
Self-similar intermediate asymptotics for a degenerate
parabolic filtration-absorption equation
G. I. Barenblatt*†, M. Bertsch‡, A. E. Chertock*, and V. M. Prostokishin§

*Department of Mathematics and, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; ‡Department of Mathematics,
University of Rome “Tor Vergata,” Via della Ricerca Scientifica, 00133 Rome, Italy; and §P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences,
36 Nakhimov Prospect, 117218 Moscow, Russia

Contributed by G. I. Barenblatt, May 19, 2000

The equation ½tu = u½2
xxu – (c – 1)(½xu)2 is known in literature as a

qualitative mathematical model of some biological phenomena.
Here this equation is derived as a model of the groundwater flow
in a water-absorbing fissurized porous rock; therefore, we refer
to this equation as a filtration-absorption equation. A family of
self-similar solutions to this equation is constructed. Numerical
investigation of the evolution of non-self-similar solutions to the
Cauchy problems having compactly supported initial conditions is
performed. Numerical experiments indicate that the self-similar
solutions obtained represent intermediate asymptotics of a wider
class of solutions when the influence of details of the initial con-
ditions disappears but the solution is still far from the ultimate
state: identical zero. An open problem caused by the nonunique-
ness of the solution of the Cauchy problem is discussed.

1. A Derivation of the Filtration-Absorption Equation

A permeable rock layer on a horizontal impermeable bed is
considered. It is well known that the gently sloping ground-

water flows in a purely porous medium with infiltration are de-
scribed by the Boussinesq equation (see refs. 1–3):

m∂th = κ
(
h∂2

xxh+ �∂xh�2
)+ q: [1]

Here h is the groundwater level, t is the time, x is the horizon-
tal space coordinate along the impermeable bed, and q is the
intensity of the groundwater inflow or outflow. Furthermore,
κ = ρgk/µ is a joint property of the pair-rock/fluid, assumed
here to be constant, k is the rock permeability,m the rock poros-
ity, g the gravity acceleration, and ρ and µ are fluid density and
dynamic viscosity.

Assume now that when the fluid level is decreasing, some part
of the fluid is being absorbed by rock, e.g., because of capillary
imbibition to the micropores. Then, for a fixed fluid particle, the
rate of fluid absorption q will be proportional to the individual
time derivative of the fluid level dh/dt, so that

q = αmdh
dt
= αm�∂th+ up∂xh�: [2]

Here α is also a joint rock/fluid property that we also assume
here to be constant, and up is the actual fluid velocity.

According to the Darcy law, the filtration velocity (fluid flux
per unit area) is equal to

uf = −
ρgk

µ
∂xh: [3]

The actual fluid velocity is different (see ref. 1) from the fil-
tration velocity uf . For a purely porous medium up = uf /m. It
is very important that if the rock is fissurized, i.e., contains a
connected network of cracks, then

up =
uf

m1
; [4]

where m1 (“fissure porosity”) is much less than block porosity
m: fluid is contained in pores but moves through cracks that

are much wider than the pores but occupy much less space.
Therefore,

q = αm
(
∂th−

ρgk

µm1
�∂xh�2

)
: [5]

Substitution of 5 to the water balance equation 1 gives the equa-
tion

m�1− α�∂th =
ρgk

µ

(
h∂2

xxh+
(

1− α m
m1

)
�∂xh�2

)
;

which can be reduced to the form

∂th =
κ

m�1− α� �h∂
2
xxh− �c − 1��∂xh�2�; [6]

where

c = α m
m1
: [7]

Here there is a specially important point to be mentioned: if
m1 = m (non-fissurized purely porous medium), then c = α
and obviously c is always less than one because the absorp-
tion cannot exceed the available amount of fluid. However, if
the rock is fissurized, m1 can be substantially less than m, and
c = αm/m1 can be substantially larger than one. Replacing x
by x/

√
κ/m�1− α� and leaving previous notation x for trans-

formed space coordinate, we reduce the basic equation to the
canonic form

∂th = h∂2
xxh− �c − 1��∂xh�2; [8]

which will be investigated further.
Note that the proposed model has some common features

with the Mirzadzhan–Zadeh model (4) of filtration of the gas-
condensate mixture, but is not identical to this model which
leads to a different basic equation.

