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Aquatic bacteria like Bacillus subtilis are heavier than water yet they are able to swim
up an oxygen gradient and concentrate in a layer below the water surface, which will
undergo Rayleigh—Taylor-type instabilities for sufficiently high concentrations. In the
literature, a simplified chemotaxis—fluid system has been proposed as a model for bio-
convection in modestly diluted cell suspensions. It couples a convective chemotaxis
system for the oxygen-consuming and oxytactic bacteria with the incompressible
Navier—Stokes equations subject to a gravitational force proportional to the relative
surplus of the cell density compared to the water density. In this paper, we derive
a high-resolution vorticity-based hybrid finite-volume finite-difference scheme, which
allows us to investigate the nonlinear dynamics of a two-dimensional chemotaxis—fluid
system with boundary conditions matching an experiment of Hillesdon et al. (Bull
Math. Biol., vol. 57, 1995, pp. 299-344). We present selected numerical examples,
which illustrate (i) the formation of sinking plumes, (ii) the possible merging of
neighbouring plumes and (iii) the convergence towards numerically stable stationary
plumes. The examples with stable stationary plumes show how the surface-directed
oxytaxis continuously feeds cells into a high-concentration layer near the surface, from
where the fluid flow (recurring upwards in the space between the plumes) transports
the cells into the plumes, where then gravity makes the cells sink and constitutes the
driving force in maintaining the fluid convection and, thus, in shaping the plumes into
(numerically) stable stationary states. Our numerical method is fully capable of solving
the coupled chemotaxis—fluid system and enabling a full exploration of its dynamics,
which cannot be done in a linearised framework.
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1. Introduction

In Hillesdon, Pedley & Kessler (1995), Dombrowski et al. (2004) and Tuval
et al. (2005), several related coupled chemotaxis—fluid model systems have been
proposed to describe the collective behaviour of a suspension of oxytactic bacteria
in an incompressible fluid under the assumptions that the contribution of bacteria to
the bacteria—fluid suspension is sufficiently small (since the density of the bacteria
suspension is approximately equal to the density of the fluid) and that more detailed
cell—cell interactions (such as hydrodynamic interaction) are neglected. This collective
behaviour is also known as bio-convection. In this paper, we study the following
system:

n+u-Vn+ xV «[nr(c)Ve]l =D, An,
¢, +u-Ve=D.Ac — nkr(c),
p,+u-Vu)+Vp=nAu —nVo,
V.-u=0,

(1.1)

where A := 9} + 9 is the Laplacian, n and ¢ are the concentrations of bacteria and
oxygen, respectively, k is the oxygen consumption rate, and u is the velocity field
of a fluid flow governed by the incompressible Navier—Stokes equations with density
p, pressure p and viscosity n. In the fluid equation, V@ := V,g(p, — p)z describes
the gravitational force exerted by a bacterium onto the fluid along the upwards unit
vector z proportional to the volume of the bacterium V), the gravitation acceleration
¢=9.8 m s 2, and the density of bacteria is p, (bacteria are about 10 % denser than
water).

In (1.1), both the density of the bacteria n and the oxygen concentration ¢ are
convected with the fluid and diffuse with their respective diffusion constants D, and
D.. The oxygen is consumed proportional to the density of cells n and a dimensionless
cut-off function r(c), which models an inactivity threshold of the bacteria due to
low oxygen supply. Moreover, in a chemotactic response, the bacteria are directed
towards a higher oxygen concentration depending on the chemotactic sensitivity x and
the same cut-off-function r(c). Experiments suggest that the cut-off function can be
modelled, for instance, by a step function r(c) = 6(c — ¢*) (see Tuval et al. 2005).

Let us emphasise that in contrast to models for chemotactical aggregation like,
for example, the well-known Keller—Segel model, the bacteria in (1.1) consume the
chemical instead of producing it and the n-term in the c-equation has the opposite
sign compared to the Keller—Segel system. Nevertheless, the chemotactic motion of
the bacteria introduces a non-local nonlinearity to the system (1.1) and leads to — as
our numerical examples will show — more complex dynamics than is observed in
a suspension of e.g. sand in water (or inactive, oxygen-starved bacteria) subject to
gravity.

For a comprehensive review on bio-convection and the general biological
background of systems like (1.1) we refer to Hill & Pedley (2005) and the references
therein. The particular model (1.1) was proposed in Hillesdon et al. (1995) to describe
experiments with a quasi-two-dimensional suspension of the swimming bacteria
Bacillus subtilis in a thin chamber of water (see figure 1). In these experiments
the bacteria consume oxygen, which diffuses through the water surface into the water.
Thus, an initially stirred, quasi-homogeneous suspension of bacteria will swim up
the oxygen gradient, which lets some bacteria concentrate below the surface, while
other bacteria are rendered inactive wherever the oxygen concentration has fallen
below the threshold of activity. Later on, Rayleigh—Taylor-type instabilities appear in
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FIGURE 1. Snapshots of a suspension of the aerobic bacteria B. subtilis reproduced with
kind permission from Hillesdon et al. (1995). The initial suspension is well stirred and
quasi-homogeneous. First, a high-concentration layer forms near the surface as cell swim up
following the oxygen gradient. Later, instabilities form at this layer and finger-shaped plumes
begin to sink downwards, which turn into mushroom-shaped plumes in the areas where the
oxygen concentration is below the chemotaxis threshold r(c).
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a sufficiently concentrated cell layer near the surface as the bacteria are about 10 %
denser than water. These instabilities will develop further into plumes of cells sinking
downwards. We refer to Hillesdon & Pedley (1996) for the linear stability analysis of
the system (1.1), while weakly nonlinear stability was discussed in Metcalfe & Pedley
(1998).

A first local existence result for (1.1) and related systems was obtained in Lorz
(2010). Global existence was shown in Duan, Lorz & Markowich (2010) for small
initial concentrations of the oxygen c¢ and without the convection term in the
u-equation, that is, for the Stokes equation instead of the Navier—Stokes equation,
which is a reasonable simplification for the expected low-Reynolds-number flow. For a
single Bacillus subtilis the Reynolds number is of order 10~* while in bio-convective
vortices Reynolds numbers of order 1072 are observed, see e.g. Wolgemuth (2008) and
Tuval er al. (2005). Global existence of a model with nonlinear cell diffusion in the
n-equation was investigated in Di Francesco, Lorz & Markowich (2010).

In this paper, we present a high-resolution numerical scheme in order to study the
nonlinear dynamics of solutions of the model (1.1) in a rectangular two-dimensional
(2-D) domain. Matching the experiment depicted in figure 1, we shall consider
the following mixed boundary conditions: the boundary condition at the top 952,
describes the fluid—air surface, where there is no cell flux, the oxygen will be saturated
with the air oxygen concentration c,;, and the vertical fluid velocity and the tangential
fluid stress are assumed zero (see e.g. Hillesdon & Pedley 1996; Metcalfe & Pedley
1998, 2001; Tuval et al. 2005):

xnr(c)ey —Dyny =0, c=cu4, v=0, u,=0, V(x,y)€ i, (1.2)

where u and v are the horizontal and vertical components of the velocity vector u,
respectively. At the bottom of the domain 952,,, the cell and oxygen fluxes and the
fluid velocity are supposed zero:

ny=c,=0 u=v=0, V() €082. (1.3)

y=
Finally, periodic boundary conditions at the left and right sides of the domain are
imposed in order to avoid any impact of these boundaries.

Previously, Hopkins & Fauci (2002) used a particle method modelling the bacteria
as an ensemble of discrete balls which was coupled to a finite-volume method for the
equation for the chemical and for the Navier—Stokes equations (see also Saintillan &
Shelley 2007 for bacteria modelled as rods). Moreover, Ghorai & Hill (1999, 2002)
calculated a suspension of swimming, gyrotactic micro-organism in tall, narrow 2-D
chambers using a conservative finite-difference scheme. Furthermore, in Hernandez-
Ortiz, Underhill & Graham (2009) simulation studies have been performed using
particle-based methods on bacterial suspensions in confined geometries.

Here, we develop a high-resolution hybrid finite-volume finite-difference method
for the numerical solution of the coupled chemotaxis-fluid system (1.1). The main
advantage of our approach is that it allows us to take advantage of two different
methods applied to two different parts (chemotaxis and fluid) of the studied system.
The chemotaxis equations are discretised using a semi-discrete second-order finite-
volume upwind scheme. In general upwind schemes are commonly used numerical
methods for convection—diffusion equations in the case of a convection-dominated
regime, see e.g. LeVeque (2002) and references therein. When the physical viscosity
is low the numerical solution is stabilised via numerical diffusion, which (especially
for second- and higher-order upwind schemes) rapidly vanishes as the mesh size
goes to zero so that a high resolution is achieved. Another important property
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satisfied by our upwind scheme is its ability to preserves the positivity of the
computed cell density. As it was demonstrated in Chertock & Kurganov (2008) this
property enforces nonlinear stability which is crucial for the computed solutions of the
chemotaxis equations to remain non-oscillatory. The second part of the system — the
incompressible Navier—Stokes equations — is first rewritten in the vorticity formulation
and then numerically solved by a semi-discrete second-order finite-difference method
applied to the non-conservative transport form of the vorticity equation. This choice
is motivated by the fact that the Reynolds numbers under consideration are relatively
small and hence the amount of physical diffusion present in the fluid part of the
system is sufficiently large to stabilise a highly accurate and simple central-difference
scheme. Therefore, no upwinding is needed for the fluid equation.

