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Abstract

We introduce an operator splitting based stochastic Galerkin method for the one-dimensional

compressible Euler equations with random inputs. The method uses a generalized polyno-

mial chaos approximation in the stochastic Galerkin framework (referred to as the gPC-SG

method). It is well-known that such approximations for nonlinear system of hyperbolic

conservation laws do not necessarily yield globally hyperbolic systems: the Jacobian may

contain complex eigenvalues and thus trigger instabilities and ill-posedness. In this paper,

we propose to split the underlying system into a linear hyperbolic system and two effectively

scalar linear or nonlinear hyperbolic equations with variable coefficients and source terms.

The gPC-SG method, when applied to each of these subsystems, results in globally hyper-

bolic systems. The performance of the new gPC-SG method is illustrated with a number of

numerical examples with uncertainties from the initial data or equation of state.

Key words. Uncertainty quantification, compressible Euler equations, stochastic Galerkin methods,

polynomial chaos, random input, central-upwind schemes, operator splitting.

AMS subject classifications. 35R60, 35L65, 35Q31, 65M08, 76M12, 65M60, 65M70.

1 Introduction

The compressible Euler equations is a system of nonlinear hyperbolic systems of conservation

laws. Its equation of state is usually empirical, thus may contain uncertainties. Uncertainties

can also appear in the source terms, initial or boundary data due to empirical approximations

or measuring errors. Quantifying these uncertainties is important for many applications since it

helps to conduct sensitivity analysis and to provide guidance for improving the models.

In recent years, one has seen increasing activities and many advances in solving partial

differential equations with uncertainties. Among the most popular methods for such problems is

the polynomial chaos or generalized polynomial chaos (gPC) approach [8,40,42]. There are two

types of polynomial chaos methods: intrusive and non-intrusive ones. The intrusive methods
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use the Galerkin approximation, which results in a system of deterministic equations, solving

which will give the stochastic moments of the solution of the original uncertain problem. The

non-intrusive methods solve the original problem at selected sampling points, thus one can use

the same code as the deterministic problem, and then use interpolation and quadrature rules

to numerically evaluate the statistical moments [26, 27, 41]. A comparison of computational

costs of the two approaches for the diffusion equation with random coefficients was carried out

in [7], showing a lower computational cost for the stochastic Galerkin method. The stochastic

Galerkin method also has theoretical advantages since it is based on the Galerkin framework.

In this paper, we develop a new generalized polynomial chaos stochastic Galerkin (gPC-SG)

method for the one-dimensional compressible Euler equations. Its extension to multidimensional

Euler equations is straightforward.

Existing gPC-SG methods have been successfully applied to many physical and engineering

problems, where spectral convergence can be observed if the underlying solution is sufficiently

smooth. The application of the gPC-SG approach to nonlinear hyperbolic systems of conserva-

tion and balance laws, nevertheless, encounters major difficulties. For linear hyperbolic systems

and scalar hyperbolic conservation laws, the gPC-SG approximation yields a system for the gPC

coefficients which is always hyperbolic, thus gPC-SG methods are viable methods for uncertainty

quantification (UQ) for such equations [40]. The gPC-SG approximation also remains hyperbolic

if the original system is symmetric, see, for instance, [12], where the gPC-SG method has been

applied to a symmetric hyperbolic system obtained by differentiating the Hamilton-Jacobi equa-

tion in space. However, when applied to general nonlinear (non-symmetric) hyperbolic systems,

gPC-SG methods result in systems for the gPC coefficients, which are not necessarily globally hy-

perbolic [6] since their Jacobian matrices may contain complex eigenvalues. This is similar to the

issue of losing hyperbolicity in Grad’s thirteen moment closure of the Boltzmann equation [11].

Consequently, extra efforts are needed in order to obtain well-behaved discrete systems. One

approach is to use gPC approximations for entropy variables [31]. In this method, one needs to

change from entropy to conservative variables by solving a minimization problem at every mesh

point and time step, which can be computationally expensive for large scale problems. Another

simpler approach is to use the Roe variables as it was proposed in [29]; see also [30]. Using a Roe-

type solver for symmertrizable hyperbolic systems was also suggested in [36]. These methods

are restricted to systems which admit the Roe linearization and require switching between the

Roe and original variables at every grid point and every time step by solving nonlinear algebraic

systems using the trust-region-dogleg algorithm.