2. Self-Similar Solutions
We look for self-similar solutions with shrinking support and
with finite time to collapse (total annihilation): for sufficiently
large c (in fact, see later, for c , 3/2)

h = A�t0 − t�λF
(

x− x0

B�t0 − t�µ
)
: [9]

Here x0 is the point where the solution is collapsing at t = t0. We
assume the structure of the groundwater “dome” is symmetric,
so that F�ξ�, ξ = �x− x0�/B�t0 − t�µ is an even function. Here
A;B; and λ are constants, but as we will see later, of a different
nature. We will determine the function F�ξ� in the interval 0 �
ξ � 1, so that F�ξ� A 0 at ξ � 1. The quantity

xf = B�t0 − t�µ [10]
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is the contracting half-width of the groundwater dome. As is
well known (5) for the degenerate parabolic differential equa-
tions of the type under consideration, the support of the so-
lution remains compact if it is compact initially. Furthermore,
the function F can be normalized arbitrarily, so we can assume
A = B2µ. Substitute 9 into the basic equation 8. Bearing in mind
that the coefficients of the resulting equation for F�ξ� cannot
contain the time t explicitly, we obtain λ = 2µ − 1, and the
equation for F�ξ� assumes the form:

F
d2F

dξ2 − �c − 1�
(
dF

dξ

)2

− ξdF
dξ
+ 2µ− 1

µ
F = 0: [11]

We turn now to the boundary conditions. The first one is the
condition of symmetry:

F ′�0� = 0: [12]

The second boundary condition follows from the continuity
of the groundwater level at the free boundary x = xf :

F�1� = 0: [13]

The last boundary condition follows from the continuity of the
groundwater flux at the free boundary x = xf . The solution
close to free boundary can be considered as quasi-steady: h =
h�ζ�, ζ = x− xf . We obtain from 8:

−V dh
dζ
= hd

2h

dζ2 − �c − 1�
(
dh

dζ

)2

; [14]

where V = dxf /dt.
For the solutions of Eq. 11 having the quantity d�F2�/dξ

equal to zero at ξ = 1 − 0, which is needed to have continu-
ous flux at the free boundary, the quantity hd2h/dζ2 tends to
zero at x = xf − 0, so that at x = xf

V = �c − 1�dh
dζ
: [15]

Bearing in mind that for the self-similar solution 9,
V = dxf /dt = −Bµ�t0 − t�µ−1, and �dh/dζ�ζ=0 = �∂xh�x=xf , we
obtain the relation

Bµ�t0 − t�µ−1 = −Bµ�t0 − t�µ−1�c − 1�F ′�1�
from which the third boundary condition follows, to be satisfied
by the function F

F ′�1� = − 1
c − 1

: [16]

So, a nonlinear eigenvalue problem is obtained. We have to find
for the second order equation 11 in the interval �0; 1� the so-
lution satisfying three boundary conditions �12; 13; 16� and the
eigenvalue µ.

We consider the special case when the function F�ξ� has a
maximum at ξ = 0. This allows one to search the solution in the
form of an expansion

F�ξ� = a�1− ξ2� +
:∑
n=2

an�1− ξ2�n;

so that the terms of the sum (except the first one) do not con-
tribute to all three boundary conditions of the eigenvalue prob-
lem. The result is unexpectedly simple:

a = 1
2�c − 1� ; µ = c − 1

2c − 3
; an = 0 �n � 2�; [17]

so that, if c , 3/2, the solution to the nonlinear eigenvalue
problem is obtained in the form