Our hybrid finite-volume finite-difference method is semi-discrete and the resulting
system of time-dependent ordinary differential equations (ODEs) must be integrated
using an appropriate ODE solver. Since the efficiency of the obtained fully discrete
scheme obtained depends on the efficiency of the ODE solver, one may want to
select either an implicit or implicit-explicit (IMEX) method, which may typically
be utilised with large time steps. These methods, however, require solving large
systems of (linear) algebraic equations which may substantially reduce the efficiency
of the method. We prefer an alternative approach: we use an explicit large-
stability-domain third-order Runge—Kutta method from Medovikov (1998a,b) which
typically outperforms implicit methods in solving ODE systems obtained after semi-
discretisations of convection—diffusion equations.

Using the high-resolution numerical scheme developed, we perform several
numerical experiments reported in §3. Our main goal is to study the nonlinear
dynamics of (1.1) and to understand the interplay of gravity and chemotaxis in the
formation of plumes, as well as their surrounding fluid convection. In particular, in §4,
we observe the formation of sinking plumes out of randomly perturbed homogeneous
initial data. Moreover, these plumes merge depending on the spacing set by the
random initial data, which is reminiscent of merging Rayleigh—-Bénard-type patterns.
A second example in § 5 shows the convergence towards numerically stable stationary
plumes and how the surrounding fluid convection is responsible for maintaining the
shape of the plumes. In §6, an example quite similar to figure 1 demonstrates that
the chemotactic motion in (1.1) is, ultimately, responsible for the maintenance of the
fluid convection, and thus, for the shape of plumes at large times. In § 7, this is further
detailed in an additional example.

The novelty of this paper is that for the first time a numerical scheme has been able
to fully capture and explore the nonlinear dynamics described by (1.1). Compared
to Hopkins & Fauci (2002) we explore the chemotactic effects in much greater
depth. Moreover unlike Metcalfe & Pedley (1998, 2001) we do not need to consider
linearisation techniques which neglect higher-order terms and make it impossible to
study fully nonlinear effects.

As a next step it would be interesting to investigate the effects of droplet geometry
(curvature of the upper part of the boundary of the simulation domain) and the effect
of a third spatial dimension. However, this will be subject of a forthcoming paper.

This paper is organised as follows. First, in §2, we perform the non-
dimensionalisation of the system studied (1.1) and recall the vorticity formulation
of the incompressible Navier—Stokes equations. We derive a numerical method by
implementing the semi-discrete second-order hybrid finite-volume finite-difference
scheme, which is described in detail in appendix A. The accuracy of the scheme
is verified at the beginning of §3 by comparing an analytical steady-state solution
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with the numerical one. Moreover, in § 3 we show that the numerical scheme is able
to reproduce an example of bifurcation of the stationary state as predicted by the
linear stability analysis in Hillesdon & Pedley (1996). Finally, we present numerical
examples showing the formation and the merging of plumes out of random initial data
(§4) and the convergence towards stationary plumes in the absence of oxygen cut-off
(i.e. ¢ remains larger than ¢* = 0.3, see §5) and in presence of oxygen cut-off (§§6
and 7).

2. Scaling and set-up for numerics

We denote by L a characteristic length (we may choose, for instance, L to be the
height of the water chamber in figure 1) and the characteristic cell density by n,.
Rescaling the variables according to Tuval et al. (2005) as follows:

x D, c n I?
¥=p f=ph d= o= p=cp w=peu (2D

leads to the five dimensionless parameters «, B, ¥, § and the Schmidt number Sc,
which characterise the system (1.1):

_ X Cair
= Dn

. Kan2 L Vbnrg(pb - p)L3 Dc

n
, =— , 0 =—, Sci=——,22
IB Caian r]Dn Dn ¢ an ( )

a: ,
where c,, is the oxygen concentration of the air above the fluid. Note that the
parameters o and B differ slightly from e.g. Hillesdon & Pedley (1996) and Metcalfe
& Pedley (1998). Three of these parameters, namely «,d and Sc, are set by the
properties of bacteria, fluid and air. Typical values for Bacillus subtilis in water are
a =10, § =5 and Sc =500 (see e.g. Tuval et al. 2005). The remaining two parameters
B and y depend also on the chosen length scale L and, in particular, on the reference
cell density n, and will thus be varied in the numerical examples in § 3.

After dropping the prime notation in the rescaled variables, we rewrite the fluid
equations in the vorticity formulation: with x = (x, y)T and u = (u, v)" we introduce
the vorticity by w := v, — u, and the stream-function  such that u = v, and v = —,
to obtain the following system:

n,+V-@n)+aV -[r(c)nVc] = An, (2.3)
¢, +V - (uc) =58Ac— Br(c)n, 2.4)
w;+ V- (uw) =Sc Aw — y Scny, (2.5
AY = —w. (2.6)

The resulting system (2.3)—(2.6) is considered on a rectangular domain 2 =
[—a, a] x [0, d] subject to the initial data

nx,y,t=0)=np(x,y), cxy,t=0)=colx,y), ulxy t=0)=uyx,y), (2.7)
and the following boundary conditions: at the top and the bottom of 2 we set

ar(cne, —n, =0, c=1, v=0, u,=0, V(y:y=d, (2.8)
ny=c,=0, u=v=0, V(xy):y=0, (2.9)

while at the sides of £2 (that is, at x = *a) the boundary conditions are periodic.
Alternatively, the above boundary conditions can be written in terms of the vorticity
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and stream-function as follows:
ar(cnc, —n, =0, c=1, w=0, ¥=0, Vy:y=d, (2.10)
ny=c,=0, ¥, =0, wo=-,, Viy:y=0 2.11)

Note that the Poisson equation implies ,, = 0 at the lower boundary y = 0, which
together with the periodicity and continuity gives ¥ = const at y = 0. Thus, v =0 at
y =0 follows.

3. Discussion of the numerical examples

In the following sections we present selected numerical experiments with the system
(2.3)—(2.6) on the rectangular domain (typically §2 = [—3, 3] x [0, 1] except in figure 3)
subject to the boundary conditions (2.10) and (2.11). The results are obtained using a
hybrid finite-volume finite-difference scheme, described in detail in appendix A.

In these examples (again except in figure 3), we set the coefficients «, § and
the Schmidt number Sc to model a suspension of swimming bacteria, for example,
Bacillus subtilis in water (see e.g. Tuval et al. 2005):

a=10, §=5, Sc=500, (3.1)
and take the cut-off function r(c), which modulates the oxygen consumption rate, to
be

- 1 if ¢ >0.3, (3.2)
"=90 ifc<03. '

The numerical examples will vary the initial data and the two remaining parameters
B = (nL?/(e,D,) and y = (Vong(o, — p)L)/(nD,) (see (2.2)), in particular,
by choosing different reference values of the bacteria concentration n,, which is
proportional to both 8 and y.

The numerical simulations were performed using the numerical method described
in appendix A on uniform grids. Mesh refinement convergence tests have been
successfully performed to check the numerical convergence of the developed method
(see §5), but they will not be reported here. We only show the results obtained on the
grid with Ax = Ay = 0.02.

The time integration of (A 10), (A34) should be performed using an efficient,
stable and sufficiently accurate numerical method. Since the studied system is
parabolic-elliptic, one may want to use an implicit ODE solver, which requires a
computationally expensive linear algebra solver, but in general does not have any
stability restriction on the size of time steps. We follow an alternative approach and
integrate the ODE system (A 10), (A 34) using DUMKA3 — the explicit third-order
large-stability-domain Runge—Kutta method, developed in Medovikov (1998b) (see
also Medovikov 1998a). This high-order integration produces accurate results, and
its larger stability domains (in comparison with the standard explicit Runge—Kutta
methods) allow one to use bigger time steps; the explicit form retains simplicity, and
the embedded formulae permit an efficient step size control. In practice these methods
preserve all the advantages of explicit methods and work as fast as implicit methods
(see Medovikov 1998b, for details).

It should be observed, however, that, unlike the strong stability-preserving (SSP)
Runge—Kutta or IMEX-SSP methods, this method is not a positivity-preserving ODE
solver. In our numerical experiments, we did not observe negative cell density values,
but they, in principle, may appear. In the latter case, the efficient DUMKAS3 solver



162 A. Chertock, K. Fellner, A. Kurganov, A. Lorz and P. A. Markowich

should be used from the beginning. If after a certain time step, a negative value of
the computed cell or oxygen density emerges, this step should be rejected and an SSP
time step should be performed instead. Then, one has to switch back to the DUMKA3
solver.

3.1. Comparison of numerical and analytical steady-state solutions

It is known from Hillesdon et al. (1995) that for suitable parameters (for instance, for
sufficiently low initial cell densities) solutions of (2.3)—(2.6) converge to homogeneous-
in-x steady-state solutions of the following time-independent system:

aV - [r(c)nVc] = An, 0=656Ac —npBr(c). (3.3)

Thus, a natural test of the numerical scheme compares analytic homogeneous-in-x
stationary solutions, which can be explicitly computed provided that ¢ > 0.3 and,
thus, r(c) =1 in the entire domain (see e.g. Hillesdon et al. 1995), with numerically
computed stationary solutions.