In this paper, we present a splitting strategy for the one-dimensional (1-D) compressible

Euler equations such that the gPC-SG approximation of each of the split subsystems always

results in a globally hyperbolic system for the corresponding gPC coefficients. This strategy is

generic, although the nonlinear system studied in tis paper is specific (in [5] we will propose

a similar splitting for the Saint-Venant system of shallow water equations). Our main idea is

to split the underlying hyperbolic system into a linear hyperbolic system and linear or nonlinear

scalar equations with variable coefficients and source terms. It is well-known that for linear

hyperbolic systems and scalar conservation laws, gPC-SG methods yield globally hyperbolic

systems. Thus, our splitting approach provides a reliable and stable gPC-SG method, which is

simple and generic, and hence attractive for practical applications.

In gPC-SG methods, the solution of the underlying system is sought in terms of orthogonal
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polynomial series [42], whose coefficients satisfy deterministic (systems of) time-dependent PDEs.

Since in our approach the obtained gPC-SG system of equations for the coefficients is guaranteed

to be hyperbolic, we numerically solve it by a finite-volume Godunov-type method. In particular,

we use a semi-discrete second-order central-upwind scheme, which has been originally introduced

in [16, 17, 19] as a Riemann-problem-solver-free black box solver for general multidimensional

hyperbolic systems of conservation laws. One of the advantages of the central-upwind schemes is

their direct applicability to systems with complicated (generalized) Riemann problem solutions

including the cases of conservation laws with variable coefficients.

Here, we shall not try to address the numerical difficulties of dealing with discontinuities in

the random space using the gPC approximation, which may trigger the Gibbs phenomenon in

the random space. It is well-known that in this case one should use piecewise approximations

such as, for example, a multi-element gPC [13,38,39], a wavelet basis [20,21] and essentially non-

oscillatory (ENO) or weighted essentially non-oscillatory (WENO) interpolations [1], which can

sometimes be coupled with local subspace recovery techniques [4] or multiresolution approaches

[2, 35].

The rest of the paper is organized as follows. In Section 2, we briefly review the gPC-SG

method for a general hyperbolic system of conservation laws. In Section 3, we describe the

proposed splitting approach for the compressible Euler equations, and numerically demonstrate

that, for deterministic problems, such a splitting provides a simply and viable framework for

deriving shock capturing schemes. The gPC-SG approximations of each of the resulting split

subsystems are presented in Section 4. Finally, in Section 5, we provide several numerical

examples to illustrate the performance of the proposed method. The paper is concluded in

Section 6.

2 The gPC-SG method – an overview

In this section, we briefly describe the gPC-SG method for the 1-D hyperbolic system of

conservation laws

Ut + F (U , x,z)x = 0, x ∈ R, t > 0, z ∈ Ω ⊂ Rd, (2.1)

where the unknown vector function U = U(x, t,z) depends on the spatial variable x, time t and

random variable z. In the gPC expansion, the solution of the system of stochastic PDEs (2.1)

is sought in terms of an orthogonal polynomial series in z (see, e.g., [42]):

U(x, t,z) ≈ UN (x, t,z) =

M−1∑
i=0

Ûi(x, t)Φi(z), M =

(
d+N

d

)
, (2.2)

where {Φm(z)} are d-variate orthonormal polynomials of degree up to N ≥ 1 from Pd
N satisfying∫

Ω

Φi(z)Φ`(z)µ(z) dz = δi`, 0 ≤ i, ` ≤M − 1, M = dim
(
Pd
N

)
. (2.3)

Here, µ(z) is the probability density function of z and δi` is the Kronecker symbol. The choice

of the orthogonal polynomials depends on the distribution function of z. For example, a Gaus-

sian distribution defines the Hermite polynomials; a uniform distribution defines the Legendre
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polynomials, etc. Note that when the random dimension d > 1, {Φi(z)} are multidimensional

polynomials of degree up to N of z. An ordering scheme for multiple index is required to re-order

the polynomials into a single index i in (2.2). Typically, the graded lexicographic order is used;

see, e.g., [40, Section 5.2].

For the PDE system with random inputs (2.1), the gPC-SG method seeks to satisfy the

governing equations in a weak form by ensuring that the residual is orthogonal to the gPC

polynomial space. Substituting the approximation UN from (2.2) into the governing system

(2.1) and using the Galerkin projection yield

(Ûi)t + (F̂i)x = 0, 0 ≤ i ≤M − 1, (2.4)

where

F̂i =

∫
Ω

F

(M−1∑
j=0

Ûj(x, t)Φj(z), x,z

)
Φi(z)µ(z) dz, 0 ≤ i ≤M − 1. (2.5)

This is a system of deterministic equations for the expansion coefficients Ûi, i = 0, . . . ,M − 1.