F = 1
2�c − 1� �1− ξ

2�; µ = c − 1
2c − 3

[18]

and the self-similar solution under consideration is represented
by the relation

h = 1
2�2c − 3�B

2�t0 − t�
1

2c−3

[
1− �x− x0�2

B2�t0 − t�
2�c−1�
2c−3

]
: [19]

3. Investigation of the Self-Similar Solutions
In spite of its very simple form, the solution 19 is a typical self-
similar solution of the second kind (see ref. 6). The exponent
µ = �c−1�/�2c−3� cannot be obtained using some conservation
laws, but only by solving a nonlinear eigenvalue problem, and
the constants B and t0, as well as x0, are obtained by matching
the self-similar solution with the solution to the Cauchy problem
at the non-self-similar stage. To a certain extent, this problem
is similar to the problem of the evolution of a turbulent burst
(see ref. 6, section 10.2.4). The solution 19 has essentially differ-
ent behavior in various intervals of the values of the absorption
coefficient c:

0 + c + 1y 1 + c + 3
2 y 3

2 + c: [20]

The form 19 is appropriate for the last interval 3/2 + c where
the collapse time t0 is finite. It is instructive to investigate the
limiting behavior of the solution 19 at c → 3/2 from above.
Putting c = 3/2 + ε (ε , 0 is a small parameter), we obtain
µ = 1/4ε+ 1

2 , so that

�t0 − t�µ = t
1

4ε
+ 1

2
0

(
1− t

t0

) 1
4ε
+ 1

2
; �t0 − t�2µ−1 = t

1
2ε

0

(
1− t

t0

) 1
2ε
;

and

xf �t� = Bt
1

4ε
+ 1

2
0

(
1− t

t0

) 1
4ε
+ 1

2
; h�x0; t� =

B2

4ε
t

1
2ε
+1

0
1
t0
: [21]

Therefore, if at ε→ 0 the quantity 4εt0 tends to a certain con-

stant 2, and the quantity B2 t
1

2ε
+1

0 to another constant which we
denote by C22, the solution 19 tends to a finite limit:

h = C2e−2t/2
[

1− �x− x0�2
C22e−2t/2

]
; xf = C

√
2e−t/2: [22]

In the interval 1 + c + 3/2; the exponent µ becomes neg-
ative, and it is convenient to replace µ by −µ, and t0 by −t0.
Solution 19 may be represented in a different form

h = 1
2�3− 2c�B

2�t0 + t�−
1

3−2c

[
1− �x− x0�2

B2�t0 + t�−
2�c−1�
3−2c

]
; [23]

so that h�x0; t� = hmax�t� and xf decay with time according to
the power laws

hmax�t� =
1

2�3− 2c�B
2�t0 + t�−

1
3−2c ;

[24]
xf �t� = B�t0 + t�−

c−1
3−2c :
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The time of collapse is infinite and t0 becomes simply an additive
constant. In the limit c → 3/2 from below, c = 3/2 − ε, ε , 0,
we obtain µ = 1/4ε− 1/2, and

hmax�t� =
1

4ε
B2t

− 1
2ε
+1

0

(
1+ t

t0

)− 1
2ε
+1

· 1
t0
;

xf �t� = Bt
− 1

4ε
+ 1

2
0

(
1+ t

t0

)− 1
4ε
+ 1

2
:

Assuming again that at ε→ 0 the quantity 4εt0 tends to a con-

stant 2, and Bt
− 1

4ε
+ 1

2
0 tends to another constant C

√
2, we obtain

the same limiting formula 22.
In the interval 0 + c + 1 (weak absorption), the compact sup-

port extends, not contracts, although more slowly than in the
case of “porous medium equation” c = 0. In this special case
c = 0 solution 19 is reduced to a known self-similar solution fo
the first kind (refs. 7 and 8; see also refs. 6 and 9). The degen-
erate special case c = 1 was considered previously; the papers
by J. R. King (10) and P. Rosenau (11) should be mentioned
specially. It is instructive to compare the results obtained above
with those obtained in the paper by B. Meerson et al. (12).