For the sake of clarity, we re-sketch the derivation of homogeneous-in-x steady-
state solutions. For n(x,y) and c(x,y) solutions of (3.3), we set n’(y) = n(x,y) and
c’(y) = c(x, y) (independent of x) and obtain

o [nxc;]y = n;\ 5C§,y =n’B. (3.4)
Integrating (3.4) and recalling the boundary conditions yields firstly
omsc; = nj 3.5
and
/3 1
al)y=— / n'dy, (3.6)
) 8 0
and secondly using (3.4)
S .spQ __ s .S s 8 s_a s 2
Sc,,,=np=apn’c,=adc,c, = ¢, = 5((cy) +A), 3.7)

where A is a constant. Further integration shows that in order to satisfy (3.6), A has to
be positive. Finally, it follows from (3.5) that

o

cy)y=1--Ihn|—=2L1, ) =—=—+——.

@ cos (gA) B 2 cos2 (gAy)
2 2

We now numerically solve the system (2.3)—(2.6) with the boundary conditions

(2.10), (2.11), B =10, y = 10°, and the rest of the parameters specified in (3.1). The
constant initial data are

(3.8)

T
nO(x9y)=%’ CO(xvy)zl’ uo(x’)’)=0- (39)

We take A = it/20, which satisfies the relationship (see (3.6) and (3.8)):

TT

/1 S(y)dy = 8A t (3,4)— r_z (3.10)
ﬁony y = an 5 _ﬁ40_4. .

We run the code until the numerical solution converges to its steady state and compute
the obtained results with the analytical solution (3.8), for which it is easy to verify
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FIGURE 2. The n-component of the numerical steady-state solution (a) and the agreement of
its vertical profile with the analytically calculated one (b).

that ¢*(y) > 0.3 and thus r(c) = 1. As one can see in figure 2, the numerical and
analytical solutions are in a very good agreement.

3.2. Comparison of numerics and linear stability analysis.: the onset of convection pattern

As a second test of the numerical scheme, we consider an example presented in
Hillesdon & Pedley (1996), where the linear stability analysis of (2.3)—(2.6) (with
the cut-off r(c) being also applied to the cell diffusion in (2.3)) predicts for the
parameters o =5, § =0.2, 8 =4, y =418 and Sc = 7700 the loss of stability of
the homogeneous-in-x steady state and the onset of convection pattern with a critical
wavenumber k. ~ 2.53, i.e. with wavelength A, = 2n/k. ~ 2.48 (Hillesdon & Pedley
1996, figure 16). We thus choose a = 2.48 and 2 =[—2.48,2.48] x [0, 1] in order
to allow the periodic boundary conditions to capture possible convection patterns with
this wavelength.
We take r(c) given by (3.2) and the following initial conditions:

1, y > 0.501 — 0.01 cos(2mx/2.483),
no(x,y) = cox,y) =1, up(x,y) =0,

0.5, otherwise,
(3.11)

which prescribes small, sinusodial modulations of the lower edge of an upper layer
with cell concentration higher than at the bottom. Such plume-precursors should
trigger the onset of plumes independently from the numerical precision.

Figure 3(a) shows the computed quasi-homogeneous-in-x cell density n at time
t = 0.8. The corresponding vertical n and c¢ profiles as plotted in figure 3(b) compare
very well with figure 14 in Hillesdon & Pedley (1996) (reproduced in figure 3e) once
taking into account that figure 3(e) plots § = 1/4 instead of § = 0.2 (please note the
difference in the definition of parameters compared to Hillesdon & Pedley 1996, i.e.
o — yup, B/8 — Bup, ¥ = I'yp). Note, that the vertical cell-density profile (blue line)
shows clearly an increase of cells towards the bottom, which is due to the cut-off of
the chemotactic convection for oxygen levels (red line) below ¢ < 0.3. Moreover, the
predicted onsetting convection pattern is correctly captured by the numerical stream-
function and velocity field (the latter is only plotted for the left half of the domain),
shown in figure 3(c). In figure 3(d) we reproduce figure 16 of Hillesdon & Pedley
(1996), which predicts the stationary stream-function for exactly the above parameters
including § = 0.2.
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FIGURE 3. (Colour online available at journals.cambridge.org/flm) Comparison with linear
stability analysis and the onset of convection pattern in Hillesdon & Pedley (1996, figures 14
and 16): numerical solution of (2.3)—(2.6) witha =5,8 =0.2, 8 =4, y =418 and Sc = 7700
yielding a critical wavenumber k. & 2.53 and wavelength A, & 2.48. (a) Cell density n at time
t = 0.8; (b) vertical profiles of the cell density n (dashed) and the oxygen densities ¢ (bold) at
time t = 0.8. (c¢) Stream-function and fluid velocity (the latter is shown in the left half of the
domain) at times ¢ = 0.08, t = 0.8. (d) Stream-function plot from Hillesdon & Pedley (1996,
figure 16) for these parameters. (e¢) Plots from Hillesdon & Pedley (1996, figure 14) for the
oxygen concentration 8 (lower plot) and the cell density n (upper plot) for § = 1/4 instead of
§=0.2.
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4. Plume formation and merging plumes: randomly perturbed homogeneous
initial data

As mentioned above, following the linear stability analysis of Hillesdon & Pedley
(1996), it is expected that the homogeneous-in-x steady-state solutions for the system
(2.3)~(2.6) as depicted in figure 2 are unstable for certain parameters. In particular,
for a sufficiently high reference density of cells n, and, thus, for sufficiently large g
and y, Rayleigh-Taylor instabilities of a layer with high cell concentration near the
surface (see, e.g. Chandrasekhar 1981; Sharp 1984) will cause plume-like structure and
convection cells to appear.

The numerical simulation of these instabilities is highly non-trivial (see e.g. Sharp
1984; Cook & Dimotaki 2001). However, the examples in this and the following
sections demonstrate that our numerical scheme succeeds in resolving large-scale
plume structures (as shown in figure 1) for a wide range of system parameters, in
particular for the bacteria-typical choices of «, § and Sc in (3.1).

4.1. Parameters and initial data

As a first example case, we shall study the solution of the system (2.3)—(2.6) with the
boundary conditions (2.10), (2.11) and the bacteria-typical parameters (3.1) and with
B =120 and y =2 x 10%, which corresponds to a doubled reference density of cells n,
(recall from §2 that 8 ocn, and y « n,) compared to figure 2 (homogeneous stationary
state). Moreover, as initial data, we consider homogeneous initial data with a random
perturbation in the cell concentration:

no(x,y) =0.84+ 0.2, co(x,y) =1, wuylx,y)=0, “4.1)

where £ is a random variable uniformly distributed in the interval [0, 1]. Note that the
above randomly perturbed initial data (4.1) do not introduce a new length scale besides
the periodicity of the domain.

4.2. Time evolution: plume formation and merging of plumes

Figure 4 shows the time evolution of the n (cells) and ¢ (oxygen) components of
the computed solution. Due to the larger amount of cells compared to figure 2, we
observe already at time r = (0.16 several instabilities at the lower edge of a layer of
high cell concentration below the air—fluid surface, which has formed as a majority of
bacteria swam up the oxygen gradient. At t = 0.32, these instabilities, amplifying the
random irregularities of the initial data, developed into four falling plumes. Moreover
by this time the oxygen concentration ¢ in most of the bottom half of the domain
has dropped below the chemotaxis cut-off (¢ < 0.3 and thus r(c) = O there) due to the
amount of bacteria present there. Thus, the bacteria in this region become inactive and
stop directed swimming yet they continue (along with the fluid) to sink down into the
bottom part of the domain.

We remark that figure 4 shows that — perhaps somewhat counterintuitively — the cell
diffusion is a prominent effect wherever the bacteria are chemotactically inactive. In
fact, one might consider (as it was done in Hillesdon & Pedley 1996, for instance)
a model where diffusion is cut off with r(c) =0 along with the chemotaxis. In the
present paper however, we refrained from doing so and are interested in allowing
figure 4 to show how strongly constant cell diffusion needs to be counteracted by the
effects of the fluid convection and the chemotaxis for the plumes to remain so sharply
profiled as they are in the upper halves of figure 4. Moreover, we conjecture that a
diffusion cut-off with r(c) would not significantly influence the formation of plumes
per se since the plume formation happens essentially in this upper half where the
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(a) 10 t =0.16 b) 10 t=0.16

1.0

FIGURE 4. (a) Cell density n and (b) oxygen concentration ¢ of the computed solution of
(2.3)—(2.6) with randomlgf perturbed homogeneous initial data (4.1) and parameters (3.1) and
B=20and y =2 x 10°. At time t = 0.16, we observe instabilities at the lower edge of a
high-concentration layer near the oxygen-rich surface. At t = 0.32 four falling plumes have
formed, which start merging later (¢ = 0.72), first into three (f = 1.04) and finally into two
plumes (¢ = 1.2). To highlight and colour the plumes in the best way, all large values of n > 1
near the surface are drawn equally red.
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FIGURE 5. Comparison of cell density n of the computed solution of (2.3)—(2.6) with
randomly perturbed homogeneous initial data (4.1) at time # = 0.32 for oxygen cut-off ¢ < 0.3
leading to a decrease cell diffusion § =5 (a, no decrease in D,), § = 25 (b, decreased D, by
factor 5) and § = 50 (c, decreased D, by factor 10). The remaining parameters are o = 10,
Sc =500, B =20 and y =2 x 10°. To highlight and colour the plumes in the best way, all
large values of n > 1 near the surface are drawn equally red.

chemotaxis is active. Finally, we have observed that preliminary numerical simulations
with diffusion cut-off show small-structured, unrealistic convection patterns in areas
with diffusion cut-off, which we thus believe not to be a good model for describing the
biological experiment in figure 1. Numerical simulation of a modified model, where
the cell diffusion is not turned off but continuously tuned down (to the effects of the
Brownian motion of the fluid), along with the chemotaxis cut-off are the subject for a
forthcoming paper discussing several model variations of (2.3)—(2.6).

