrong weak solution as expected (see [4]).
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Figure 4.1: Example 2: U -solutions (upper row) and V -solutions (lower row) computed by the FV
AF method and the FV AF method without the post-processing.

Example 3 (double rarefaction problem). In this problem taken from [47], we consider a Riemann
problem, whose solution contains two rarefaction waves, which expand and form a near-vacuum-area in
the middle of the computational domain [0, 1]. The initial conditions,

V (x, 0) =
{

(1,−2, 0.4)⊤, x < 0.5,
(1, 2, 0.4)⊤, otherwise,
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are supplemented with the free boundary conditions.
We compute the solution until the final time t = 0.15 on a uniform mesh with N = 200 and plot the

obtained results together with exact solution, once again generated using the library NUMERICA [46] in
Figure 4.2. As one can see, the computed solution is oscillation-free and preserve the positivity of both
the density and pressure, which is not the case for many existing schemes.
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Figure 4.2: Example 3: U -solutions (upper row) and V -solutions (lower row).

Example 4 (shock-turbulence interaction problem). In this example taken from [43], a shock inter-
acts with a turbulent flow characterized by high-frequency oscillations.

The initial data,

V (x, 0) =
{

(3.857143, 2.629369, 10.333333)⊤, x < −4,
(1 + 0.2 sin(5x), 0, 1)⊤, otherwise,

are prescribed in the computational domain [−5, 5] with the inflow boundary conditions at the left bound-
ary and free boundary conditions at the right one.

We compute the solution until the final time t = 1.8 on a uniform mesh with N = 1000 and report
the obtained results in Figure 4.3. Since in this example no exact solution is available, we compute the
reference solution (shown in Figures 4.3 and 4.4) by a second-order semi-discrete CU scheme from [25]
on a much finer uniform mesh consisting of 200000 cells. As one can see, the solution structures are
correctly resolved.

We also compare the performance of the FV AF method with a recently proposed low-dissipation
central-upwind (LDCU) scheme from [12] (implemented on the same mesh, using the same spatial re-
construction of the characteristic variables of the conserved system and time discretization). The ob-
tained results are shown in Figure 4.4, where one can see that the FV AF method better resolves smooth,
oscillating parts of the computed solution.
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Figure 4.3: Example 4: U -solutions (upper row) and V -solutions (lower row).
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Figure 4.4: Example 4: Densities computed by the FV AF method and LDCU scheme (left) and zoom
at x ∈ [0.5, 2.5] (right).

Example 5 (Woodward-Colella problem). In this problem, which was introduced in [49], the initial
conditions,

V (x, 0) =


(1, 0, 103)⊤, x < 0.1,

(1, 0, 102)⊤, x > 0.9,

(1, 0, 10−2)⊤, otherwise,

are prescribed in the computational domain [0, 1] with solid wall boundary conditions.
In Figure 4.5, we plot the solution computed at the final time t = 0.038 on a uniform mesh with

N = 400 along with the reference solution generated by a second-order semi-discrete CU scheme from
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[25] with reconstruction of characteristic variables and the same time discretization on a much finer
uniform mesh consisting of 200000 cells. The obtained results demonstrate the ability of the proposed
FV AF method to capture strong discontinuities.
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Figure 4.5: Example 5: U -solutions (upper row) and V -solutions (lower row).

Example 6 (explosion problem). This problem taken from [47], is a multidimensional extension of
the Sod shock-tube problem considered in Example 2.

We take the following initial conditions:

V (x, y, 0) =

(1, 0, 0, 1)⊤,
√

x2 + y2 < 0.4,
(0.125, 0, 0, 0.1)⊤, otherwise,

which are prescribed in the computational domain [−1, 1] × [−1, 1] with the free boundary conditions.
We compute the solution until the final time t = 0.25 on a uniform mesh with Nx = Ny = 400. In

Figure 4.6, we report three-dimensional plots of the density- and energy-components of the U -solution
and the density- and pressure-components of the V x-solution (we do not show the V y-solution as it is
practically the same as the V x-one). The 1-D slices of ρ,

√
(ρu)2 + (ρv)2, and E from the U -solution and

of ρ,
√

u2 + v2, and p from the V x-solution along the line y = x are shown in Figure 4.7 (the reference
solution plotted there has been obtained by a second-order semi-discrete FV scheme with reconstruction
of characteristic variables and exact Riemann solver numerical flux on a much finer uniform mesh con-
sisting of 3000 × 3000 cells). As one can see, neither spurious oscillations nor anomalous features are
visible, and the solution is sharply captured. One can also observe that the radial symmetry is preserved.
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Figure 4.6: Example 6: Density- and energy-components of the U -solution (upper row) and density-
and pressure-components of the V x-solution (lower row).

Example 7 (shock-vortex interaction). In the last 2-D example, which was studied in, e.g., [17,20,39],
we consider a moving vortex with Mach number Mv := 0.9 interacting with a stationary shock with Mach
number Ms := 1.5. Such an interaction gives rise to complex flow tructures, making this numerical test
challenging for higher-order numerical schemes.