4. Nonuniqueness of Solutions of the Cauchy Problem
We consider solutions of Eq. 18 with initial condition

h�x; 0� = h0�x� for x � �; [25]

where h0�x� is a continuous function that is positive in an inter-
val �xL�0�; xR�0�� and that vanishes elsewhere. Let xL�t� and
xR�t� be two continuous functions for t � 0 such that xL�t�
is nondecreasing, xR�t� is nonincreasing, and xL�t� � xR�t� for
t � 0. It is known that if c � 1 for any such pair xL�t� and xR�t�,
there exists a solution h�x; t� of the Cauchy problem �8; 25� such
that h�x; t� is positive if xL�t� + x + xR�t�, t � 0 and h�x; t�
vanishes elsewhere. For the proof, the definition of solution, and
further references we refer to (13).

Of special interest is the choice of steady interfaces: xL�t� =
xL�0� and xR�t� = xR�0� for all t � 0. The corresponding solu-
tion is larger than any other solution, and in ref. 14 a numerical
scheme has been introduced that leads to this unique solution.
From the modeling point of view it is interesting to observe that
this solution can be obtained from the following limiting proce-
dure: replace h0�x� by h0�x� + ε �ε , 0�, solve problem 8, 25,
and let ε→ 0.

Angenent (15) has constructed a solution of 8, 25 if h0�x�
has nonzero slope at xL�0� and xR�0� (for technical reasons the
construction is local in time), which is unique in the class of
solutions that can be expanded in a Taylor series of suffcieintly
high degree near the interfaces:

h�x; t� =
N∑
k=0

ck�t��x− xL�t��k + o��x− xL�t��N�

as x→ xL�t�y
a similar expression holds at the right interface x = xR�t�. Here,
the uniqueness refers not only to h but also to the interfaces.
We observe that the self-similar solution 19 belongs to this class
of solutions.

In Section 5, we shall construct a numerical scheme that
yields solutions converging to the self-similar solution for large
times, and it is natural to ask whether these solutions belong
to the class introduced by Angenent. In particular this scheme
yields solutions that are different from the ones obtained by
the scheme in ref. 14. We conjecture that the solutions that
we construct in the following section are physically relevant,
but undoubtedly future research is needed to provide definite
answers to the nonuniqueness question.

Fig. 1. The numerical solution to the Cauchy problem for c = 1:75 with the initial
condition of a “smoothed block” type for different times in the scaled coordinates.
The solution is collapsing to the self-similar asymptotics.

Fig. 2. (A) The determination of the parameter t0. (B) The determination of the
parameter B.
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Fig. 3. (A) Evolution of the nonsymmetric initial distribution to a symmetric self-
similar asymptotics. (B) The same evolution presented in scaled coordinates.

5. Numerical Experiment
The goal of the numerical experiment was to indicate that the
self-similar solution obtained above attracts the solutions to
non-self-similar Cauchy problems having the initial condition of
compact support, generally speaking a non-symmetric one:

h�x; 0� = h0�x�; xL�0� � x � xR�0�;
and h�x; 0� A 0 outside the interval xL�0� � x � xR�0�. The
basic equation 8 can be transformed to a form convenient for
numerical calculations

∂th =
ẋ0�t� − ẋf �t�ξ

xf �t�
∂ξh+

1
�xf �t��2

[
h∂2

ξξh− �c − 1��∂ξh�2
]
;

where ẋ0 = dx0/dt, ẋf = dxf /dt, and

ξ = x− x0�t�
xf �t�

; xf �t� =
xR�t� − xL�t�

2
;

x0�t� =
xR�t� + xL�t�

2
;

so that the interval of new space variable ξ becomes fixed:
−1 � ξ � 1, whereas the solution h�x; t� is different from zero

Fig. 4. The numerical solution preserves the self-similarity.