Later at time ¢ = 0.72 in the time evolution, we observe that the left two plumes
are approaching each other and merge into a large plume at time ¢ = 1.04. With the
bacteria competing for oxygen, the merging of plumes can hardly be a chemotaxis
effect, which would make the plumes, rather, repel each other. Therefore, the merging
of plumes must be a fluid-dynamic effect similar to the merging of Rayleigh—Bénard
convection cells (see e.g. Chapman & Proctor 1980; Busse 1985; Busse & Sieber
1991).

However, the fact that plumes merge shows also that the initially formed number
of plumes is not sustainable on larger time scales. This is a commonly observed
feature in many non-local interaction equations like, for instance, in the Keller—Segel
aggregation model or in models describing the swarming/flocking of individuals.
In these models, the collective behaviour of individuals/particles is given by the
action of an inter-particle potential (modelling e.g. the attractive chemotaxis or the
repulsive—aggregating interaction of a Morse-type swarming potential) and initially
formed aggregates are observed to merge until a stable stationary configuration is
reached (see e.g. Dolak & Schmeiser 2005; Fellner & Raoul 2010). The merging
of plumes in figure 4 shows that the non-local, nonlinear coupling of fluid and cell
motions is equally able to create this behaviour. In figure 4, no further merging of the
two remaining plumes is observed after time ¢t = 1.2. We ran the computation till ¢ = 4.
The patterns observed at t = 1.2 seem to be stationary.
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4.3. Oxygen cut-off and decreased cell diffusion

We have also performed tests with a modified version of model (2.3)—(2.6) where the
oxygen cut-off threshold ¢* = 0.3 not only stops the chemotaxis but also decreases the
cell-diffusion coefficients D,.. In figure 5 we replot the numerical experiment figure 4
at time ¢ = 0.32 without decreased cell diffusion and compare it with the plots with D,
decreased by the factors 5 and 10.

A general comparison with figure 4 shows that the time evolution for decreased cell
diffusion leads to the same formation and merging of the plumes. The most significant
difference concerns the cell-density profiles in the areas with cut-off. In figure 5
the two plots with decreased cell diffusion, (b) and (c), show bowl-shaped plume
structures at the bottom under a falling plume. The profiles of these standing plumes
appear shaped by the recurrent fluid flow and sharpened as the diffusion coefficient is
decreased and the fluid convection becomes increasingly dominant. The experimental
bacteria suspension in the last picture of figure 1 seems to show similar structures
with inactive bacteria at the bottom being shaped into piles between the plumes despite
the impression that parameter values and the amount of cells are not well matched
between figures 1 and 5.

5. Numerically nonlinearly stable stationary plumes for low-density initial
data

In §4, we used the randomly perturbed homogeneous initial data (4.1) as a natural
choice in order to simulate experiments like figure 1. While the randomly perturbed
homogeneous initial data have the advantage of not prescribing any internal length
scale, they are however ill-suited for performing a mesh refinement or other detailed
studies of the formation of plumes simply because the random effect prevents a
detailed comparison of the computed results. In this section, we study the time
evolution of solutions of (2.3)—(2.11) from purely deterministic initial data towards
a stationary state of plumes in the absence of oxygen cut-off (in Hillesdon & Pedley
1996, this case was referred to as the shallow-chamber case).

5.1. Parameters and initial data

We choose the same parameters 8 = 10,y = 10° and (3.1) as for the homogeneous
stationary state depicted in figure 2. We also take the following deterministic initial
data:

1 if y > 0.499 — 0.01 sin((x — 1.5)m),
no(x, y) =

0.5 otherwise, co(x,y) = 1, up(x, y) = 0.

(5.1

It should be observed that the total amount of bacteria cells is now ~10 times higher
than in the initial data (3.9) used in figure 2.

5.2. Time evolution: formation of stationary plumes

In figure 6, we show the time evolution of the computed solution. The formation of
plumes is clearly slower than in the previous example (compare with figure 4), which
is an expected consequence of halving the amount of cells (8 = 10, y = 10? instead of
B =20, y =2 x 10°). As one can see, the solution starts developing instabilities at the
lower edge of the surface high-concentration layer at around ¢ = 0.2. At time ¢ = 0.3,
three plumes are emerging according to the small modulations in the initial data (5.1).
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FIGURE 6. Cell density n and oxygen concentration ¢ of the solution of (2.3)—(2.6) with
initial data (5.1) and 8 = 10, ¥ = 10° and (3.1). At time ¢ = 0.2, the small modulations of
the initial data (5.1) turned into visible instabilities at the lower edge of a high-concentration
layer near the oxygen-rich surface. At r = 0.3, three plumes sink and reach the bottom of the
domain at r = 0.4 before bouncing back upwards at + = 0.5 and reaching a stationary shape
by the time ¢t = 1. To highlight and colour the plumes in the clearest way, all large values
of n > 1 are drawn equally red. The oxygen concentration ¢ at ¢ = 0.5 shows that cut-off
oxygen level ¢ = 0.3 is not approached. (a) Formation of stationary plumes. The cell density
n at times t = 0.2, 0.3,0.4, 0.5, 1. (b) The oxygen density ¢ (plotted at time ¢ = 0.5) remains
always above the cut-off ¢* = 0.3. (c¢) Bouncing of the plumes. Level sets of the cell density n
at times t = 0.4, 0.5.

These plumes reach the bottom of the domain by the time ¢ = 0.4, before slightly
bouncing upwards again (see the graph at time ¢ = 0.5). This temporary bouncing of
the plumes can be seen more clearly in the plots of the level sets of the cell density
n (figure 6b). The plot of the oxygen concentration ¢ at ¢t = 0.5, shown in figure 6(b),
confirms that the oxygen level remains clearly above the cut-off threshold ¢* = 0.3
on the whole domain (although decaying towards the bottom). The following time
evolution (from t=0.5 till # = 1) shows only a small change in the shape or size
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of the plumes and we conjecture that at t =1 one can already see three numerically
stable stationary plumes, which reach the bottom of the domain in the absence of an
oxygen cut-off (the simulations have been run till # =4 and showed no change in
the obtained solution). We remark that these plumes form a fully nonlinear stationary
state, which is not covered, for instance, by the weakly nonlinear theory of Metcalfe &
Pedley (1998).

Figure 7 illustrates the effects of convection and chemotaxis in shaping and
stabilising the stationary plumes. In figure 7(a), we plot the time evolution of the
kinetic energy [u(-,1)|| 12@) With zero initial fluid velocity (see (5.1)) and thus zero
initial kinetic energy, a strong increase in Kinetic energy is caused once the plumes
have started to sink. At the time the plumes have reached the bottom, a maximum
of kinetic energy is attained. Later on, the kinetic energy bounces back down and
oscillates before levelling at a stationary value.

The velocity field u at time = 0.5 is depicted in figure 7(b) for the left of the
three plumes whose position is indicated by the level set of the cell density n = 0.7.
Obviously, the high concentration of cells within the plumes forces the incompressible
fluid downwards to the bottom from where it resurfaces in the areas in between the
plumes, where there are fewer cells and, thus, a smaller gravitational force is acting on
the fluid (see the right-hand side of (2.5)).

While figure 7(b) shows clearly how the shape of the plumes and the gravitational
forcing of the fluid generate the fluid convection around the plumes, it is not at
all obvious how convection, diffusion and chemotaxis shape the stationary plumes
themselves. In particular, we remark that while in a vertical slice through a stationary
plume the upwards-directed chemotaxis might be able to balance gravity, no such
balance can exist in a horizontal direction in which the chemotaxis should, rather,
move the cells away from the plumes towards areas where fewer cells have consumed
less oxygen. Diffusion too (whose significant effects are clearly visible when
comparing the bottom part of figure 4 where the oxygen cut-off stops the chemotaxis
with figure 6 where there is no oxygen cut-off) should only act to widen the stationary
plumes horizontally. Both these comments are confirmed by figure 7(c) which plots the
chemotaxis/diffusion component of the cell flux —Vn 4+ anVc together with the level
sets n =0.3,0.45,0.7 at time ¢ = 0.5 and illustrates that the chemotaxis/diffusion
flux acts mostly to retract and somewhat to widen the shape of a stationary
plume.

Consequently, we conjecture that a stationary plume is predominately shaped by
the surrounding fluid convection itself. The fluid component of the cell flux un
together with the level sets n = 0.3, 0.45,0.7 at time ¢ = 0.5 are plotted in figure 7(d).
Moreover, figure 7(e) shows the relative strength of the fluid-driven cell flux compared
to the chemotaxis/diffusion-component flux, i.e. |un|/(lun| + |—Vn 4+ anVc|). It shows
that in most areas of the domain (with the exception of the convection vortices) the
strength of fluid-driven cell flux dominates the cell flux caused by chemotaxis and
diffusion. Finally, figure 7(f) depicts several level sets of the strength of the fluid
flux |un|. Note that the shape of these level sets agrees well with the shape of the
stationary plumes.