In most cases, the equations in (2.4) are coupled.

For linear hyperbolic systems, (2.4) is a vectorized version of the original system (2.1) and thus

it remains hyperbolic. For nonlinear symmetric hyperbolic systems—including scalar hyperbolic

conservation laws—the Jacobian of the flux is a symmetric matrix and thus the gPC system (2.4)

is hyperbolic as well. However, if the nonlinear hyperbolic system (2.1) is not symmetric, (2.4) is

not always hyperbolic since its Jacobian may encounter complex eigenvalues, see such examples

in [6]. In the latter case, the initial and initial-boundary value problems for (2.4) are ill-posed

and the gPC-SG method can be unstable. In the next section, we shall present a way to overcome

this difficulty by introducing operator splittings for the compressible Euler equations, which can

be written as system (2.1), that will guarantee that the gPC-SG discretization of each of the

split subsystems always results in a globally hyperbolic system for the expansion coefficients.

Although in this paper we present such a splitting for the compressible Euler equations only,

our splitting strategy is generic, and a similar splitting for the Saint-Venant system of shallow

water equations will be presented in a subsequent paper [5].

3 A splitting of the compressible Euler equations

In this section, we consider the 1-D compressible Euler equations:
ρt +mx = 0,

mt + (ρu2 + p)x = 0,

Et + (u(E + p))x = 0,

(3.1)

where ρ is the density, u is the velocity, m := ρu is the momentum, p is the pressure, and E is

the total energy. For a polytropic gas, the equation of state is given by

p = (γ − 1)

(
E − 1

2
ρu2

)
(3.2)
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with γ being the specific heat ratio.

We assume here that the initial data and the equation of state may depend on a random

variable z, that is,

ρ(x, 0, z) = ρ0(x, z), u(x, 0, z) = u0(x, z), p(x, 0, z) = p0(x, z), γ = γ(z). (3.3)

Uncertainty may also arise from boundary data and other terms (such as source terms, a case

treated in [5].

The Euler equations is a hyperbolic system that has three distinct characteristic speeds u, u±c
with c :=

√
γp/ρ being the speed of sound, but as it has been mentioned, a direct application

of the gPC-SG method to the system (3.1) may fail due to the loss of hyperbolicity after the

gPC-SG discretization. In order to overcome this difficulty we introduce an operator splitting

technique. The proposed splitting consists of a linear system and two nonlinear and linear

scalar equations with variable coefficients and thus the gPC-SG approximation is guaranteed to

maintain the hyperbolicity for each of the subsystems.

3.1 An operator splitting

Our main idea is to split the Euler system (3.1) into the following three subsystems:
ρt +mx = 0,

mt + ((γ − 1)E + am)x = 0,

Et − aEx = 0,

(3.4)


ρt = 0,

mt +

(
3− γ

2
· m

2

ρ
− am

)
x

= 0,

Et = 0,

(3.5)

and 
ρt = 0,

mt = 0,

Et +

(
m

ρ

[
γE − γ − 1

2
· m

2

ρ

]
+ aE

)
x

= 0.

(3.6)

The first system (3.4) is linear hyperbolic with three distinct characteristic speeds 0,±a. The

parameter a will be chosen in such a way that the eigenvalues of the Jacobian of the first

subsystem (3.4) satisfy the following subcharacteristic condition:

− |a| ≤ u− c < u+ c ≤ |a|. (3.7)

Furthermore, we choose a such that convection coefficients (and consequently the characteristic

speeds (3− γ)u for (3.5) and γu for (3.6) ) in the second and third equations of the second and

third subsystems (3.5) and (3.6), respectively, do not change sign. (When they change signs they
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could bring analytical and numerical difficulties; see, e.g., [3]). This yields the following choice:

a = ± sup
u

{
max

(
|u|+ c, γ|u|, (3− γ)|u|

)}
.

Here, the sign of a is not crucial, and we alternate it at each splitting step as the solution is

numerically evolved in time. One can also select the sign of a in the beginning of each splitting

step randomly.

It is easy to check that under the subcharacteristic condition (3.7) each of the subsystem in

the above splitting is strictly hyperbolic (their Jacobian matrices of the fluxes are diagonalizable

in the real space). The second system (3.5) is essentially a scalar Burgers equation for m with

variable coefficient and source term, since ρ remains constant in time in (3.5). In the third system

(3.6), ρ and m do not change in time and thus the last equation in (3.6) for E is again a scalar

(and, in fact, linear) hyperbolic equation with variable coefficients and a source term. Therefore,

after the gPC-SG approximation, each of the above systems gives a globally hyperbolic system

for the gPC coefficients.

