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Abstract
Chemotaxis systems play a crucial role in modeling the dynamics of bacterial and cellular
behaviors, including propagation, aggregation, and pattern formation, all under the influence
of chemical signals. One notable characteristic of these systems is their ability to simulate
concentration phenomena, where cell density undergoes rapid growth near specific concen-
tration points or along certain curves. Such growth can result in singular, spiky structures and
lead to finite-time blowups. Our investigation focuses on the dynamics of the Patlak-Keller-
Segel chemotaxis system and its two-species extensions. In the latter case, different species
may exhibit distinct chemotactic sensitivities, giving rise to very different rates of cell den-
sity growth. Such a situation is highly challenging for numerical methods as they may fail to
accurately capture the blowup of the slower-growing species mainly due to excessive numer-
ical dissipation. In this paper, we propose a hybrid finite-difference-particle (FDP) method,
in which a sticky particle method is used to solve the chemotaxis equation(s), while finite
difference schemes are employed to solve the chemoattractant equation. Thanks to the low-
dissipation nature of the sticky particle method, the proposed hybrid scheme is particularly
adept at capturing the blowup behaviors in both one- and two-species cases. The proposed
hybrid FDP methods are tested on a series of challenging examples, and the obtained numer-
ical results demonstrate that our hybrid method can provide sharp resolution of the singular
structures even with a relatively small number of particles. Moreover, in the case of the two
species, our method adeptly captures the blowing-up solution for the component with lower
chemotactic sensitivity, a feature not observed in other works.
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1 Introduction

We consider the two-dimensional (2-D) two-species Patlak-Keller-Segel (PKS) type chemo-
taxis system:

⎧
⎨

⎩

(ρ1)t + χ1∇·(ρ1∇c) = ν1�ρ1, (1.1a)

(ρ2)t + χ2∇·(ρ2∇c) = ν2�ρ2, (1.1b)

τct = ν�c + γ1ρ1 + γ2ρ2 − ζc, (1.1c)

where x = (x, y)� ∈ 	 ⊂ R
2 are the spatial variables, t is time, ρ1 and ρ2 represent

the cell densities of two non-competing species, c is the concentration of the chemoattrac-
tant, χ2 > χ1 > 0 are the chemotactic sensitivity parameters, ν1, ν2, and ν are the diffusion
coefficients, γ1 and γ2 represent chemoattractant production rates, and ζ represents chemoat-
tractant decay rate (ν1, ν2, ν, γ1, γ2, and ζ are positive constants). The parameter τ is either 0
or 1, corresponding to the case of parabolic-elliptic or parabolic-parabolic coupling, respec-
tively. The system (1.1) is considered subject to certain initial data and the homogeneous
Neumann boundary conditions.

The original single-species PKSchemotaxismodel,which can be obtained from the system
(1.1) by setting ρ2 ≡ 0, was first introduced in [35, 36, 40] and later extended to the two-
species system (1.1) in [46]. Analytical investigations followed in [20, 26, 27, 32–34, 39, 44].
Depending on the initial data, boundary conditions, and parameter values, the solution may
either converge to a constant steady state or develop singular structures (blow up in finite
time). In blowup scenarios, different blowup time scales are anticipated for the two densities,
with ρ2 possibly blowing up faster than ρ1. However, as proved in [26, 27], simultaneous
blowup is the only possibility in the parabolic-elliptic case (τ = 0), even though different
scalings may exist for the two species. This poses a significant challenge in developing
accurate and robust numerical methods for (1.1).

To the best of our knowledge, the first numerical method for (1.1) was introduced in [37],
where the system (1.1) was solved by a second-order hybrid finite-volume-finite-difference
method proposed in [10] for the single-species PKS system. It was observed in [37] that when
χ2 � χ1, the cell densities ρ1 and ρ2 exhibit different blowup behaviors: ρ2 develops a δ-
type singularity, whereas ρ1 undergoes algebraic blowup. This observation was numerically
validated by conducting a very careful mesh refinement study. However, the obtained results
were misleading since only algebraic growth—not blowup—of ρ1 could be observed due
to inadequate resolution (even on a very fine mesh). A fourth-order hybrid finite-volume-
finite-difference method developed in [10] helped only slightly to enhance the resolution.
More recently, in [15], an adaptivemovingmesh (AMM) finite-volume semi-discrete upwind
method was introduced to enhance the approximation of singular structures of ρ1 in the two-
species chemotaxis system. Despite this advancement, the numerical experiments reported
in [15] show that even the AMM method failed to accurately capture the ρ1-component of
the blowing-up solution when χ2 � χ1.
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In this paper, we introduce a hybrid finite-difference-particle (FDP) approach for capturing
the singular behavior of solutions of (1.1). In order to achieve a high resolution of both compo-
nents of the blowing up solution (ρ1 and ρ2), we employ a sticky particle method introduced
in [5, 16] in the context of pressureless gas dynamics equations, to the chemotaxis equations
(1.1a) and (1.1b), while applying a second-order finite-difference (FD) semi-discrete scheme
for solving the chemoattractant equation (1.1c).

Sticky particle methods belong to a class of deterministic particle methods, which provide
a diffusion-free (or low diffusion) alternative to Eulerian methods for a variety of time-
dependent PDEs; see, e.g., [6, 16] and references therein. In these methods, the numerical
solution is sought as a linear combination of Dirac distributions (δ-functions), whose posi-
tions and coefficients represent the locations and weights of the particles, respectively. The
solution is then found by following the time evolution of the locations and weights of the
particles according to a system of ODEs obtained by considering a weak formulation of the
studied PDEs. Even though over the years deterministic particle methods weremainly used to
numerically solve purely convective equations (see, e.g., [21, 42, 43] and references therein),
the range of applicability of these methods was extended to treat convection-diffusion and
other types of equations (see, e.g., [4, 8, 17, 21–25, 38, 42]). Several approaches have been
explored for treating diffusion terms in particle methods. One of the widely used treatments
is the random walk approach [19, 30], in which the diffusion operator is naturally approx-
imated by adding a Wiener process to the motion of each particle. This way, the diffusion
only affects the positions of particles—not their weights. A drawback of the random walk
method, like other stochastic methods, is that its accuracy is very low, and reasonable resolu-
tions can be achieved only if a very large number of realizations is used, which would make
the particle method for the PKS-type systems extremely inefficient. Among the deterministic
approaches, the one we have successfully implemented in this paper is a weighted particles
method [23, 24, 38], which is both efficient and accurate. In this method, the diffusion is first
approximated by an integral operator, which is then treated as a source term that affects the
particle weights—not their positions.

Asmesh-free, particlemethods are quite flexible as the particle positions are self-adapted to
the local flow.This, however, comes at the expense of the regularity of the particle distribution:
inter-particle distances typically change in time, and just as particles may cluster, they may
also spread away from each other. This may lead to a poor resolution of the computed
solution and a low efficiency of the particle method. The latter is related to the fact that the
time-step for the ODE solver used to evolve the particle system in time depends generally
on the distance between the neighboring particles. Thus, the success of deterministic particle
methods relies upon an accurate and efficient particle redistribution algorithm, which ensures
that different parts of the computed solution are adequately resolved. A large variety of re-
meshing techniques has been proposed (see, e.g., [6, 9, 11, 13, 17, 18, 22, 25, 41] to name a
few), including the particle merger approach used in [13, 18, 22]. Particle merger becomes
crucial in cases when the solution naturally develops sharp spikes or even δ-type singularities.
In these cases, the clustering particles must be merged into heavier particles located in the
center of mass of the merged particles: this is the key feature of the sticky particle methods,
which were successfully applied to the pressureless gas dynamics equations [16] and dusty
gas flows [7].