Finally, the plots figures 7(g) and 7(h) show the vector field and the level sets of the
total flux un — Vn + anVe. Note that for the stationary plumes the total flux is not
zero (in fact it is of the order of the fluid-driven flux figure 7d) although it has to be
divergence-free.

Altogether, the plots in figure 7 demonstrate that the fluid-driven cell flux is
responsible for the shape of the plumes. However, it remains to show how the plumes
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FIGURE 7. (Colour online) The kinetic energy |u|| 2 (£2) of the solution of (2.3)-(2.11)
with the initial data (5.1) and parameters B = 10, y = 10° and (3.1); the velocity
field u and various components of the cell-flux around a stationary plume. (a) Time-
evolution of kinetic energy |ul| L%(.Q). (b) Velocity field u with the level sets n = 0.7 at
time ¢ = 0.5. (¢) Chemotaxis/diffusion-component of the cell-flux —Vn + anVc with the
level sets n = 0.3,0.45,0.7 at time ¢t = 0.5. (d) Fluid-driven cell-flux un with the level
sets n =0.3,0.45,0.7 at time t = 0.5. (e) Relative strength of the fluid-driven to the
chemotaxis/diffusion flux |un|/(Jjun| + |—Vn + anVc]|) at time t = 0.5. (f) Level sets of
|lun| at time t = 0.5. (g) The total flux un — Vn 4+ anVc at time t = 0.5. (h) Level sets of the
total flux un — Vn + anVc at time t = 0.5.

can remain stationary since ultimately the only possible energy source to keep the
fluid convection flowing is the chemotaxis, which is driven by the oxygen influx at the
surface. At the same time, figure 7(c) seems to show that the chemotactic flux anVce
near the surface is even less strong than the diffusion flux —Vn since the combined
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FIGURE 8. Switching off chemotaxis: cell density n of the solution of (2.3)-(2.11) with
initial data (5.1) and 8 = 10, ¥ = 10? and (3.1). To highlight and colour the plumes in the best
way, all large values of n > 1 are drawn equally red. (@) Switching-off chemotaxis: depletion
of the high-cell-concentration layer near the surface and diffusion of the plumes. (b) Time
evolution of fluid kinetic energy ||u|| 2 after switching-off the chemotaxis at time t = 4.

chemotaxis/diffusion flux —Vn + anVc points downwards from the surface, which
shows that the high-concentration layer is actually compressed by the upstreaming
fluid.

In order to show the crucial contribution of the chemotaxis, we completely switched
off the chemotaxis at time f =4. A subsequent evolution of the plumes (for ¢t > 4)
is illustrated in figure 8, which clearly shows that without chemotaxis the high-cell-
concentration layer near the surface runs out of cells very quickly as they sink down
to the bottom via the plumes. Moreover, the diffusion seems to become the dominating
effect, which quickly blurs the shape of the plumes. Figure 8(b) shows that the kinetic
energy quickly relaxes to zero after chemotaxis is switched off. However, there is an
interesting short-time peak in the kinetic energy just after the switching-off, which
seems to coincide with the disappearance of the high-cell-concentration layer near the
surface in the absence of chemotaxis.

Altogether, we conclude that the numerically stable steady state at time ¢ =1, as
plotted in figure 6, results from a subtle balance of chemotaxis, diffusion and the fluid
convection, which is driven by gravity (i.e. the sinking of the cells within the plumes)
and powered by the chemotaxis and the oxygen influx at the surface, which keeps
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FIGURE 9. Comparison of cell density n of stationary solutions at time t = 1 of (2.3)—(2.6)
with initial data (5.2) (a), (5.3) (b) and B =10, y = 10 and (3.1) on the modified domain
[—1.5m, 1.57t] x [0, 1] in comparison to the standard domain size [—3, 3] x [0, 1] (¢).

the oxygen levels above the cut-off and the cells chemotactically active. Moreover, we
remark that at present we are not able to prove analytically that the numerical solution
at time ¢t =4 is indeed a nonlinearly stable stationary state. However, the observed
numerical stability very strongly suggests so.

5.3. Variation of the domain size and plumes formation
Figure 9 shows that the qualitative features of the solution are preserved when
changing the domain from [—3, 3] x [0, 1] to [1.5m;, 1.5x] x [0, 1]. Using the initial
data
1 if y > 0.499 — 0.01 sin(2x — 1.5m),
no(x, y) =

0.5 otherwise, co(x,y) =1, uo(x, ) =0

5.2)

to trigger three plumes and the initial data

1 if y>0.499 — 0.01 sin(4x — 4.57),
ny(x,y) = { . co(x,y) =1, up(x,y) =0

0.5 otherwise,
(5.3)

to trigger six plumes we calculate stationary states with three, respectively six, plumes.

5.4. Mesh-refinement study

We conclude this section by a comparison of the numerical results for several refined
meshes. In particular, the above plots use a 300 x 50 grid, and we recalculated them
with 240 x 40, 480 x 80 and 600 x 100 grid points. In figure 10, we plot the L!- and
the L*-errors of the cell-density n calculated on the 240 x 40 mesh (figure 10a) and
on the 480 x 80 mesh (figure 10b) in comparison to the finest 600 x 100 mesh. We
observe a good convergence of the numerical scheme for refined meshes. In particular,
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FIGURE 10. Convergence of the numerical solution under mesh refinement: L'-error (blue
line) and L*-error (red line) of the cell density n calculated on (a) the 240 x 40 grid compared
to the 600 x 100 grid and (b) the 480 x 80 grid compared to the 600 x 100 grid.

the formation of stationary plumes, as plotted in figure 6, occurs in a very similar
manner on all considered meshes.

6. Stationary plumes in the presence of the oxygen cut-off for high-density
data

In this section, we shall study the effects of the oxygen cut-off on the formation and
stability of plumes by simply increasing the amount of cells.

6.1. Parameters and initial data

We consider the same setting as in §5, but here B = 10> and y = 10*, which
corresponds to a 10-times higher reference cell density #,.

Time evolution. finger-shaped plumes turn into mushroom-shaped plumes

In figure 11, at time r = 0.03 we observe a high-concentration layer near the surface
(thinner than in figure 6 above) on top of an intermediate depletion area with few cells
and a medium-density bottom layer. The cells of the bottom layer are inactive as they
have already consumed the oxygen ¢ down to the cut-off level of ¢ = 0.3 (as a result
of the ten-fold increase in the initial amount of cells compared to figure 6 above).
Moreover, we see the onset of plumes appearing (again more narrow than in figure 6).

At time ¢t = 0.04, these plumes have sunk halfway down to the bottom and show a
finger-like shape. At time t = 0.05, as the plumes sink further down into the bottom
layer of inactive cells, the oxygen cut-off renders the cells inactive and they behave
like a passive suspension of particle. At the same time the finger-like plumes flare out
into mushroom-shaped plumes as is known for such suspensions.

Later, at time ¢ = 0.06, the lower, mushroom-shaped part of the plumes starts to get
blurred by the diffusion and by time ¢ = 0.1, diffusion has become the dominating
effect for the inactive cells in the bottom half of the domain and the former plumes
have been blurred into a homogeneous suspension. In contrast, the three finger-like
plumes in the top half of the domain appear to constitute a numerically stable pattern
similar to the one obtained in the previous example and shown in figure 6.

We remark that in comparison to experiments like those of figure 1, figure 11
reproduces the high-concentration layer near the surface, the depletion area, the bottom
layer of inactive cells as well as the finger-like shape of the plumes within the
depletion layer and the mushroom-like shape of the plumes entering the bottom layer.
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FIGURE 11. Solution (of (2.3)—(2.6), (5.1) with 8 = 10%, y = 10* for the (a) n- and (b)
c-components. To best highlight the plumes, all values of n > 1 are drawn equally red.

One difference between figure 11 and figure 1 is that the experiment in figure 1 shows
a more irregular spacing of the plumes. However, a more irregular spacing of the
plumes could be obtained by including random perturbations into the initial data as
was done in §4. A second difference is that the plumes in the experiment figure 1 are
somewhat bent in contrast to the straight plumes in the simulation figure 11. This is
very likely to be a perturbative effect caused by the non-zero initial velocity field in
the experimental set-up.
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FIGURE 12. (Colour online) Fluid velocity field, fluid-driven cell flux and
chemotaxis/diffusion cell flux at times ¢t = 0.06 and r = 0.1 of the solution of (2.3)-(2.6),
(5.1) with B8 = 10%, y = 10*. In order to obtain readable plots of the fluid flux and the
chemotaxis/diffusion flux, only the arrows up to a length of 1/3 of the maximal flux strength
are plotted. (a,b) Fluid velocity u with the level sets n = 0.45, 0.7 at time ¢t = 0.06 (@) and
t =0.1 (b). (c,d) Fluid-driven cell-flux un with level sets n = 0.45,0.7 at time ¢t = 0.06 (¢)
and r = 0.1 (d). (¢,f) Chemotaxis/diffusion flux —Vn + anV ¢ with the level sets n = 0.45, 0.7
at time t = 0.06 (¢) and r = 0.1 (f).