3.2 Numerical validation of the operating splitting

Before proceeding further with the derivation of the gPC-SG method for the systems (3.4)–

(3.6), it is helpful to check the performance of the hyperbolic splitting described in the previous

section on a purely deterministic Euler equations, in which no data depend on a random variable

z. To this end, we numerically solve the system (3.1) using two different methods.

We first directly apply the second-order semi-discrete central-upwind scheme from [17] (also

briefly described in Appendix A for general systems of conservation/balance laws) to the original

system (3.1), which can be written in the vector form (2.1) with

U =

 ρ

m

E

 , F =

 m

ρu2 + p

u(E + p)

 .

The semi-discrete central-upwind discretization of the system (3.1) is thus obtained from (A.7),

(A.8) with the cell averages U j = (ρj ,mj , Ej)
T defined in (A.1), the point values U±

j+ 1
2

=

(ρ±
j+ 1

2
,m±

j+ 1
2
, E±

j+ 1
2

)T computed according to (A.6) and the one-sided local speeds of propagation

(A.5) given by

a+
j+ 1

2

= max
{
u−
j+ 1

2
+ c−

j+ 1
2
, u+

j+ 1
2

+ c+
j+ 1

2
, 0
}
,

a−
j+ 1

2

= min
{
u−
j+ 1

2
− c−

j+ 1
2
, u+

j+ 1
2
− c+

j+ 1
2
, 0
}
,

(3.8)

where

u±
j+ 1

2
=
m±

j+ 1
2

ρ±
j+ 1

2

, c±
j+ 1

2
=

√√√√√γ p±
j+ 1

2

ρ±
j+ 1

2

.

For the splitting approach, we use the second-order Strang operator splitting method (B.3)

with K = 3 (see Appendix B). Each of the subsystems (3.4), (3.5) and (3.6) is again solved

using the second-order semi-discrete central-upwind scheme described in Appendix A. The first
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system (3.4) is a linear system of conservation laws of the form (2.1) with

U =

 ρ

m

E

 , F =

 m

(γ − 1)E + am

−aE

 , (3.9)

for which the central-upwind scheme (A.7), (A.8) applied with a+
j+ 1

2

= −a−
j+ 1

2

≡ a ∀j reads

d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
, Hj+ 1

2
=

F (U−
j+ 1

2

) + F (U+
j+ 1

2

)

2
− a

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
. (3.10)

The second system (3.5) is actually reduced to a scalar hyperbolic conservation law for m

with

U = m, F =
3− γ

2
· m

2

ρ
− am, (3.11)

and the third system (3.6) is reduced to a linear equation for E with

U = E, F =
m

ρ

[
γE − γ − 1

2
· m

2

ρ

]
+ aE. (3.12)

Both scalar equations (3.11) and (3.12) are numerically solved by the central-upwind scheme

(A.7), (A.8) with m±
j+ 1

2
and m±

j+ 1
2

computed according to (A.6) and the local speeds a±
j+ 1

2

taken exactly the same as in (3.8).

Once the two numerical approaches (the unsplit and split ones) are designed, we test them

on the Sod shock tube problem, in which the system (3.1) is considered subject to the following

initial conditions:

ρ0(x) =

{
1, x < 0.5,

0.125, x > 0.5,
u0(x) ≡ 0, p0(x) =

{
1, x < 0.5,

0.1, x > 0.5.
(3.13)

The solutions computed on a uniform grid with ∆x = 1/400 at time t = 0.1644, are plotted in

Figure 3.1, which shows a good agreement between the two approaches.

This example shows that our splitting provides a simple and useful way to build a shock

capturing scheme for the (deterministic) compressible Euler equations, providing support to use

this approach for the Euler equations with uncertainty.