The success of the proposed hybrid FDP method hinges on the accurate and efficient
computations of the values of c at the particle locations and the projection of the particle
approximations onto the nodes of the FD grid. The former is achieved with the help of
a global piecewise linear approximation of c (this technique is borrowed from the finite-
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volume methods; also see the finite-volume-particles methods in [7, 16]), while for the latter
one, we introduce a new particle-grid projection approach.

The paper is organized as follows. In §2, we give a brief overview of the weighted par-
ticle method for convection-diffusion equations. In §3, we introduce a hybrid FDP method,
whose components—a novel sticky particle method for the cell densities equations and a
second-order FD scheme for the chemoattractant equations—are described in §3.1 and §3.2,
respectively. Details of the projection between the particle and grid data, which needs to be
performed in the hybridization algorithm, are discussed in §3.3. The numerical algorithm is
summarized in §3.4. In §4, we demonstrate the performance of the hybrid FDP method on
a number of challenging numerical examples designed to demonstrate the capability of the
proposed method to resolve the blowup solution behavior with high resolution. Finally, we
conclude the paper in §5 by summarizing our contributions.

2 Weighted Particle Method: an Overview

In this section, we briefly describe the weighted particle method for 2-D convection-diffusion
equations. We consider the following model problem:

ρt + ∇·(ρu) = ν�ρ, x ∈ 	 ⊂ R
2, t > 0, (2.1)

subject to the initial data

ρ(x, 0) = ρ0(x). (2.2)

Here, ρ(x, t) is an unknown function, u(x, t) = (u(x, t), v(x, t))� is the given velocity
field, ν is a positive diffusion coefficient, and ρ0(x) is a given function. Notice that equations
(1.1a) and (1.1b) would read as the convection-diffusion equation (2.1) if one replaces ∇c
there with a given velocity field. Dependence of (1.1a) and (1.1b) on the chemoattractant
equation (1.1c) makes the development of particle methods for (1.1a) and (1.1b) substantially
more challenging, as discussed in §3.1, where we develop a new sticky particle method for
chemotaxis equations.

In order to apply a weighted particle method to (2.1), one first needs to replace the Lapla-
cian operator �ρ on the right-hand side of (2.1) with its integral approximation to obtain
(see, e.g., [6, 23, 24, 38]),

ρσ
t (x, t) + ∇·(ρσ (x, t)u(x, t)

) = ν

σ 2

∫∫

R2

ησ (x − y)
(
ρσ ( y, t) − ρσ (x, t)

)
d y, (2.3)

where σ is a small positive number and

ησ (x) := 1

σ 2 η
( x

σ

)
, η(x) = 4

π
e−|x|2 . (2.4)

According to [23, Theorem 1], the solution ρσ of (2.3) is an approximation of the solution ρ

of (2.1) provided u is sufficiently smooth. We, therefore, aim to find a particle approximation
of ρσ rather than ρ.

To this end, we seek an approximate solution of (2.3)–(2.4) as a linear combination of
Dirac δ-functions,

ρ̂ (x, t) =
N∑

i=1

wi (t) δ(x − xi (t)), (2.5)
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where xi (t) represents the location of the i-th particle, wi (t) denotes its weight, and N
is the total number of particles. We would like to emphasize that this concept of particles
represents a mathematical abstraction, differing from the physical concept of particles of
specific materials.

We begin by initializing the particle approximation (2.5). To this end, we divide 	 into a
set of non-overlapping subdomains {	i (0)}Ni=1:

	 =
N⋃

i=1

	i (0) and 	i (0) ∩ 	 j (0) = ∅ ∀i �= j .

We set the initial location of the i-th particle, xi (0), to be the center of mass of 	i (0). The
corresponding initial weight is then given by

∫

	i (0)
ρ(x, 0) dx, which we approximate using

the midpoint rule resulting in

wi (0) = ρ(xi (0), 0) |	i (0)|. (2.6)

We then substitute (2.5) into a weak form of (2.3)–(2.4) to end up with the following
system of ODEs for the particle locations xi (t), weightswi (t), and subdomain sizes |	i (t)|:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
xi (t) = u(xi (t), t) =: ui (t) = (ui (t), vi (t))

�,

d

dt
wi (t) = ν

σ 2

N∑

j=1

ησ

(
xi (t) − x j (t)

)[
w j (t)|	i (t)| − wi (t)|	 j (t)|

] =: βi (t),

d

dt
|	i (t)| = ∇·u(xi (t), t) |	i (t)| = ∇·ui (t) |	i (t)|.

(2.7)

The initial conditions for this ODE system are specified in (2.6).
The ODE system (2.7) is to be numerically integrated by an appropriate ODE solver with

a time-step �t , which is chosen to satisfy several requirements. Specifically, the time-step
should depend on the distance between nearby particles as the stability condition imposes that
no particle trajectories should intersect within the time interval [t, t + �t]. In addition, one
needs to ensure that the weights wi remain nonnegative for all i (this is extremely important
when ρ must remain nonnegative as in the studied case of chemotaxis systems), the size of
subdomains 	i does not decay too fast, and no particles propagate too far in one time-step.

To quantify the aforementioned requirements, let us assume, for the sake of simplicity,
that the system (2.7) is numerically solved by the first-order forward Euler method:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xi (t + �t) = xi (t) + �t ui (t),

yi (t + �t) = yi (t) + �t vi (t),

wi (t + �t) = wi (t) + �t βi (t),

|	i (t + �t)| = |	i (t)|
[
1 + �t ∇·ui (t)

]
.

(2.8)

In this case, the first two equations in (2.8) imply that the particle trajectories are straight
lines on the interval [t, t + �t] and can be described by the following parametric form with
parameters τi and τ j for some particles i and j :

{
x = xi (t) + τi ui (t),

y = yi (t) + τivi (t),
and

{
x = x j (t) + τ j u j (t),

y = y j (t) + τ jv j (t).
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It is easy to verify that these two straight lines intersect at the point that corresponds to

τi = vi (t)(x j (t) − xi (t)) − ui (t)(y j (t) − yi (t))

ui (t)v j (t) − u j (t)vi (t)
,

τ j = v j (t)(x j (t) − xi (t)) − u j (t)(y j (t) − yi (t))

ui (t)v j (t) − u j (t)vi (t)
,

(2.9)

unless the denominator ui (t)v j (t) − u j (t)vi (t) vanishes, in which case these two lines are
parallel. Notice that the i-th particle will arrive in this intersection point at time t+τi provided
τi > 0, while the j-th particle will be there at time t + τ j provided τ j > 0. This leads to the
following time-step constraint:

�t ≤
⎧
⎨

⎩

min
(i, j):τi>0, τ j>0

{
max

(
τi , τ j

)}
if ∃ (i, j) : τi > 0, τ j > 0,

∞ otherwise.
(2.10)

Remark 2.1 In practice, in order to prevent division by very small numbers, one has to use
the formulae in (2.9) only when |ui (t)v j (t) − u j (t)vi (t)| > μ, where μ is a small positive
number.