Figure 12 illustrates the analysis of the convection pattern observed in figure 11. In
particular, we compare (for the left of the three plumes) the fluid velocity u, the fluid-
driven cell flux un and the chemotaxis/diffusion flux —Van+anVc at the times ¢ = 0.06
(left column of figure 12) and 7 = 0.1 (right column of figure 12). We note that in
order to obtain better scaling of the plots of the fluid flux and the chemotaxis/diffusion
flux, only the arrows up to a length of 1/3 of the maximal flux strength were plotted
while the remaining arrows were omitted. Moreover, we have included the cell-density
level sets n =0.45,0.7 in the plots. At time ¢ = 0.06, we observe that the sinking of
the plumes stirs the fluid down to the bottom of the domain as previously depicted in
figure 11. Later at time ¢ = 0.1, however, the fluid convection has shifted (in contrast
to figure 11) upwards from the bottom and away from the bulk of inactive cells there.
Presumably, there is not enough energy provided by the chemotaxis in order to stir
up cells from all of the domain. As a consequence, only close to the surface, where
the oxygen concentration remains above the threshold, does the fluid convection keep
confining the plumes against the chemotaxis and diffusion and renders them stationary.
This shows again that it is ultimately the chemotaxis (i.e. the cells swimming upwards
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FIGURE 13. Switching off the chemotaxis: cell density n and oxygen concentration c¢ of the
solution of (2.3)—(2.11), (5.1) with 8 = 10%, y = 10*. To best highlight the plumes, all values
of n > 1 are drawn equally red.

in between the plumes and refeeding the high-concentration layer near the surface) and
not the gravity (making the cells sink down within the plumes), which is the driving
force of the fluid convection and thus responsible for the existence of numerically
stable stationary plumes. Once again, note how the fluid flux un compresses the
high-concentration surface layer as the chemotaxis/diffusion flux near the surface layer
is dominated by —Vn, which points downwards from the surface.

Finally, figure 13 shows the effects of switching off the chemotaxis (at time ¢ = 0.5).
As in the previous example, we observe that without the chemotaxis refeeding cells
into the surface layer, the fluid convection collapses quickly, the finger-shaped plumes
sink into the bottom half and get blurred by the diffusion.

6.2. Comparison of different oxygen thresholds ¢* =0.2,0.3, 0.4.

Figure 14 illustrates the influences of the oxygen threshold ¢* on the calculated cell
density. It shows that the qualitative features of the solution are very well preserved
when changing the threshold value for the oxygen cut-off c*.

7. How finger-shaped plumes turn into mushroom-shaped plumes

In comparison with the previous example, in this section, we demonstrate the
sinking of plumes undisturbed by effects of the surrounding cells.

Parameters and initial data

We thus consider the same parameters as in the previous section, but choose initial
data without cells in the lower region of the domain:

CO(x9 )7) == 1’ u()(x, y) - 07 (7'1)

(. y) = 1 if y>0.499 — 0.01 sin((x — 1.5)m),
MY =10 otherwise,
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FIGURE 14. Comparison of the cell density n of (2.3)-(2.6), (5.1) with ¢* = 0.2 (a), with
¢* =0.3 (b) and ¢* = 0.4 (c), for B = 10, y = 10* and t = 0.06. To best highlight the plumes,
all values of n > 1 are drawn equally red.

t=0.02 t=0.02
@ (b)

3 2 -1 0o 1 2 3 3 =2 -1 0 1 2 3

FIGURE 15. Solution of (2.3)—(2.6), (7.1) with B = 10%, ¥ = 10* for (a) the n- and (b) the
c-components.

7.1. Time evolution: from fingers to mushrooms to fingers

The time snapshots of computed solution (the n- and c-components) are plotted in
figure 15. A very similar computation with the diffusion coefficient for n diminishing
from D, to D,/10 for ¢ below ¢* is shown in appendix B. One can clearly see the
appearance of a high-concentration layer near the surface and an early stage of falling



The dynamics of plumes and high-resolution numerics in a chemotaxis-fluid model 179

(@) 1.0 (b)1.0

0571 0.5

-3.0 -2.5 -2.0 -1.5 -1.0 -3.0 2.5 -2.0 -1.5 -1.0

S

x5
06%

‘o — 0.9
0.4
0.2
-3.0 —2..5 —2..0 —1..5 -1.0 9370 Q—_2,5 _20 15 - ‘—:1 0

FIGURE 16. (Colour online) Fluid-driven cell-flux at times r = 0.03 and 7 =1 as well
as the chemotaxis/diffusion cell-flux at time ¢ = 0.03 and the relative strength of fluid to
chemotaxis/diffusion flux at = 0.1 of the solution of (2.3)—(2.6), (7.1) with 8 = 10%, y = 10*.
(a) Fluid-driven cell flux un with level sets n = 0.45, 0.7 at time r = 0.03. (b) Fluid-driven cell
flux un with level sets n = 0.45, 0.7 at time ¢ = 1. (¢) Chemotaxis/diffusion flux —Vn 4+ anVc¢
with cut-off level set ¢ = 0.3 (inner area) at time ¢ = 0.03. (d) Contours of relative strength of
fluid-chemotaxis flux |un|/(lun| + | — Vn + anVcl) at time t = 1.

plumes at time ¢t = 0.02. Nevertheless, by this time the plumes have already consumed
in their proximity the oxygen down to the cut-off concentration ¢* = 0.3. By time
t = 0.03, all of the oxygen in the lower part of the domain has been consumed down
to the cut-off and the plumes flare out into a mushroom-type shape, whose onset might
have already been present at time ¢t = 0.02. Finally, at time ¢ = 1, the lower part of the
domain has diffused into a rather homogeneous suspension of inactive cells. This is
in contrast to the upper half of the domain, where the chemotaxis of the active cells
maintains the fluid convection, which in turn confines the plume to their shape.

In figures 16(a) and 16(b), we plot the fluid-driven cell flux un for the left of the
three plumes at times r = 0.03 and r = 1. At r =0.03, when the sinking plumes have
reached the bottom, there is a significant cell flux in the lower half of the domain,
which however is strongly diminished by # = 1.

Figure 16(c) shows the chemotaxis/diffusion flux together with the oxygen level set
¢ = 0.3 (lines) plotted at time ¢ = 0.03. Inside the lines, where chemotaxis is turned
off, it is the diffusion flux that blurs the plume. One can see that there is only a
relatively small area outside the blue lines, where the chemotaxis/diffusion flux is
directed upwards and helps feed cells into the concentration layer near the surface
and, thus, into the sinking plume. We conjecture that this small area is responsible
for the lack of strength of the resulting fluid convection to keep stirring the cells in
the bottom layer for large times. We remark that like in the previous example, the
chemotaxis/diffusion flux near the surface and away from the plume is dominated by
the fluid flux, which points downwards as the fluid compresses the high-concentration
layer.

Figure 16(d) shows the relative strength of the fluid cell flux to the
chemotaxis/diffusion cell flux. It should be observed that it is unclear whether the
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solution at time ¢ =1 (see figure 15) can constitute a stationary state. Indeed, one can
see that some cells sink from the high-concentration plumes at the upper half down to
the bottom of the domain, which could result in all the cells eventually sinking down.
We conjecture, however, that this loss of cells down to the bottom is compensated by
the fluid convection stirring inactive cells in between the plumes up into areas outside
the oxygen cut-off.

7.2. Overall oxygen consumption due to bio-convection

It is interesting consider about the overall oxygen consumption of the cells due to
the bio-convection pattern: first note that the cell-density equation (2.3) with the
boundary conditions (2.11) conserves the initial total number of particle/cells, i.e.
Jon(t, x,y)dxdy = [, no(x, y)dxdy for all > 0. Moreover, integrating the oxygen-
concentration equation (2.4) with the boundary conditions (2.11) yields for any
stationary solution that the total oxygen influx through the surface equals S times
the total mass of chemotactically active cells, i.e.

/ Scy(x, dx=p / r(c’) n’(x, y) dxdy, (7.2)
Surface Q

where ¢’(x,y) and n’(x,y) denote the oxygen and cell concentration of the stationary
solution.

Recalling that the length of the surface |Surface| equals the area of the domain |£2],
we obtain equally that the averaged oxygen influx per surface unit divided by the
averaged cell mass per unit area equals the relative mass of the active cells compared
to the total mass of cells, i.e.

/ 8 c; (x, 1)dx
Surface

/#mw&®
2

L/)dc%ng)n%L)dedy
2

=5 (7.3)

/ﬁmwww
2

Thus, for stationary patterns without oxygen cut-off (these are the homogeneous-in-y
pattern in figure 2 and the cases with three and six stationary plumes, see figure 9)
the overall oxygen consumption, which is expressed in terms of the total oxygen influx
through the surface, equals 8 times the total initial cell mass.

For the stationary convection pattern with oxygen cut-off we calculate the following
numbers: in figure 14 comparing stationary pattern with ¢* = 0.2, 0.3, 0.4 we find that,
respectively, 39.4 %, 37.5 %, and 35.1 % of the cells are active:

fSurfuce SC; ()C, 1) dx
Joni(x, y) dxdy

In contrast we find for figure 15 that 44.3% of the cells are active. Note that
443 % 1is a significant increase in active cells of the stationary pattern compared to
figure 14 were we found for ¢* = 0.3 a stationary pattern with only 37.5%. In fact,
this difference is stronger than the variation of the threshold ¢* = 0.2,0.3,0.4 in
figure 14 and is entirely due to the modified initial data (7.1), which feature no cells
in the bottom of the domain in contrast to the initial data (5.1), which were used for
figure 14.