A schematic of the initial setup is shown in Figure 4.8. Specifically, the computational domain
[0, 2] × [0, 1] is divided into two main subdomains by the vertical line x = 0.5. The vortex is initially
located within a circular area centered in (xc, yc) := (0.25, 0.5) and occupies regions I and II: the first one
is a circle of radius a = 0.075 and the latter one is a concentrical annulus with inner radius a and outer
radius b = 0.175. The states in regions III and IV correspond to a stationary shock. In particular, given
the left constant state from region III,

ρIII = 1, uIII =
√
γMs, vIII = 0, pIII = 1,

the right state, (ρIV, uIV, vIV, pIV), can be easily computed through the Rankine-Hugoniot conditions (see
[47, Section 3.1.3]), leading to

ρIV =
(γ + 1)M2

s

(γ − 1)M2
s + 2

ρIII, uIV =
(γ − 1)M2

s + 2
(γ + 1)M2

s
uIII vIV = 0, pIV =

2γM2
s − (γ − 1)
γ + 1

pIII.
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Figure 4.7: Example 6: 1-D slices along y = x for the U -solution (upper row) and V x-solution (lower
row).
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Figure 4.8: Example 7: Sketch of the simulation set-up.

The velocity profile in vortex regions I and II is given, in terms of radial coordinates (r, ϑ) with
respect to the center (xc, yc):

u(r, ϑ) = uIII − vϑ sinϑ, v(r, ϑ) = vIII + vϑ cosϑ,
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where

vϑ :=


vm

r
a
, r ≤ a,

vm
a

a2 − b2

(
r −

b2

r

)
, a < r < b,

0, r ≥ b,

with vm := Mv
√
γ being the the maximal angular velocity.

Density and pressure profiles inside the vortex are obtained imposing a balance between centripetal
force and pressure gradients [39], resulting in

p = pIII

(
T

TIII

) γ
γ−1

, ρ = ρIII

(
T

TIII

) 1
γ−1

,

where TIII =
pIII
ρIIIR

is the constant temperature associated with the state of region III, with R = 287 J/kg-K
being the specific gas constant of the fluid, and T (r) is the temperature within the vortex:

T (r) =


A +
γ − 1
Rγ

v2
m

a2

r2

2
, r ≤ a,

B +
γ − 1
Rγ

v2
m

a2

(a2 − b2)2

(
r2

2
− 2b2 ln r − b4 r−2

2

)
, a < r < b,

TIII, r ≥ b,

where

B = TIII −
γ − 1
Rγ

v2
m

a2

(a2 − b2)2

(
b2

2
− 2b2 ln b − b4 b−2

2

)
,

A = B +
γ − 1
Rγ

v2
m

a2

(a2 − b2)2

(
a2

2
− 2b2 ln a − b4 a−2

2

)
−
γ − 1
Rγ

v2
m

2
.

Figure 4.9 shows a Schlieren image of the numerical results displaying the magnitude of the density
gradient field, ∥∇ρ∥2, computed on a uniform mesh with Nx = 1200 and Ny = 601 at time t = 0.7. In this
figure, we have used the following shading function:

exp
(
−

K∥∇ρ∥2
max ∥∇ρ∥2

)
,

where the numerical density derivatives are computed using central differencing. The computed results
agree well with those obtained in the literature.

5 Conclusions
In this paper, we have introduced a new active flux (AF) method for hyperbolic systems of conservation
laws, for which we consider two different formulations of the studied system (the original conservative
formulation and a primitive one containing nonconservative products), and discretize them on overlap-
ping staggered meshes using two different numerical methods. Both the conservative and primitive
variables are evolved in time using second-order semi-discrete finite-volume (FV) methods. The non-
conservative system is discretized by a path-conservative central-upwind scheme and its solution is used
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Figure 4.9: Example 7: Schlieren image of the density gradient.

to evaluate very simple numerical fluxes for the original conservative system. The nonlinear stability
of the resulting FV AF method is enforced with the help of a post-processing, which also guarantees a
conservative coupling between the two sets of variables. The performance of the proposed method has
been demonstrated on a number of one- and two-dimensional benchmarks.

We would like to emphasize that the main difficulty in designing higher-order extensions of the pro-
posed FV AF method is related to developing a high-order post-processing. Such post-processing should
be based on a uniformly accurate reconstruction/interpolation. One can use, for example, CWENO
reconstructions/interpolations (see [14,15,41] and references therein), and we plan to explore this possi-
bility in our future work.

We would also like to point out that having two sets of data for the discrete solution, which we evolve
at each evolution step, has been used to design a smoothness indicator based on the difference between
these two solutions; see [11]. This smoothness indicator can be used to develop different adaptation
strategies, which may substantially enhance the resolution achieved by the FV AF method.
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