Next, it follows from the third equation in (2.8) that theweightswi will remain nonnegative
for all i if

�t ≤

⎧
⎪⎨

⎪⎩

min
i :βi (t)<0

{

−wi (t)

βi (t)

}

if min
i

βi (t) < 0,

∞ otherwise.

(2.11)

Also, from the last equation in (2.8), we conclude that the size of subdomains 	i will not
decay too fast for a sufficiently small �t . For instance, one may restrict their decay within
one time-step by a factor of 2 by requiring that the RHS of this equation is greater than
1
2 |	(t)|, which leads to the following time-step restriction:

�t ≤

⎧
⎪⎨

⎪⎩

min
i :∇·ui (t)<0

{

− 1

2∇·ui (t))
}

if min
i

∇·ui (t) < 0,

∞ otherwise.

(2.12)

Finally, to limit the distance particles can propagate within one time-step, one may require

�t ≤
√
mini |	i (0)|

maxi (max{|ui |, |vi |}) . (2.13)

Remark 2.2 The time restrictions (2.10)–(2.13) are still valid if a high-order strong stability
preserving (SSP) Runge-Kutta or multistep explicit method [28, 29] is used instead of the
forward Euler method for time integration, since the SSPmethods can be expressed as convex
combinations of forward Euler steps.

3 Hybrid FDPMethod for (1.1)

We now turn our attention to the PKS-type system (1.1) and introduce an FDP method for its
numerical solution. Specifically, the chemotaxis equations (1.1a) and (1.1b) are discretized
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using a sticky particlemethod (§3.1), while the chemoattractant concentration equation (1.1c)
is approximated using an FD scheme (§3.2). The coupling between the two ingredients of
the FDP methods is carried out using the projection techniques (§3.3).

3.1 Sticky Particle Method for Equations (1.1a) and (1.1b)

Recall that the chemotaxis equations (1.1a) and (1.1b) take the form of the convection-
diffusion equation (2.1) with ρ being either ρ1 or ρ2, ν = ν1 or ν = ν2, and u = χ1∇c or
u = χ2∇c, and consequently can be replaced using an integral approximation of the Laplace
operator as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ρσ
1 )t (x, t) + χ1∇·(ρσ

1 (x, t)∇c(x, t)
) = ν1

σ2

∫∫

R2

ησ (x − y)
(
ρσ
1 ( y, t) − ρσ

1 (x, t)
)
d y, (3.1a)

(ρσ
2 )t (x, t) + χ2∇·(ρσ

2 (x, t)∇c(x, t)
) = ν2

σ2

∫∫

R2

ησ (x − y)
(
ρσ
2 ( y, t) − ρσ

2 (x, t)
)
d y, (3.1b)

τct (x, t) = ν�c(x, t) + γ1ρ
σ
1 (x, t) + γ2ρ

σ
2 (x, t) − ζc(x, t). (3.1c)

The corresponding particle solutions for ρσ
1 and ρσ

2 of (3.1) are sought in the form

ρ̂1(x, t) =
N1∑

i=1

w1
i (t) δ(x − x1i (t)) and ρ̂2(x, t) =

N2∑

i=1

w2
i (t) δ(x − x2i (t)) (3.2)

with x1i (t) and x
2
i (t) being each species particle locations,w

1
i (t) andw2

i (t) their correspond-
ing weights, and N1 and N2 the total number of each species particle. We denote by 	1

i (t)
and 	2

i (t) the subdomains occupied by the corresponding particles.
In principle, one can apply the weighted particle method from §2 to (3.1a) and (3.1b), in

which the particle locations, their weights, and sizes of the corresponding subdomains evolve
in time according to (2.7). However, when the solutions of (3.1a) and (3.1b) start developing
spiky structures, the particles start clustering in the regions of large chemoattractant gradient
and hence, using a constant σ in (2.7) leads to an inaccurate approximation of the diffusion
operator. Therefore, one has to use variable values ofσ , which depend on the distance between

the particles. In particular, we use σ k
i j =

√(|	k
i | + |	k

j |
)
/2, k = 1, 2, so that the system

(2.7) for ρ1 and ρ2 reads as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

d

dt
xki = (uki , v

k
i )

�, k = 1, 2,

d

dt
wk
i = νk

Nk∑

j=1

1

(σ k
i j )

2
ησ k

i j

(
xki − xkj

)[
wk

j |	k
i | − wk

i |	k
j |
]
, k = 1, 2,

d

dt
|	k

i | = rki |	k
i |, k = 1, 2.

(3.3)

Here, (uki , v
k
i )

� ≈ χk∇c(xki (t), y
k
i (t), t) and rki ≈ χk�c(xki (t), y

k
i (t), t), which will be

obtained in §3.3.1 below. Notice that all of the indexed quantities in (3.3) depend on t , but
we have omitted this dependence for brevity. Time dependence of indexed quantities will
also be omitted below unless it is necessary to emphasize it in the discussion context.
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It should be observed that choosing variable σ k
i j is not sufficient to make numerical inte-

gration of the ODE system (3.3) practically feasible as the time-step restriction (2.10) would
lead to �t → 0, when ρ1 and ρ2 approaching the point mass concentration.

In order to overcome this difficulty, we present a new sticky particle method for the
chemotaxis equations (1.1a) and (1.1b). Thebasic idea of stickyparticlemethods is to coalesce
clustering particles into a “heavier” particle located at their center of mass. In this paper, we
introduce a new particle merger strategy, which is implemented in two steps. Namely, at each
time level t , we first identify pairs of particles whose trajectories are about to intersect by
the next time level t + �t and merge them before the time evolution step. We then evolve
the particles from t to t + �t and coalesce those particles, which have clustered upon the
completion of the evolution step (the second merger step was used in [7, 13, 16, 18, 22]).

In order to implement the merger, we introduce an auxiliary “merger” Cartesian grid
consisting of small cells of the size about 1

4 mini |	i (0)| and assume that at a certain time
level t no “merger” cell contain more than one particle. We then compute the time-step �t
based on the two-species version of the time-step restrictions (2.11)–(2.13), but not (2.10),
which, as we have mentioned, may be impractically too restrictive. Equipped with this �t ,
we proceed with the following steps.
Merger Step 1. We identify those pairs of the same species particles whose trajectories are
about to intersect before time t + �t . Let us assume that {(xki , wk

i , |	k
i |), (xkj , wk

j , |	k
j |)} is

one of such pairs (k = 1 or 2), that is, τ ki > 0, τ kj > 0, and max{τ ki , τ kj } < �t , where τ ki

and τ kj are given by the two-species version of (2.9). We then add the weights of these two
particles, combine their subdomains, and replace the two particles with one heavier particle
located at the center of mass of the replaced particles:

{
(xki , w

k
i , |	k

i |), (xkj , wk
j , |	k

j |)
}

−→ (̃xk, w̃k, |	̃k |)

with

x̃k = wk
i x

k
i + wk

j x
k
j

wk
i + wk

j

, w̃k = wk
i + wk

j , |	̃k | = |	k
i | + |	k

j |.

Once the i-th and j-th particles of species k have been merged, the total number of particles
for this species reduces by one, the remaining particles are re-numbered, and Merger Step 1
is repeated for each species to ensure that no particle trajectories intersect within the current
time-step.