= £ (0.394,0.375,0.351) for ¢* =(0.2,0.3,0.4). (7.4)
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Appendix A. Derivation of the numerical method

We start by writing the system (2.3)—(2.6) in coordinate form and rewrite the
w-equation in an equivalent non-conservative (transport) form:

n + [+ ar(c)eonl, +[(v + ar(c)ey)n], = ny + nyy, (A1)
¢+ (uc), + (ve)y, = 8(cw + ¢yy) — Brio)n, (A2)

w; + uw, + vw, = Sc(wy + wyy) — ¥ Scny, (A3)

Ve + Yy = —0. (A4)

In this system the oxygen concentration ¢ and the vorticity @ are convected by the
flow, diffused and affected by the source terms (the oxygen uptake term —gBr(c)n and
the gravity term —y Scn,, respectively). The evolution of the cell concentration n is
governed by convection—chemotaxis fluxes, (u + ar(c)c,)n and (v + ar(c)c,)n, and the
linear diffusion term.

In the numerical method presented, the quantities n and ¢ will be evolved in time
by solving the chemotaxis equations (A1) and (A2) using the second-order finite-
volume upwind method, while w will be evolved on a staggered grid by applying the
second-order centred-difference scheme to the vorticity equation (A 3). Therefore, the
resulting method will be a hybrid finite-volume finite-difference scheme. The velocities
u and v will be recovered from the stream-function i by solving the elliptic equation
(A 4) followed by the centred-difference approximations of the velocities in u = v, and

v=—Y,.

A.1. Finite-volume upwind scheme for the chemotaxis equations

We first describe a semi-discrete second-order finite-volume upwind scheme for (A 1),
(A2). We divide the computational domain £2 into the cells C;, 1= [xj—,2), Xj+q1/2)] X
ka2 Yeray2] of size AxAy (see figure 17), where Ax and Ay are small spatial
scales assumed, for simplicity, to be constants. We then denote the cell averages of

q .= (n, c)T by

1
g.(H)=— .y, 1) dx dy, A5
q; (1) AxAy//Cj’kq(xy ) dxdy (A5)



182 A. Chertock, K. Fellner, A. Kurganov, A. Lorz and P. A. Markowich

k+1/2

k=172

j-172 j+12

FIGURE 17. (Colour online) Typical finite-volume cell C;  for the evolution of cell averages
n and c. Point values of w and v are computed at the ‘corners’ of the cell.

and integrate (A 1), (A2) over cell C;; to obtain

d Vk+(1/2)
AxAy—n; + / (u+ ar(c)c)n
)

Yj+(1/2) XjH(1/2) Yk+(1/2)
ar dy + / (v +ar(c)ey)n dx
X

k—(1/2) Xj—(1/2) —(1/2) Yk—(1/2)
erctyy [T ) |Yk1/2)
= / n, dy + / n, dx, (A6)
U N Y-/ In-ap
d TN S A e PR2)
AxAy &Ej,k + uc dy + ve dx
Yk—(1/2) X-(1/2) Xj—(1/2) Yk—(1/2)
Ve+(172)  |N+A/2) Yj+(1/2)  |Yk+(1/2)
:8/ Cx dy+8/ Cy dx—,B// r(c)ndxdy. (A7)
Yk—(1/2) Xj—(1/2) Xj—1/2) Yk—(1/2) Ciik

Applying the midpoint rule to the above integrals and dividing by AxAy results in

d _ (u + ar(c)cx)n|(Xj_'_(l/z),)'k) - (u + ar(c)cx)n|(x]-_(1/2),yk)
— T A —
dr Ax
B (v+ ar(c)cy)nl(xj,ykm/z)) —(v+ ar(c)c),)nl(xj,yki(]/z))
Ay
Ml gm0 ~ Mela_apme | Wleagam = Wleyca
+ + ; (A8)
Ax Ay
d_ el ~UClw apon Y Clhmpan ~ Vg
S~ _
dr”’ Ax Ay
n Scxl("jw/zm) — &loapmw n Scy|()fjv>’k+<1/2>) — Slomcap
Ax Ay
+ Br(c; )N . (A9)

The construction of the scheme will be complete once the fluxes at the cell
interfaces in (A 8) and (A9) are approximated numerically. The semi-discrete finite-
volume upwind scheme for computing cell averages gq;, ‘= (ﬁj,k,fj,k)T then can be
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written as the following system of ODE:s:

X X y y
Eq _ _Hiapu—Hapu  Hiap —Hiop
de 7k Ax Ay
P?CIZk_P'x—IZk P?!klz_P?yk—lz £
+ J+(1/2), J—(1/2), + J.k+(1/2) J.k=(1/2) +Rj,k, (A 10)
Ax Ay
where
Hﬁt(l/z) ¢~ ((u+ar(c)e)n| i (1/2) K ucly X (1/2)- yk)) (A11)
and
y ~ T
H; )~ ((v+ ar(c)cy)n|(Xj,)'ki(l/z))’ v C|(;,,):ki(1/2))) (A12)

are numerical convection—chemotaxis fluxes,

X ~ T
Py ™ (Ml a0y 05 8€xl 12y m0) (A13)

and
Yy ~ T
Pj,ki(l/2) ~ (n}’|(xja)’kj:(1/2))’ c.Vl(xjquj:(l/2))) (A14)

are centred numerical diffusion fluxes, and Iiij,k = (0, ,Br(E_,-,k)ﬁj_k)T are the cell averages
of the source term. From now on all indexed quantities used in the description of the
scheme are calculated at time f, but we suppress their time-dependence in order to
shorten the formulae.

To ensure stability of the scheme (A 10), we use an upwind approximation of the
convection—chemotaxis fluxes, which can be written in the component-wise form as
follows:

0) EG) e ()
4 a; q: if a; >0,
x, (i) _ J+(1/2),k J k J+(1/2),k .
H ()= { o O i 0 0 i=1,2, (A 15a)
ditr1/2)., kq/+l ko1 ai+(l/2),k <Y,
b, MO B 10 > O,
0 ) Pikrar ‘1] k k+(1/2) =12 A 15b
2 = it p 0. t=1 2. ( )
i k+(1/2) qj,k“rl WOty <
Here, the upper index ()’ stands for the number of the vector component and qE WoN.S
are the point values of the piecewise linear reconstruction,
g, y) =g + (g0 —x) + (q,),, 0 =y, (1, y) € Gy, (A 16)

at the points (Xi1a/2),Ye)s (=2, Ye)s X, Yerayn) and (X, yk—a,2)), respectively.
Namely, we have
E _~ wo_ = — Ax
q;. = g Y6) =G + (Qx), e 9= qX—at, ) = ¢ — B3 (G4
(A17a)
N o Ay s _ s _ Ay
9= 4, Vv =) =i+ —- (CIy)j e k= g, Y- t) = ¢ — 5 (‘Iy)j,k .
(A 17h)

To ensure the second order of accuracy, the numerical derivatives (g.);, and
(q_v)jk are to be (at least) first-order approximations of the corresponding exact
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derivatives g.(x;, yr, t) and gq,(x;, y, t). In our numerical experiments, we have used
the central-difference approximations,

G~ _ Tiknt ~ Gur. (A 18)

(qx)j,k - T, (qy ik T 2Ay

throughout the computational domain £2 except for the cells, where the linear
approach (A 18) leads to the appearance of negative reconstructed values of n. In
the cells, where either nfk or nj‘.f‘;( is negative, we replace (A 18) with a nonlinear total
variation diminishing (TVD) minmod2 reconstruction (see e.g. Sweby 1984; Nessyahu
& Tadmor 1990; Lie & Noelle 2003), which corresponds to

Ax ’ 2Ax Ax

and guarantees that no negative values of n emerge at the reconstruction step.
Similarly, if either nj.f’k or nls , is negative, we set

. Ny — Wik Miprp — Wik AMip1x — Mk
(n,); = minmod (2 ! ! ! N ARt ! (A19)

N — Mg Mgpr — Mg 2ﬁj,k+1 iy
9 9
Ay 2Ay Ay

and recalculate the reconstructed values nfk and njsk The minmod function used in
(A'19) and (A 20) is defined as

(A20)

(ny)j’ . = minmod (2

min{z;} if z; >0 Vj,
J
minmod (zy, za, . . .) '= ¢ max{z;} if z; <0 V], (A21)
J
0 otherwise.

To complete the description of the numerical convection—chemotaxis fluxes in
(A 15b), we need to specify the quantities a}ﬁ(l 2y and bj’i +(1/2)» Which are the local
speeds in the x- and y-directions, respectively. Since all components of the solution
are expected to be smooth, the local speeds can be approximated using the centred
differences and averages as

) e
Ak = Wik T ar(Cramo (€ivamu  dixame = Wirape  (A22)

(1 _ (2) _
bikray = Vikram T or(Curam) (€ ame bikrap = Vikrap,  (A23)

where
Cip1x —C Citt1 — G
YLk J.k Ykt J.k
(Cx)j+(1/2).k = 7Ax ) (Cy)j,k_‘_(l/z) = 7Ay s (A24)
1, E w 1, N s

Cirapx =5+ i)y Grrap = 36 + ) (A25)

and Ui+ (1/2).k and Vj k+(1/2) are given by (A 37)

Finally, the centred numerical diffusion fluxes are
— — — — T
p* o Mk — Mk 5 Cit1,k — Cjk (A26)
JH(1/2)k Ax ) Ax

and

_ _ _ _\T
) Mjk+1 — Njk o Cik+1 — Cjik
Plriap = ( ’ +Ay L8 +Ay ! ) . (A27)



The dynamics of plumes and high-resolution numerics in a chemotaxis-fluid model 185

Remark. Previous numerical schemes for aggregating chemotaxis models like the
Patlak—Keller—Segel system (see Filbet 2006; Haskovec & Schmeiser 2009; Carrillo
& Moll 2009) share in common that they are designed to capture chemotactic blow-up
phenomena, which are not relevant for the above system (A4) where the chemo-
attractant is consumed not produced by the cell.