4 The gPC-SG approximation

We define the gPC expansions of ρ, m, E and γ in the following form:

ρN (x, t,z) =

N∑
i=0

ρ̂i(x, t)Φi(z), mN (x, t,z) =

N∑
i=0

m̂i(x, t)Φi(z),

EN (x, t,z) =

N∑
i=0

Êi(x, t)Φi(z), γN (z) =

N∑
i=0

γ̂iΦi(z),

(4.1)
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Figure 3.1: Euler equations: ρ (top left), m (top right) and E (bottom) computed by both the
unsplit and split approaches.

and use them to derive a gPC-SG scheme for the systems (3.4)–(3.6). To this end, we substitute

(4.1) into each of the split subsystems (3.4)–(3.6) and after implementing the Galerkin projection

we obtain the corresponding three systems for the gPC coefficients:

(ρ̂i)t + (m̂i)x = 0,

(m̂i)t + a(m̂i)x +

N∑
k,`=0

ˆ̂γk(Ê`)xSk`i = 0,

(Êi)t − a(Êi)x = 0,

(4.2)



(ρ̂i)t = 0,

(m̂i)t +

N∑
k,`=0

ˆ̂
γ̂k(ψ̂`)xSk`i − a(m̂i)x = 0,

(Êi)t = 0,

(4.3)
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(ρ̂i)t = 0,

(m̂i)t = 0,

(Êi)t + a(Êi)x +

N∑
k,`=0

(
ˆ̂
ψkÊ`)xSk`i −

N∑
k,`=0

(
ˆ̂
ψ̂kψ̂`)xSk`i = 0,

(4.4)

where Sk`i is given by

Sk`i =

∫
Ω

Φk(z)Φ`(z)Φi(z)µ(z) dz for all k, `, i = 0, . . . , N. (4.5)

In the above equations, we have used the following definition:

γN (z)− 1 =

N∑
i=0

ˆ̂γiΦi(z),
3− γN (z)

2
=

N∑
i=0

ˆ̂
γ̂iΦi(z),

(
m2

ρ

)
N

(x, t,z) =

N∑
i=1

ψ̂i(x, t)Φi(z),

(
γm

ρ

)
N

(x, t,z) =

N∑
i=1

ˆ̂
ψi(x, t)Φi(z),

(
(γ − 1)m

ρ

)
N

(x, t,z) =

N∑
i=1

ˆ̂
ψ̂i(x, t)Φi(z).

The gPC coefficients ψ̂i needed in (4.3) and (4.4) can be computed by applying the gPC-SG

approximation to the relation ρψ = m2:

N∑
k,`=0

ψ̂kρ̂`Sik` =

N∑
k,`=0

m̂km̂`Sik`, i = 0, . . . , N, (4.6)

and once {ρ̂i} and {m̂i} are given, one can solve the linear system (4.6) to obtain {ψ̂i}. Similarly,

the gPC coefficients { ˆ̂
ψi} and {

ˆ̂
ψ̂i} that appear in (4.4) can be obtained by solving the linear

systems
N∑

k,`=0

ˆ̂
ψkρ̂`Sik` =

N∑
k,`=0

γ̂km̂`Sik`, i = 0, . . . , N, (4.7)

and
N∑

k,`=0

ˆ̂
ψ̂kρ̂`Sik` =

N∑
k,`=0

ˆ̂γkm̂`Sik` i = 0, . . . , N, (4.8)

respectively.

Remark 4.1 We are not able to prove the invertibility of the linear systems (4.6)–(4.8). Here,

we argue that they are likely invertible under certain positivity and smoothness assumptions.

Take (4.6) as an example. When applying the gPC-SG approximation to the relation ρψ = m2

for the exact value of ρ > 0, one would obtain the following linear system for {ψ̂i}:

N∑
k=0

ψ̂k

∫
Ω

ρ(z)Φi(z)Φk(z)µ(z) dz =

N∑
k,`=0

m̂km̂`Sik`, i = 0, . . . , N. (4.9)

For ρ > 0, the coefficient matrix on the left-hand side of the linear system (4.9) is symmetric

positive definite (see, e.g., [43]). Thus, the system (4.9) is invertible. The linear system (4.6)

9



is obtained by approximating ρ ≈ ρN =
∑N

`=0 ρ̂Φ`. Thus, the entries in the coefficient matrix

in (4.6) are just the gPC approximation of those in (4.9), and they are spectrally close to each

other for smooth solutions so the corresponding coefficient matrix in (4.6) is likely invertible.

In particular, (4.6) is invertible if ρN > 0. In the general case, there is no guarantee of the

positivity of ρN and there is a lack of analysis on the invertibility of the linear systems (4.6)–

(4.8). Nevertheless, we have never encountered any problems in our numerical simulations.

For the spatial discretizations of the systems (4.2)–(4.4), we again apply the second-order

semi-discrete central-upwind scheme described in Appendix A. Here, for each i = 0, . . . , N in

(4.2), we have a linear hyperbolic system of the form (2.1) with

Ui =

 ρ̂i

m̂i

Êi

 , Fi =


m̂i

am̂i +

N∑
k,`=0

ˆ̂γk(Ê`)Sk`i

−aÊi

 ,

and thus apply the semi-discrete scheme (3.10) to each one of the N + 1 equations.