Remark 3.1 Notice that the process of searching for pairs of particles with potentially inter-
secting trajectories is computationally expensive if performed straightforwardly —looping
through all particle pairs of species k is O(N 2

k ) expensive. However, the search mecha-
nism can be made efficient by introducing another auxiliary Cartesian grid with cells of size
mini |	i (0)| and using the fact that the time-step restriction (2.13) ensures that particles
cannot propagate too far within one time-step. One can then check the particles located in
nearby auxiliary cells. This alternative implementation is onlyO(Nk) expensive for k = 1, 2.

Time Evolution. The particle solution is evolved from time t to t + �t by numerically
solving (3.3). Recall that the system (1.1) is solved subject to the homogeneous Neumann
boundary conditions, which imply that no particles should leave the computational domain
	. This is, however, not automatically guaranteed, and we, therefore, develop a “pull-back”
strategy of relocating the outside particles back on the domain boundary ∂	 as follows: we
move the outside particle to the closest point on ∂	. Once all evolved particles are located
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in 	, one has to coalesce the clustering particles according to Merger Step 2, which will be
introduced shortly.

If a Runge-KuttaODE solver is employed (as in all of the numerical experiments presented
in §4), then both “pull-back” and merger algorithms should be implemented at the end of
each Runge-Kutta stage.
Merger Step 2.We find all of the auxiliary “merger” cells containing more than one particle
from the same species and then merge them according to the following procedure. Let Cmer

be one of such cells with two or more particles of species k (k = 1 or 2). Then, the particles
of species k located in Cmer are merged into a new particle, (̃xk, w̃k, |	̃k |), located at the
center of mass of the replaced particles and their weights and subdomain sizes are summed
up:

x̃k =

∑

i :xki ∈Cmer

wk
i x

k
i

∑

i :xki ∈Cmer

wk
i

, w̃k =
∑

i :xki ∈Cmer

wk
i , |	̃k | =

∑

i :xki ∈Cmer

|	k
i |.

Remark 3.2 We would like to point out that, by construction, the sticky particle method
preserves the positivity of ρ1 and ρ2, which is a crucial property for the stability of numerical
methods for PKS-type systems, as it was shown in [12].

3.2 Finite-Difference Scheme for Equation (1.1c)

In this section, we describe the second ingredient of our hybrid method—the FD scheme,
which is used to numerically solve the chemoattractant concentration equation (1.1c). We
restrict our consideration to the case of a rectangular computational domain 	. For general
domains, one can still use FD schemes, but the treatment of boundary conditions and grid
points near the boundary becomes quite delicate (this is outside the scope of the current
paper).

We first split 	 into uniform rectangular cells C�,m of dimensions �x and �y and denote
the cell centers by x�,m = (x�,m, y�,m). A second-order FD discretization of (1.1c) (or, a
semi-discretization in the parabolic-parabolic case with τ = 1) reads as

τ
d

dt
c�,m = ν(�c)�,m + γ1(ρ1)�,m + γ2(ρ2)�,m − ζc�,m, (3.4)

where c�,m :≈ c(x�,m, t), (ρ1)�,m :≈ (ρ1)(x�,m, t), (ρ2)�,m :≈ (ρ2)(x�,m, t), and (�c)�,m
is the second-order discrete Lapcacian:

(�c)�,m = c�+1,m − 2c�,m + c�−1,m

(�x)2
+ c�,m+1 − 2c�,m + c�,m−1

(�y)2
. (3.5)

If τ = 1, one needs to numerically integrate the extended ODE system (3.3)–(3.4).
Otherwise, if τ = 0, (3.4) is a linear algebraic system with respect to {c�,m}, which needs to
be solved upon completion of each time-step (or each stage if a Runge-Kutta ODE solver is
employed).

Remark 3.3 In Appendix B, we establish a-priori estimates for the discrete ‖∇c‖L∞(	) that
ensure well-posedness for smooth solutions in both the parabolic-parabolic (τ = 1) and
parabolic-elliptic (τ = 0) cases.
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Remark 3.4 We stress that the computed chemoattractant concentration values {c�,m} will
remain positive. If τ = 0, the positivity follows from the diagonal dominancy of the matrix
of the coefficients on {c�,m} in the corresponding linear system. If τ = 1, then onewould need
first to consider the forward Euler discretization of (3.4), which will be positivity-preserving
provided the following restriction on the time-step,

�t ≤ 1

ζ + 2ν

(
1

(�x)2
+ 1

(�y)2

) , (3.6)

is satisfied. A similar conclusion can be drawn for a high-order SSPRunge-Kutta or multistep
explicit method [28, 29].

3.3 Projection Between the Particle and Grid Data

It should be observed that one has to project the data from/to the particle locations xki to/from
the grid nodes x�,m when a meshless particle method is combined with a grid-based FD
scheme. We introduce these mapping procedures in §3.3.1 and §3.3.2.

3.3.1 Computation of∇c and1c at Particle Locations

In order to evolve particles in time according to (3.3), one has to compute velocities (uki , v
k
i )

�
and their divergences rki at the particle locations. Since these quantities are obtained using
∇c and �c, and since the values c�,m are computed at the grid points, a projection of the grid
data on the particle location has to be carried out.

To this end, we use the second-order FD formulae

(cx )�,m = c�+1,m − c�−1,m

2�x
, (cy)�,m = c�,m+1 − c�,m−1

2�y
,

and the second-order discrete Laplacian (3.5) to construct global (in space) piecewise linear
interpolants for cx , cy , and �c, which are in every cell C�,m defined by

c̃x (x, y) = (cx )�,m + (cx )�+1,m − (cx )�−1,m

2�x
(x − x�,m) + (cx )�,m+1 − (cx )�,m−1

2�y
(y − y�,m),

c̃y(x, y) = (cy)�,m + (cy)�+1,m − (cy)�−1,m

2�x
(x − x�,m) + (cy)�,m+1 − (cy)�,m−1

2�y
(y − y�,m),

�̃c(x, y) = (�c)�,m + (�c)�+1,m − (�c)�−1,m

2�x
(x − x�,m)

+ (�c)�,m+1 − (�c)�,m−1

2�y
(y − y�,m).

Finally, at each particle location xki , k = 1, 2, we obtain

uki = χk c̃x (x
k
i , y

k
i ), vki = χk c̃y(x

k
i , y

k
i ), rki = χk�̃c(xki , y

k
i ). (3.7)

3.3.2 Computation of�1 and�2 at Grid Points

In order to evolve c in time according to (3.4), onehas to recover the density grid values (ρ1)�,m
and (ρ2)�,m from the particle distributions (3.2). This can be conducted in the following two
steps.
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Step 1. For each particle satisfying xki ∈ C�,m , we compute the distance from this particle to
the cell center x�,m :

(dki )�,m := |xki − x�,m |, (3.8)

and evaluate the grid values of ρ1 and ρ2 at the cell center x�,m using a distance-based
weighted averaging:

(ρk)
∗
�,m =

∑

xki ∈C�,m

wk
i

|	k
i |

· 1

(dki )�,m

∑

xki ∈C�,m

1

(dki )�,m

, k = 1, 2, (3.9)

where wk
i /|	k

i | are the point values of ρk at the particle locations xki . If there is no particles
of species k in cell C�,m , we set (ρk)∗�,m = 0.
Step 2. In the cells containing no particles, the value (ρk)

∗
�,m = 0 may be very inaccurate.