Remark. The presented upwind scheme preserves positivity of the cell density n
provided the ODE system (A 10) is discretised using a strong stability-preserving
(SSP) ODE solver (Gottlieb, Shu & Tadmor 2001; Pareschi & Russo 2005; Higueras &
Roldén 2006). This a very important property that any robust numerical method should
satisfy. To prove this, it is enough to consider the forward Euler time discretisation of
the ODE system (A 10). The fully discrete update for the n-component thus becomes:

- - 0 W . 2.
it + AL =1 — A (17’/)'(+<1/2),k - H_f—(l/zxk) — K <Hj,k+(1/2> - H_/,k—(lm)
[njﬂ,k =2m+ k| B — 20+ ”jwkl}
2 2 ’
(Ax) (Ay)

where A := Atr/Ax, u:= At/Ay, and, as before, the dependence of all terms on the

right-hand side of (A 28) on t is suppressed to simplify the notation. Our goal is to

show that if all 7; ,(f) are non-negative, then all 7; . (f + At) will also be non-negative.
Since

+ At

(A28)

1+ Slgn( ) 51gn( )
(1) 40 ey ey
H i = mu ( > e —I— 5 n'o | (A29)

and

1+ s1gn( ) 51gn( )
L(1) (e)] k+(1/2) k+(1/2)
H,iy+(1/2>,k = bj,k+(1/2) < ) nﬁk + ) ”jsk+1 (A30)

and since by the conservation property of the piecewise-linear reconstruction (A 16)
the identity

i = g (g + nj +ml + ) + 37 (A3D)

is true, we obtain:

nj(t+ A = + ;1 oy k > ny

T
1 M - Slgn(aj<1/2>,k)] W

+

g Aa j+(1/2) k ) j.k

1 ) 1 + sign(g; +(1/2>k)] nE

— g™ — sign(q; +<1/2> W ow
j+(1/2),k 2 j+1.k

1+ Slgn( (1/2)k)
2 ] 1,k

1- Sign(bj,k—(lm)] S

(1)
8 b k—(1/2) ) i k
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)
1 20 L+ sign; i) |
+ s~ MOj iy 1) > Loy
L)
— 1 —sign(®1a/2)
MDj i 1/2) ) T k1

1 4 sign(®"_, »)
o) k—(1/2)
+ ub;i_q 2 ) ’ nj\,/k—l

7 [l-m( 2 +2)]
2T @ T @y

M, + M1k Mgy +”j,k—1]
(Ax)® (Ay)?
This means that the new values {7;(f + Af)}, computed using (A 32), are linear

combinations of the non-negative cell averages {7;;} and the reconstructed point
value {nfk, nJWk, ”;ka nfk}, which are also non-negative provided the reconstruction is

performed using (A 18) and (A 19), as explained above. These linear combinations will
be convex combinations provided the following CFL condition is satisfied:

4 Ar [ (A32)

Ax Ay (Ax)* (Ay)?
b b 2 2
8 max; ; {Iaj(»f(l/z)’“} 8 max; ; {|bj(.’1,3+(1/2)|} 4((Ax)" + (Ay)9)

This condition thus guarantees positivity of {7, :(f + A#f)}.

At < min

. (A33)

A.2. Centred-difference scheme for the vorticity equation

We now describe a semi-discrete second-order finite-difference scheme for the vorticity
equation (A 3). We approximate all derivatives in (A 3) using the centred differences
and evolve the point values of vorticity at the corners of the finite-volume cells by
solving the following system of time-dependent ODEs:

d Wj+(3/2).k+(1/2) — Wj—(1/2).k+(1/2)

Wit (172),k+(1/2) = —Ui4(1/2),k+(1/2
dr j+(1/2),k+(1/2) Jj+(1/2),k+(1/2) IAx
Wjt+(1/2).k+(3/2) — Dj+(1/2),k—(1/2)

2Ay
wj+(3/2),k+(1/2) - 260]‘-‘-(1/2),/(-&—(1/2) + a)j—(l/2),k+(l/2)

(Ax)*
Wi (1/2).k+G/2) — 20j1(1/2).k+(1/2) T Ojr1/2).4-(1/2)

(Ay)*

—y Sc (nx)j+(1/2)$k+(l/2)’ (A34)

using the same ODE solver which was used to solve system equation (A 10). In
(A 34), we have wji 12 1412 () = @ (Xjt1/2), Vit 2), 1), the velocities ujy /2 k+q/2) and

Vir1/2.k+a2 are defined in (A36) below and (n.);i(1)2) 4112 1S computed by the
centred-difference formula

— Vj+(1/2),k+(1/2)

+ Sc

_|_

N s N s
(i1 + 1) — M +15500)
2Ax '

Notice that both nY, and 7, ,, are second-order approximations of 7(x;, yet1/2))-

(nx)j+(l/2),k+(l/2) = (A 35)
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A.3. Velocities

Once the point values of the vorticity {w;«/2)x+1,2)} are evolved, we solve the elliptic
equation (A4) to obtain the point values of the stream-function at the same set of
points, {12 k+a,2}, from which the velocities # and v can be easily computed
using the following centred-difference approximations:

1pj+(l/2)~k-~-(3/2) — 1nﬁj-*—(l/Z),k—(l/Z)

Ujt(1/2).k+(1/2) =

Ay (A36)
_Yieparan = Yimamatan
Vjit(1/2).k+(1/2) = — 2Ax ’
_ Yirapkran = Yirama-a/
Wjr(1/2).k = A ’
y (A37)
_ _VYiraparan = Yicapierar
Vjk+(1/2) = — Ax .

A.4. Numerical boundary conditions

We split the boundary 0£2 into a top part, 982, ={(x,y) | —a<x<a,y=d}, a
bottom part, 982, = {(x,y) | —a < x < a, y =0}, and two sides, 0824 = {(x,y) |
x==a, 0 <y<d}. We cover the computational domain §2 with a Cartesian grid
consisting of j,.x X k4 uniform cells.

The boundary conditions at the top 052,,, model a fluid—air surface preventing cell
flux and providing full oxygen saturation (see Metcalfe & Pedley 2001; Tuval et al.
2005). More precisely, we implement (2.10) in the following way (for n and c the
ghost cell technique is used):

a(lffj

7. — 7. Jmax) @ =
B kpax+1 *= Wk © maxs, Cjkmax+1 = 1’ } (A 38)

O (1/2) domax+1/2) = Vit (1/2) kmar+1/2) = 0, V],

where the boundary condition for n is obtained from the first formula in (2.10) by
taking into account the fact that at the top ¢ ~ 1 and thus r(c) =1 and by integrating
(Inn), = ac, with respect to y from yy,.. t0 Yi,uct1-

The boundary conditions on 952,,, model a solid bottom preventing cell and oxygen
fluxes. More precisely, we implement (2.11) as follows (the ghost cell technique is
now used for n, ¢ and v):

Vira/2),6/2) — Vira/2,0/2)
2
(Ay)

’

Mo =M1, Co=0Ci1, W/, =2

(A 39)
Virao.—a = ¥Yirap.eps V-

For details on stream-function and vorticity boundary conditions we refer the reader to
Thom (1933), see also the review paper E & Liu (1996).
Finally, the two sides 052, are connected with periodic boundary conditions.

A.5. Time integration

Finally, to obtain a fully discrete scheme, the system equation (A 10), (A 34) should
be solved by a stable ODE solver of an appropriate order. Since this system is rather
stiff, one may prefer to use an implicit or large-stability-domain explicit ODE solver
(see the discussion in the beginning of §3). However, this may affect the positivity-
preserving property of the resulting fully discrete scheme. In Chertock & Kurganov
(2008) and Chertock et al. (2010), we have shown that if one uses a strong-stability-
preserving (SSP) method (either a Runge—Kutta or a multistep one) or an IMEX-SSP
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FIGURE 18. Solution (the n- and c-components) of (2.3)—~(2.6), (7.1) with 8 = 10%, y = 10*.
Moreover, for ¢ below c¢*, the diffusion coefficient for n switches from D, to D, /10.

or a positivity-preserving IMEX method together with the aforementioned adaptive
strategy, then the positivity of n will be ensured.

Appendix B. Additional computations

Comparing figures 18 and 15 shows that the solution almost stays the same when
diminishing the diffusion coefficient for n from D, to D,/10 for ¢ below c¢*. The
same calculations have been done when the diffusion coefficient for n switches from
D, to D,/5, D,/50 and D,/100. To increase readability and limit the length of the
article, they are not shown. They give evidence that the numerical scheme is able to
treat these cases. Moreover, for D,/100, we observe relatively sharp edges which seem
unphysical.
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