The second system (4.3) is a set of N + 1 decoupled scalar hyperbolic conservation laws for

m̂i, which still can be put into the form (2.1) with

Ui = m̂i, Fi =

N∑
k,`=0

ˆ̂
γ̂kψ̂`Sk`i − am̂i,

each of which is solved by the central-upwind scheme (A.7), (A.8) with the local speeds estimated

using the leading (zeroth) terms in the gPC expansions (4.1) as

a+
j+ 1

2

= max
{
û−
j+ 1

2

+ ĉ−
j+ 1

2

, û+
j+ 1

2
+ ĉ+

j+ 1
2
, 0
}
,

a−
j+ 1

2

= min
{
û−
j+ 1

2

− ĉ−
j+ 1

2

, û+
j+ 1

2
− ĉ+

j+ 1
2
, 0
}
.

(4.10)

Here, we have used the following notation:

û±
j+ 1

2

:=
(m̂0)±

j+ 1
2

(ρ̂0)±
j+ 1

2

, ĉ±
j+ 1

2

:=

√√√√ γ̂0 p̂
±
j+ 1

2

(ρ̂0)±
j+ 1

2

, p̂±
j+ 1

2

:= ˆ̂γ0

[
(Ê0)±

j+ 1
2

−
(m̂0)±

j+ 1
2

u±
j+ 1

2

2

]
.

Finally, the third system (4.4) is a set of N + 1 decoupled scalar linear hyperbolic equations

for Êi with

Ui = Êi, Fi = aÊi +

N∑
k,`=0

ˆ̂
ψkÊ`Sk`i −

N∑
k,`=0

ˆ̂
ψ̂kψ̂`Sk`i,

each of which is solved by the central-upwind scheme (A.7), (A.8) with the local speeds given

by (4.10).

Remark 4.2 In the case of deterministic γ 6= γ(z), the gPC-SG approximation becomes sub-

stantially simpler. We omit the details for the sake of brevity.

10



5 Numerical experiments

In this section, we illustrate the performance of the new gPC-SG method on a number of

numerical examples. Throughout this section, we consider the Sod shock tube problem (3.1),

(3.13) with the randomness/uncertainty, which can enter through either the initial data (Example

1), adiabatic coefficient γ (Example 2) or initial interface location (Example 3). For simplicity,

we will always assume a 1-D random variable z obeying the uniform distribution on [−1, 1], thus

the Legendre polynomials are used as the gPC basis (the highest degree in the gPC expansion is

N = 8). We would like to point out that the mathematical formulation and numerical methods

work for z in any dimension. The mean and standard deviation of the computed solution U ,

which are shown in the Figures below, are given by

E[U ] = Û0 and σ[U ] =

N∑
i=1

(Ûi)
2, (5.1)

respectively, where Ûi, i = 0, . . . , N are the computed gPC coefficients of U .

In all of the examples below, the second-order semi-discrete central-upwind scheme (A.7),

(A.8) was implemented for the spatial discretization on uniform grids, the piecewise linear in-

terpolants were constructed using the minmod limiter (A.3), (A.4) with θ = 1.3, and the arising

systems of ODEs were numerically integrated by the third-order strong stability-preserving (SSP)

Runge-Kutta method [9,10]. All of the experiments were conducted in the computation domain

[0, 1] with nonreflecting boundary conditions and the results will be shown at time t = 0.1644.

Example 1 – Perturbed Initial Data. We first consider the Sod shock tube problem with

perturbed initial data, that is, the system (3.1) with γ = 1.4 and subject to the following initial

condition:

ρ0(x, z) =

{
1 + 0.1z, x < 0.5,

0.125, x > 0.5,
u0(x) ≡ 0, p0(x) =

{
1, x < 0.5,

0.1, x > 0.5,
(5.2)

and solve it numerically by the gPC-SG method. The mean and standard deviation of ρ, m

and E computed on the two different grids with ∆x = 1/200 and ∆x = 1/800, are plotted in

Figures 5.1. The results demonstrate a good agreement (everywhere except for the left part of

the rarefaction area) with the deterministic solution shown in Figure 3.1: the time evolution of

the right shock and the contact wave is correctly captured by the proposed gPC-SG approach.