We, therefore, replace the values computed in Step 1 with

(ρk)�,m =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(ρk)
∗
�,m if ∃ i : xki ∈ C�,m ,

(ρk)
∗
�+1,m + (ρk)

∗
�−1,m + (ρk)

∗
�,m+1 + (ρk)

∗
�,m−1

4 + 2
√
2

+ (ρk)
∗
�+1,m+1 + (ρk)

∗
�+1,m−1 + (ρk)

∗
�−1,m+1 + (ρk)

∗
�−1,m−1

4 + 4
√
2

otherwise.

where the latter expression is the distance-based weighted averaging over neighboring cells.

Remark 3.5 It should be observed that there are other ways to recover grid values of the
computed solution from its particle distribution when the solution is smooth; see, e.g., [6].
However, after the spiky structure is developed, most of these methods are based on a certain
regularization of the δ-functions, leading to a substantial decrease of the maximum values of
ρ1 and ρ2. The method we introduced above seems to be the only robust option.

Remark 3.6 Note that some of the values dki defined in (3.8) may be very small or even zero.
We, therefore, need to desingularize the computation in (3.9) to prevent division by small
numbers. This is done by replacing (3.8) with

(dki )�,m = max
{
dmin, |xki − x�,m |

}
,

where dmin is a small positive number taken to be min(�x,�y)/16 in all of the numerical
examples reported in §4.
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3.4 Summary of the Numerical Algorithm

Before demonstrating the performance of the proposed hybrid FDP method, we summarize
our approach using the following algorithm.

Algorithm 3.1. Hybrid Finite-Difference-Particle Method
Data: The studied chemotaxis system subject to the initial conditions.

Step 1: Introduce the required three different meshes for distinct purposes: a mesh
used in the FD scheme (C�,m), a mesh used as initial particle subdomains 	i (0), and a
mesh used for Merger Step 2 (Cmer).

Step 2: Use a particle approximation described in §2 and §3.1 to initialize the particle
approximations of the cell densities ρ1 and ρ2. Initialize point values of the
chemoattractant concentration c; see §3.2.

Step 3: Identify particle trajectories and use the particle Merger Step 1 described in
§3.1.

Step 4: Compute the point values ρ1 and ρ2 at the FD grid points according to §3.3.2.

Step 5: Compute the point values of cx , cy , and �c at the particle locations according
to §3.3.1.

Step 6 (Parabolic-Parabolic Case): Use the three-stage third-order SSP Runge-Kutta
method to evolve the particles by numerically solving (3.3) and the point-values of c
by numerically solving (3.4). Use the “pull-back” strategy to relocate the outside
particles back on ∂	.

Step 6 (Parabolic-Elliptic Case): Use the three-stage third-order SSP Runge-Kutta
method to evolve the particles by numerically solving (3.3). Use the “pull-back”
strategy to relocate the outside particles back on ∂	. Solve the elliptic equation (3.4) to
update the point-values of c.

Step 7: Use the particle Merger Step 2 described in §3.1.

if reach the final time t then
stop;

else
go back to Step 3;

end
Result: Numerical solution of the studied chemotaxis system.

4 Numerical Examples

In this section, we demonstrate the performance of the proposed hybrid FDP method and
its capability of capturing the blowing-up solutions of the PKS-type system (1.1) with high
resolution.

Recall that the proposed method employs three different meshes; see Algorithm 3.1. In
the following numerical examples, we use uniform meshes with � := �x = �y and keep
the ratio between these three mesh sizes fixed. Specifically, by “numerical results obtained
on a mesh of size �”, we imply the combination of a mesh of size � for the FD scheme, a
mesh of size �/4 for initial particle subdomains, and a mesh of size �/8 for the merger.
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For time evolution, we use the three-stage third-order SSP Runge-Kutta method [28,
29]. The time-step is selected using the stability restrictions introduced in (2.11)–(2.13).
We remind the reader that once the final time solution has been computed, the point values
of c are available, while the point values of ρ1 and ρ2 need to be recovered as described
in Steps 1 and 2 in §3.3.2. In order to visualize the obtained solution and conduct the
experimental convergence study, one may use, for instance, the MATLAB built-in function
scatteredInterpolant.

It is instructive also to monitor the time evolution of the free energy, which should be
decaying for smooth solutions in both single- and two-species cases; see, e.g., [1, 3, 31, 45]
and references therein. For completeness, in Appendix A, a derivation of the free energy
formula and the proof of its decay are provided in a more challenging two-species case. It
should be observed that the free energy decay is not guaranteed for the proposed hybrid
FDP method (unlike the provably energy-decaying methods in, e.g., [1, 3, 31, 45]), but we
focus on a lower dissipative approach allowing one to more accurately capture blowing up
solutions, especially in the two-species case (see Examples 2 and 5).

4.1 Parabolic-Parabolic Case (� = 1)

Example 1—Accuracy Test

The primary objective of this example is to check the accuracy of the proposed hybrid FDP
method experimentally.

We consider the system (1.1) with τ = 1, ν = 10, χ1 = 5, χ2 = 60, γ1 = γ2 = ζ =
ν1 = ν2 = 1, and subject to the following initial conditions:

ρ1(x, y, 0) = ρ2(x, y, 0) = 500 e−100(x2+y2), c(x, y, 0) ≡ 1,

(x, y) ∈ 	 = [−1, 1] × [−1, 1].
We compute the numerical solutions until time t = 2 × 10−4 using various resolutions with
� = 2/15, 2/20, 2/25, 2/30, 2/40, 2/50, 2/60, 2/80, 2/100, and 2/120. Given the numerical
solutions obtained on meshes of sizes �, 2�, and 4�, we compute the L1- and L2-errors
and estimate the corresponding experimental convergence rates using the following Runge
formulae:

L p-error ≈ ‖(·)2� − (·)�‖2L p
∣
∣‖(·)4� − (·)2�‖L p − ‖(·)2� − (·)�‖L p

∣
∣
, rate ≈ log2

(
‖(·)4� − (·)2�‖L p

‖(·)2� − (·)�‖L p

)

, p = 1, 2,

where (·)� denotes the numerical results obtained on a mesh of size �.
The computed L1- and L2-errors and the corresponding experimental convergence rates

for ρ1, ρ2, and c are presented in Table 1, where one can see that the second order of accuracy
is achieved.

Example 2—Two-Species Blowup at the Center of the Domain

In this example, we consider the same initial-boundary value problem (IBVP) as in Example
1 but compute its numerical solution until much larger times t = 5 × 10−4 and 10−3. The
densities ρ1 and ρ2 obtained on a mesh of size � = 1/20 are plotted in Figure 1. The results
are comparable to the ones in [15, Example 3] and [37]: Both ρ1 and ρ2 exhibit blowup
behavior, and the solution of ρ2 blows up faster.
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Fig. 1 Example 2: ρ1(x, 0.0005) (upper left), ρ2(x, 0.0005) (upper right), ρ1(x, 0.001) (lower left), and
ρ2(x, 0.001) (lower right), obtained using the hybrid FDP method with � = 1/20

This example is challenging in the sense that excessive numerical viscosity may smear the
singularity, leading to a failure to capture the blowup behavior. Due to the low-dissipation
nature of the sticky particle method, the hybrid FDPmethod provides a higher resolution: The
maximum values of ρ1 and ρ2 are respectively 4.7355× 103 and 9.6558× 105, as compared
to 3.5758 × 103 and 2.8726 × 105 reported in [15, Example 3].