in the time-dependent interval xL�t� � x � xR�t�. Again, as-
suming naturally the quasi-steadiness of the level distribution in
the vicinities of free boundaries, we obtain the conditions

ẋR�t�= �c − 1�∂ξh�1; t�
xf �t�

;

ẋL�t�= �c − 1�∂ξh�−1; t�
xf �t�

[26]

at t , 0, and the basic equation takes the form:

∂th =
1

x2
f �t�

[
�c−1�∂ξh

�ξ + 1�∂ξh�1; t�−�ξ−1�∂ξh�−1; t�
2

+ h∂ξξh− �c−1��∂ξh�2
]

[27]

with the initial condition

h�ξ; 0� = h0�ξ�; �ξ� � 1y h�ξ; 0� A 0; �ξ� � 1: [28]

Two numerical schemes were used in our computations
performed by finite-difference approximations: �i� a forward-
in-time, centered-in-space explicit approximation, and �ii� a
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forward-in-time, centered-in-space implicit approximation. For
the most part, numerical calculations have been run with the
time step 1t = 10−5 for the explicit scheme and 1t = 10−4 for
the implicit one. The number N of subintervals of length 1ξ,
N = 2/1ξ was equal to 202 for both schemes. The results ob-
tained by using these numerical approximations coincided with
good accuracy. The absorption coefficient c was always equal
to 1.75.

The first initial condition was taken as a “smoothed block”:
a homogeneous water level distribution smoothly going to zero
at the edges. The results of the computation are presented in
Fig. 1 in the form of the distribution of the scaled level: level
h�x; t� divided by maximum level at each time hmax�t�. It is seen
that the curves corresponding to different times collapse to the
parabola, corresponding to the self-similar solution 18. The time
of collapse t0 and the constant B were determined in the follow-
ing way (Fig. 2): according to the intermediate asymptotics 19
at small t0 − t,

x2
f �t�

hmax�t�
= t0 − t
µF�0� ; [29]

so that the quantity x2
f �t�/hmax�t� should be a linear function

of time, and the intersection of its graph with the time axis
(Fig. 2A) gives the value of t0. We obtain from 10 a linear
relation between ln xf and ln�t0 − t�, i.e., in the coordinates
− ln xf ;− ln�t0 − t� a straight line with the slope µ. It gives us
the value B (Fig. 2B) and an additional possibility of check-
ing the asymptotics. Naturally t0 and B depend on the initial
condition. For our case, we found t0 = 0:345, B = 3:73; and
µ = 1:499, which agrees well with the analytic value µ = 1:5.

The next computation was performed for a nonsymmetric ini-
tial condition:

h�x; 0� =
{−4x2 + 4x; 0 + x + 1

2

− 4
9x

2 + 4
9x+ 8

9 ;
1
2 + x + 2:

Figs. 3A and 3B demonstrate the behavior of the numeri-
cal solution for different times. It is clearly seen that the solu-
tion becomes symmetric and tends to the self-similar asymptotics
(19). The values of t0 = 1:138, B = 0:63; and µ = 1:5027 have
been calculated as before; the calculated and analytic values of
µ agree with high precision.

For comparison we have taken the solution 19 for a certain t
as an initial condition, and computed the solution to the partial
differential equation further using the same algorithm. The re-
sults are presented in Fig. 4A for different times. Being plotted
in scaled coordinates (Fig. 4B), they collapse to a single curve,
giving us an additional check of the numerical procedure.

6. Conclusions
We presented a new derivation of the filtration-absorption equa-
tion based on a model of groundwater flow with partial absorp-
tion. It is shown that for a sufficiently large absorption constant
the time of collapse is finite. A family of self-similar solutions to
this equation is obtained. Numerical experiments indicate that
these self-similar solutions obtained are self-similar intermedi-
ate asymptotics for the solutions to the Cauchy problems having
the initial conditions data with compact support, but due to the
nonuniqueness of the solution of the Cauchy problem future re-
search is needed to provide more definite conclusions.
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