Example 2 – Perturbed γ. In the next example, we analyze the effect of uncertainty in

the adiabatic coefficient γ. To this end, we consider the original Sod shock tube problem (3.1),

(3.13) with random coefficient γ, that is,

γ(z) = 1.4 + 0.1z,

and solve it numerically by the gPC-SG method. A similar problem was considered in [35]. The

mean and standard deviation of ρ, m and E computed on the two different grids with ∆x = 1/200

and ∆x = 1/800, are plotted in Figure 5.2. In this case, the uncertainty in the sound velocity
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Figure 5.1: Example 1: Mean (left) and standard deviation (right) of ρ (top row), m (middle row)
and E (bottom row) computed by the gPC-SG method on different grids.

affects the propagation of the shock, contact discontinuity and rarefaction wave. Although the

behavior of the computed solution is similar to the purely deterministic case (Figure 3.1), the

positions of the discontinuities are different. The spreading of the location for both the shock

and contact discontinuity is clearly visible, while the impact of the uncertain sound speed on the

12



(smooth) rarefaction wave is less pronounced.

Figure 5.2: Example 2: Mean (left) and standard deviation (right) of ρ (top row), m (middle row)
and E (bottom row) computed by the gPC-SG method on different grids.

Example 3 – A Perturbed Interface. In the last experiment, we consider the Sod shock

tube problem with uncertainty carried on the initial interface position between the light and

13



heavy fluids. We consider the system (3.1) with γ = 1.4 and subject to the following initial

condition:

ρ0(x, z) =

{
1, x < 0.5 + 0.05z,

0.125, x > 0.5 + 0.05z,
u0(x) ≡ 0, p0(x) =

{
1, x < 0.5 + 0.05z,

0.1, x > 0.5 + 0.05z.

This problem was considered in [31].

As before, we numerically solve the problem numerically by the gPC-SG method and plot

the mean and standard deviation of ρ, m and E computed on the two different grids with

∆x = 1/200 and ∆x = 1/800, see Figure 5.3. As one can see, the computed means are in a

good agreement with the deterministic solution (Figure 3.1): the corresponding positions of the

three waves are quite well captured while of course affected by the uncertainty. The locations

of the three sharp fronts corresponding to the shock, contact discontinuity and rarefaction fan,

coincide with regions of large standard deviation.

6 Conclusion

In this paper, we have studied generalized polynomial chaos stochastic Galerkin (gPC-SG)

methods for the 1-D compressible Euler equations with random inputs. It is well known that

a direct application of gPC-SG methods to nonlinear hyperbolic system of conservation laws

results in nonlinear systems of PDEs for the gPC coefficients. These systems are not necessarily

globally hyperbolic and this may trigger instability. We have developed a new approach, which

guarantees that the obtained gPC systems are hyperbolic. Our method is based on a special

operator splitting: we split the Euler system into the linear system and two scalar equations

with variable coefficients, for which the corresponding gPC systems are known to be hyperbolic.

We have conducted several numerical experiments with uncertainties introduced in either the

initial data or equation of state. The obtained results demonstrate that our gPC-SG method is

capable of accurately capturing both the mean and standard deviation of the studied solutions.

However, more work needs to be done to enhance the proposed method and make it robust so

that it would be able to handle problems with waves containing strong discontinuities in the

random space. One also needs to establish a solid theoretical foundation for this method as

well as generalize it for other hyperbolic systems of conservation and balance laws and for the

multidimensional problems. These tasks stay beyond the scope of this paper and are left for

future development.
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Figure 5.3: Example 3: Mean (left) and standard deviation (right) of ρ (top row), m (middle row)
and E (bottom row) computed by the gPC-SG method on different grids.
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A The semi-discrete second-order central-upwind scheme

In this section, we briefly describe the central-upwind schemes for 1-D hyperbolic systems

of conservation and balance laws. These schemes are Godunov-type finite-volume methods. For

their complete description and derivation, we refer the reader to [15–18].

We consider a 1-D system of conservation/balance laws (2.1) and divide the computational

domain into the uniform cells Cj = [xj− 1
2
, xj+ 1

2
] of size |Cj | = ∆x centered at points xj =

j∆x, j = jL, . . . , jR. We assume that at certain time t the cell averages of the computed

solution,

U j(t) =
1

∆x

∫
Cj

U(x, t) dx (A.1)

are available. From here on we suppress the time-dependence of all of the indexed quantities in

order to shorten the notation.