We also monitor the time evolution of the discrete energy; see Figure 2 (left), where one
can see that the energy is decaying and the rate of decay sharply increases after the solution
gradients start sharply increasing.

We remind the reader that the time-step in our numerical simulations is selected adaptively
as described in §2. It should be observed that at the initial stages of the solution evolution
(when |∇c| is relatively small; recall that (uk, vk)� = χk∇c, k = 1, 2), the time-step
restriction is mainly affected by the diffusion terms, that is, by (3.6). However, as the solution
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Fig. 2 Example 2: Temporal evolution of E (left) and ‖∇c‖∞ (right)

Fig. 3 Example 2: Temporal evolution of min
x,y

�c (left) and �t (right)

evolves, the system transitions to a convection-dominated regime since |∇c| grows in certain
regions and the particle velocities significantly increase (see Figure 2 (right), where we plot
‖∇c‖∞ as a function of time), resulting in a substantial decrease in the size of time-steps,
which are also affected by the decrease of ∇ ·uk = χk�c, k = 1, 2; see Figure 3 (left). A
temporal evolution of the time-steps is plotted in Figure 3 (right). As one can see, while the
time-step decreases by a factor of more than 100 from its initial value, it does not approach
zero thanks to the particle merger strategies, which prevent the particles from clustering too
closely. We would also like to emphasize that particle merger together with the decrease
of 	k

i for those particles in which the mass is accumulated, lead to the continuous in time
increase of both ‖ρ1‖∞ and ‖ρ2‖∞ as shown in Figure 4.

Example 3—Single-Species Blowup at the Corner of the Domain

The third example taken from [12] is designed to demonstrate the ability of the proposed
hybrid FDP method to capture the blowup behavior away from the center of the initial
Gaussian-shaped cell density.

We consider the single-species PKS system
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Fig. 4 Example 2: Temporal evolution of ‖ρ1‖∞ (left) and ‖ρ2‖∞ (right)

{
ρt + ∇·(ρ∇c) = �ρ,

ct = �c + ρ − c,
(4.1)

subject to the following initial conditions:

ρ(x, y, 0) = 500 e−100[(x−0.25)2+(y−0.25)2], c(x, y, 0) ≡ 0,

(x, y) ∈ 	 = [−0.5, 0.5] × [−0.5, 0.5]. (4.2)

It has been proved in [33] that when the total mass of ρ is below a certain threshold, the
density ρ can only blow up at the boundary of the computational domain. This is indeed the
case for the IBVP (4.1)–(4.2).

We employ the hybrid FDP method to compute the solution on a mesh of size � = 1/20.
The density ρ at different times is shown in Figure 5, and the particle locations {(xi (t), yi (t))}
at times t = 0.02 and 0.1 are depicted in Figure 6. As one can observe, the behavior of the
computed solution matches the theoretical results established in [33]: The mass of ρ first
moves to the boundary and then concentrates at the corner where the solution blows up.

Example 4—Single-Species Blowup in the Interior of the Domain

We consider the same IBVP as in Example 3, but with different initial conditions:

ρ(x, y, 0) = 1000 e−100[(x−0.25)2+(y−0.25)2], c(x, y, 0) ≡ 0,

(x, y) ∈ 	 = [−0.5, 0.5] × [−0.5, 0.5].
In this case, the total mass of ρ is greater than the threshold, and the solution may blow up
in the interior of the computational domain.

We compute the solution by the proposed hybrid FDPmethod on amesh of size� = 1/20
until the final time t = 0.1. In Figure 7, we plot the density ρ at different times together with
the location of the “dominating” particle at t = 0.1 (by that time, the solution has blown
up and most of the mass is concentrated at the “dominating” particle), which is, as one can
clearly see, inside the domain. This result is consistent with both the theoretical result in [33]
and the numerical results reported in [2, 14].

123



   52 Page 18 of 28 Journal of Scientific Computing           (2025) 104:52 

Fig. 5 Example 3: ρ(x, 0.02) (upper left), ρ(x, 0.05) (upper right), ρ(x, 0.1) (lower left), and ρ(x, 0.2) (lower
right), obtained using the hybrid FDP method with � = 1/20

4.2 Parabolic-Elliptic Case (� = 0)

In this section, we consider an extremely challenging numerical example introduced in [37].

Example 5—Two-Species Blowup at the Center of the Domain

In this example, we consider the system (1.1) with τ = 0, γ1 = γ2 = ζ = ν1 = ν2 = ν =
χ1 = 1, χ2 = 20, and subject to the following initial conditions:

ρ1(x, y, 0) = ρ2(x, y, 0) = 50 e−100(x2+y2), (x, y) ∈ 	 = [−1, 1] × [−1, 1].
According to [26, 27], both ρ1 and ρ2 are expected to blow up simultaneously in finite time.
However, as demonstrated in [10, 15, 37], ρ1 and ρ2 are expected to undergo different blowup
patterns: While ρ2 develops a δ-type singularity, ρ1 grows up algebraically.
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Fig. 6 Example 3: Particle locations at t = 0.02 (left) and t = 0.1 (right), obtained using the hybrid FDP
method with � = 1/20. The color indicates the value of wi (t)/|	i (t)|

We compute the solution until the same (as in [10, 15, 37]) final time t = 0.0033 using
the proposed hybrid FDP method on a mesh of size 1/20. The densities ρ1 and ρ2, obtained
at times t = 0.003 and 0.0033 are shown in Figure 8. We would like to emphasize that
achieving a high resolution of blowup behavior inρ1 is a particularly challenging task.Neither
the second-order hybrid finite-volume-finite-difference [37] nor its fourth-order version [10]
were able to capture the algebraic blowup of ρ1. Some improvement was achieved in [15],
where an AMM finite-volume upwind method was developed and applied to the studied
IBVP, but the maximum of the blown up ρ1 on the finest mesh there was about 75 (compare
with the corresponding maximum of ρ2, which was about 1.3 × 105). One can observe in
Figure 8, our hybrid FDP method leads to a considerably higher resolution of ρ1 compared
to the schemes in [10, 15, 37]: The maximum values of ρ1 and ρ2 at t = 0.0033 are about
6.2× 104 and 1.6× 105, respectively. The significant improvement in the resolution of ρ1 is
attributed to the low-dissipation nature of the sticky particle method.

In Figure 9, we present time evolution of the maximum values of ρ1 and ρ2 for� = 1/15,
1/20, 1/25, and 1/30. As one can see, by refining the mesh from � = 1/15 to 1/30, the
maximum of ρ1 increases by a factor of about 6, which exhibits a much faster increase
compared to those obtained in [10, 15, 37]. This clearly demonstrates that the hybrid FDP
method outperforms its grid-based counterparts in accurately capturing blowup behaviors.
We would also like to point out that the maximum of ρ2 does not increase after the predicted
blowup time. This is attributed to the fact that by that time, most of the mass of the second
species had been already concentrated at the origin; see Figure 10, where we plot the particle
locations {(xki (t), yki (t))}, k = 1, 2 at times t = 0.003 and 0.0033. We note that due to the
particle merger, the total number of particles is decreasing in time: while initially there were
N1 = N2 = 3705 particles, at t = 0.003 and 0.0033, N1 = 3447 and 1963, respectively.
At the same time, N2 = 1 at both times, that is, by t = 0.003 all of the second species
particles have already mergered into a single particle. It is also instructive to see N1 and N2

as functions of time, which we plot in Figure 11.
It should also be observed that the blowup time for the PKS-type system (1.1) cannot

be obtained theoretically, and therefore it is important to determine it numerically. Figure 9
suggests that the solution computed by the hybrid FDPmethod blows up by time t = 0.00294,
at which the entire mass of the second species concentrates at one point (noticeably, this time
is the same for different �). This is demonstrated by zooming in on the peak curves in
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Fig. 7 Example 4: ρ(x, 0.02) (upper left), ρ(x, 0.05) (upper right), ρ(x, 0.1) (lower left), and the location of
the “dominating” particle at t = 0.1 (lower right), obtained using the hybrid FDP method with � = 1/20

Figure 9 within the time interval [0.028, 0.003], allowing for a clearer comparison between
the blowup behavior of the first and second species. We note that the observed blowup time
(t = 0.00294) is smaller than the one (t = 0.0033) reported in [15]; see also [10, 37]. This
is attributed to the low-dissipation nature of the sticky particle method compared to the grid-
based methods in [10, 15, 37], which contain a much larger amount of numerical dissipation
that causes a delay in blowup for both ρ1 and ρ2.

As in Example 2, we monitor the time evolution of the discrete free energy (see Figure 12
(left)), whose behavior is now very different from that observed in Example 2. First, even
before the sharp increase of the solution gradients starts, the decay is clearly non-monotone,
and at the blowup stage, the free energy drops drastically. The time evolution of ‖∇c‖∞ is
also similar: it first increases in not perfectly monotone way and then sharply jumps up at the
prediceted blowup time; see Figure 12 (right). Similarly, one can observe a non-monotone
decay in the size of time-steps; see Figure 13 (right). We believe that these oscillations are
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Fig. 8 Example 5: ρ1(x, 0.003) (upper left), ρ2(x, 0.003) (upper right), ρ1(x, 0.0033) (lower left), and
ρ2(x, 0.0033) (lower right), obtained using the hybrid FDP method with � = 1/20

attributed to the merger procedures, which lead to the decrease the total number of particles,
increase the distance between the particles, and decrease of the area occupied by the particles,
in which themass is accumulated (the latter is correlatedwith the time evolution ofminx,y �c
shown in Figure 13 (left)). It should also be observed that the size of the time steps stabilizes
after the blowup occurs.

5 Conclusion

In this paper, we have designed a novel hybrid finite-difference-particle (FDP) method for
the Patlak-Keller-Segel-type chemotaxis systems in either parabolic-parabolic or parabolic-
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Fig. 9 Example 5: The maximums of ρ1 (left) and ρ2 (right) computed using � = 1/15, 1/20, 1/25, and
1/30

Fig. 10 Example 5: Particle locations at t = 0.003 (top row) and t = 0.0033 (bottom row) for the first (left
column) and second (right column) species. The panels in the left column also contain zooms at the blowup
region. Particle densities, normalized at each of the panels independently, are proportional to their radii. Note
that for the entire mass of the second species has concentrated into a single particle in both panels in the right
column
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Fig. 11 Example 5: Temporal evolution of N1 (left) and N2 (right)

Fig. 12 Example 5: Temporal evolution of E (left) and ‖∇c‖∞ (right)

Fig. 13 Example 5: Temporal evolution of min
x,y

�c (left) and �t (right)
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elliptic form. Our approach uses a sticky particle method for the cell density equation(s) and
a second-order finite-difference scheme for the chemoattractant equation. The performance
of the proposed hybrid FDP methods has been examined using a comprehensive series of
challenging examples. Thanks to the low-dissipation nature of the sticky particle method,
the proposed scheme is particularly adept at capturing the blowing-up solutions in both one-
and two-species cases. The numerical results obtained using the hybrid FDPmethods exhibit
superior resolution compared to traditional grid-based methods.

In our future works, we plan to extend the proposed hybrid FDP method to the two-
species chemotaxis-competition models, which are even more challenging as they contain
Lotkaâe“Volterra competition terms, which require the development of special techniques
to be treated within the framework of sticky particle methods. In addition, we intend to
generalize the introduced method to more general (not rectangular) domains. This can be
achieved by replacing the finite-difference method for the chemoattractant concentration
with either a finite-volume or finite-element method capable of handling complex domains.
We also note that the hybrid FDP can be extended to three-dimensional chemotaxis models
relatively easily as the only difficulty related to the fact that particle trajectories may skew—
the situation that does not exist in two space dimensions.

A Free Energy

In this Appendix, we derive the free energy formula for the two-species PKS type chemotaxis
system (1.1) and prove its decay.

We first consider smooth solutions of (1.1) and introduce the functions

μi := γiνi

χi
ln(ρi ) − γi c, i = 1, 2, (A.1)

which can be differentiated with respect to time to obtain

ρi (μi )t = γiνi

χi
(ρi )t − γiρi ct , i = 1, 2. (A.2)

Multiplying (1.1a) and (1.1b) by μ1 and μ2, respectively, integrating over 	, and using the
divergence theorem, yield for i = 1, 2:
∫∫

	

μi (ρi )t dx =
∫∫

	

μi [νi�ρi − χi∇·(ρi∇c)] dx = −
∫∫

	

∇μi · (νi∇ρi − χiρi∇c) dx

= −
∫∫

	

∇μi · [νiρi∇(ln(ρi )) − χiρi∇c] dx = −χi

γi

∫∫

	

ρi |∇μi |2 dx.

(A.3)

It follows from (A.2) and (A.3) that for i = 1, 2 we have
∫∫

	

(μiρi )t dx =
∫∫

	

[μi (ρi )t + ρi (μi )t ] dx

=
∫∫

	

[

−χi

γi
ρi |∇μi |2 + γiνi

χi
(ρi )t − γiρi ct

]

dx. (A.4)
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Next, multiplying (1.1c) by ct , integrating over 	, and using the divergence theorem, yield

τ

∫∫

	

c2t dx =
∫∫

	

(ν�c + γ1ρ1 + γ2ρ2 − ζc) ct dx

=
∫∫

	

[−ν∇c·∇(ct ) + (γ1ρ1 + γ2ρ2 − ζc)ct
]
dx.

(A.5)

Finally, adding (A.4) for i = 1 and i = 2 and (A.5), we obtain

dE(t)

dt
= −

∫∫

	

(
χ1

γ1
ρ1|∇μ1|2 + χ2

γ2
ρ2|∇μ2|2 + τc2t

)

dx ≤ 0,

where

E(t) :=
∫∫

	

(

ρ1μ1 + ρ2μ2 − γ1ν1

χ1
ρ1 − γ2ν2

χ2
ρ2 + ν

2
|∇c|2 + ζ

2
c2
)

dx (A.6)

with μ1 and μ2 given by (A.1), is the free energy.
In order to monitor the time evolution of E(t), one needs to discretize (A.6). Notice that

the particle approximation of ρ1 and ρ2 cannot be substituted into (A.6) due to the presence
of the terms ρi ln(ρi ), i = 1, 2 there. We therefore use the grid values of c, ρ1, and ρ2 (the
latter ones are obtained in §3.3.2) and approximate the integral in (A.6) using the midpoint
rule combined with the second-order FD approximations of the derivatives of ∇c.