We use the cell averages (A.1) to reconstruct a non-oscillatory piecewise linear polynomial,

Ũ(x) = U j + (Ux)j(x− xj), xj− 1
2
< x < xj+ 1

2
, ∀j, (A.2)

where the slopes (Ux)j are obtained using a nonlinear limiter, say, the generalized minmod one

(see, e.g., [23, 28,34,37]):

(Ux)j = minmod

(
θ
Uj+1 −Uj

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj −Uj−1

∆x

)
, (A.3)

with the minmod function is defined by

minmod(z1, z2, . . .) :=


min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

(A.4)

and the parameter θ ∈ [1, 2] controls the amount of numerical dissipation: The larger the θ the

smaller the numerical dissipation.

The global solution Ũ(x) is, in general, discontinuous at the interface points {xj+ 1
2
}. The

discontinuities propagate with right- and left-sided local speeds, which, for example, can be esti-

mated by the smallest and largest eigenvalues λmin < . . . < λmax of the Jacobian ∂F
∂U . Namely,

a+
j+ 1

2

= max

{
λmax

(
∂F

∂U

(
U−

j+ 1
2

))
, λmax

(
∂F

∂U

(
U+

j+ 1
2

))
, 0

}
a−
j+ 1

2

= min

{
λmin

(
∂F

∂U

(
U−

j+ 1
2

))
, λmin

(
∂F

∂U

(
U+

j+ 1
2

))
, 0

}
,

(A.5)

where

U+
j+ 1

2

= U j + (Ux)j
∆x

2
, U−

j+ 1
2

= U j − (Ux)j
∆x

2
(A.6)

are the corresponding right and left values of the reconstruction (A.2).

Using the above construction we obtain the semi-discrete central-upwind scheme (see, e.g.,
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[16, 17]:
d

dt
U j = −

Hj+ 1
2
−Hj− 1

2

∆x
, (A.7)

where the numerical fluxes Hj+ 1
2

are given by

Hj+ 1
2

:=
a+
j+ 1

2

F (U−
j+ 1

2

)− a−
j+ 1

2

F (U+
j+ 1

2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
(A.8)

with a±
j+ 1

2

and U±
j+ 1

2

computed according to (A.5) and (A.6), respectively.

Remark 1.1 If the ith component of F is identically zero, then we replace the numerical flux

(A.8) for this component with

H
(i)

j+ 1
2

= 0, ∀j.

The cell average of the source term Rj in (A.7) is approximated by an appropriate quadrature

for
1

∆x

∫
Cj

R(U(x, t), x, t) dx. The choice of the quadrature rule is very important especially in

cases when the underlying balance law admits steady state solutions. In such cases, one needs

to design a so-called well-balanced scheme — the scheme that exactly preserves the appropriate

steady states on the discrete level. We refer the reader to [15, 18] and the references therein for

a review of some well-balanced methods.

Remark 1.2 The semi-discretization (A.7) is a system of time dependent ODEs, which should

be solved by a sufficiently accurate and stable ODE solver.

B The Operator Splitting

In this section, we give an account of the operator splitting approach, which can be briefly

described as follows. Consider the system (2.1) and assume that it can be split into several

subsystems:

Ut + F1(U)x = 0, . . . , Ut + FK(U)x = 0, (B.1)

where F = F1 + · · · + FK and S1, . . . ,SK denote the exact solution operators associated with

the corresponding subsystems.

Let us assume that the solution of the original system (2.1) is available at time t. We then

introduce a (small) time step ∆t and evolve the solution of (2.1) from t to t+ ∆t in K substeps,

which result in the following approximate solution at time t+ ∆t:

U(x, t+ ∆t, z) = SK(∆t) · · · S1(∆t)U(x, t,z). (B.2)

In general, if all solutions involved in the splitting algorithm (B.1), (B.2) are smooth, the method

is first-order accurate (see, e.g., [24, 25,32]).

Higher-order operator splitting algorithms can be derived by considering additional substeps.

For instance, one time step of the second-order Strang splitting method [24, 25, 32] consists of
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2K − 1 substeps:

U(x, t+ ∆t, z) = S1(∆t/2) · · · SK−1(∆t/2)SK(∆t)SK−1(∆t/2) · · · S1(∆t/2)U(x, t,z). (B.3)

All splitting algorithms, presented in this paper, are based on the Strang splitting algorithm

(B.3). We also refer the readers to [14,22,33,44], where higher-order operator splitting methods

can be found.

In practice, the exact solution operators S1, . . . ,SK are to be replaced by their numerical

approximations. Note that if the obtained subproblems are of a different nature, they can be

solved by different numerical methods — this is one of the main advantages of the operator

splitting technique.
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