B Appendix

In this section, we provide a more detailed description of the numerical solution of (3.4)
in both the parabolic-parabolic (τ = 1) and parabolic-elliptic (τ = 0) cases and prove the
following theorem,which establishes a-priori estimates for the discrete‖∇c‖L∞(	) (hereafter,
‖ · ‖∞ := ‖ · ‖L∞(	)) and ensures well-posedness for smooth solutions.

Theorem B.1 Assume that ‖∇ρi‖∞ ≤ C1, i = 1, 2 for all t ≤ T and the initial data c(x, 0)
satisfies ‖∇c(·, 0)‖∞ ≤ C, then for the discrete solution of (3.4), ‖∇c‖∞ is bounded for all
t ≤ T in both the parabolic-parabolic (τ = 1) and parabolic-elliptic (τ = 0) cases. In the
former case, the theorem’s statement is true provided (3.4) is integrated using an explicit
SSP ODE solver.

Proof We will consider the parabolic-parabolic and parabolic-elliptic cases separately.
Parabolic-Parabolic Case (τ = 1). Consider the ODE system (3.4) and assume that it is
integrated using the forward Euler method. The fully discrete update for the chemoattractant
concentration equation thus becomes:

c�,m(t + �t) = α�+1,mc�+1,m(t) + α�−1,mc�−1,m(t) + α�,m+1c�,m+1(t)

+ α�,m−1c�,m−1(t)

+ α�,mc�,m(t) + �tγ1(ρ1)�,m(t) + �tγ2(ρ2)�,m(t),

(B.1)
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where

α�+1,m = α�−1,m = �t
ν

(�x)2
, α�,m+1 = α�,m−1 = �t

ν

(�y)2
,

α�,m = 1 − �t

[

ζ + 2ν

(
1

(�x)2
+ 1

(�y)2

)]

.

Taking the discrete gradient derivatives of the left- and right-hand sides of (B.1), yields the
following:

∇c�,m(t + �t) = α�+1,m∇c�+1,m(t) + α�−1,m∇c�−1,m(t) + α�,m+1∇c�,m+1(t)

+ α�,m−1∇c�,m−1(t)

+ α�,m∇c�,m(t) + �tγ1(∇ρ1)�,m(t) + �tγ2(∇ρ2)�,m(t).

Using the last equation and the restriction on the time-step in Remark 3.4, we obtain

‖∇c(·, t + �t)‖∞ ≤ α�+1,m‖∇c(·, t)‖∞ + α�−1,m‖∇c(·, t)‖∞ + α�,m+1‖∇c(·, t)‖∞
+ α�,m−1‖∇c(·, t)‖∞ + α�,m‖∇c(·, t)‖∞ + �tγ1‖∇ρ1(·, t)‖∞
+ �tγ2‖∇ρ2(·, t)‖∞

= (1 − �tζ )‖∇c(·, t)‖∞ + �tγ1‖∇ρ1(·, t)‖∞ + �tγ2‖∇ρ2(·, t)‖∞
≤ ‖∇c(·, t)‖∞ + �tC1(γ1 + γ2) ≤ ‖∇c(·, 0)‖∞

+ TC1(γ1 + γ2) ≤ C2 + TC1(γ1 + γ2).

It should be observed that the above estimate holds for any explicit SSP ODE solver,
which consists of a convex combination of forward Euler time-steps.
Parabolic-Elliptic Case (τ = 0). In this case, taking a discrete gradient of (3.4) results in a
linear algebraic system for {∇c�,m}, which can be written using (3.5) as follows:

−ν

[∇c�+1,m−2∇c�,m+∇c�−1,m

(�x)2
+∇c�,m+1−2∇c�,m+∇c�,m−1

(�y)2

]

+ζ∇c�,m

= γ1(∇ρ1)�,m + γ2(∇ρ2)�,m .

(B.2)

It is well-known that the block tri-diagonal matrix on the left-hand side of (B.2) is symmetric,
positive definite, and the L∞-norm of its inverse is uniformly bounded, say, by a constant
C3. This immediately implies the following bound:

‖∇c‖∞ ≤ C3C1(γ1 + γ2),

which completes the proof of the theorem. ��
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37. Kurganov, A., Lukáčová-Medviďová, M.: Numerical study of two-species chemotaxis models. Discrete

Contin. Dyn. Syst. Ser. B 19, 131–152 (2014)
38. Mas-Gallic, S., Poupaud, F.: Approximation of the transport equation by a weighted particle method.

Transport Theory and Stat. Phys. 17, 311–345 (1988)
39. Othmer, H.G., Stevens, A.: Aggregation, blowup, and collapse: the ABCs of taxis in reinforced random

walks. SIAM J. Appl. Math. 57, 1044–1081 (1997)
40. Patlak, C.S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)
41. Peskin, C.S.: The immersed boundary method. Acta Numer 11, 479–517 (2002)
42. Puckett, E.G.: Vortex methods: an introduction and survey of selected research topics, in Incompressible

computational fluid dynamics: trends and advances, pp. 335–407. Cambridge Univ. Press, Cambridge
(2008)

43. Raviart, P.-A.: An analysis of particle methods, in Numerical methods in fluid dynamics (Como,: vol.
1127 of Lecture Notes in Math. Springer, Berlin 1985, 243–324 (1983)

44. Senba, T., Suzuki, T.: Parabolic system of chemotaxis: blowup in a finite and the infinite time, Methods
Appl. Anal., 8 (2001), pp. 349–367. IMS Workshop on Reaction-Diffusion Systems (Shatin, 1999)

45. Shen, J., Xu, J.: Unconditionally bound preserving and energy dissipative schemes for a class of Keller-
Segel equations. SIAM J. Numer. Anal. 58, 1674–1695 (2020)

46. Wolansky, G.: Multi-components chemotactic system in the absence of conflicts. European J. Appl. Math.
13, 641–661 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	A Hybrid Finite-Difference-Particle Method for Chemotaxis Models
	Abstract
	1 Introduction
	2 Weighted Particle Method: an Overview
	3 Hybrid FDP Method for (1.1)
	3.1 Sticky Particle Method for Equations (1.1a) and (1.1b)
	3.2 Finite-Difference Scheme for Equation (1.1c)
	3.3 Projection Between the Particle and Grid Data
	3.3.1 Computation of c and Δc at Particle Locations
	3.3.2 Computation of ρ1 and ρ2 at Grid Points

	3.4 Summary of the Numerical Algorithm

	4 Numerical Examples
	4.1 Parabolic-Parabolic Case (τ=1)
	Example 1—Accuracy Test
	Example 2—Two-Species Blowup at the Center of the Domain
	Example 3—Single-Species Blowup at the Corner of the Domain
	Example 4—Single-Species Blowup in the Interior of the Domain

	4.2 Parabolic-Elliptic Case (τ=0)
	Example 5—Two-Species Blowup at the Center of the Domain


	5 Conclusion
	A Free Energy
	B Appendix
	References


