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Abstract

This paper is devoted to a practical implementation of deterministic particle methods for solving transport equations with dis-
continuous coefficients and/or initial data, and related problems. In such methods, the solution is sought in the form of a linear
combination of the delta-functions, whose positions and coefficients represent locations and weights of the particles, respectively.
The locations and weights of the particles are then evolved in time according to a system of ODEs, obtained from the weak
formulation of the transport PDEs.

The major theoretical difficulty in solving the resulting system of ODEs is the lack of smoothness of its right-hand side. While
the existence of a generalized solution is guaranteed by the theory of Filippov, the uniqueness can only be obtained via a proper
regularization. Another difficulty one may encounter is related to an interpretation of the computed solution, whose point values
are to be recovered from its particle distribution. We demonstrate that some of known recovering procedures, suitable for smooth
functions, may fail to produce reasonable results in the nonsmooth case, and discuss several successful strategies which may be
useful in practice. Different approaches are illustrated in a number of numerical examples, including one- and two-dimensional
transport equations and the reactive Euler equations of gas dynamics.
© 2006 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider the linear transport equation:

ϕt + divx(uϕ) = S(x, t, ϕ), (1)

subject to the initial condition:

ϕ(x, t) = ϕ0(x). (2)

Here, u ∈ R
d and ϕ0 ∈ R are functions of x ∈ R

d and t (not necessarily smooth), and S is a (possibly singular
point) source term. If the coefficient u and the data ϕ0 and S are sufficiently smooth, it is easy to prove that the
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initial-value problem (1)–(2) has a unique classical solution. When the transport velocity is possibly discontinuous,
various existence–uniqueness–stability theories have evolved with a different definition of a solution and different
conditions on the transport velocity (see, e.g., [43,4]). The problem is even more complicated in the case of several
space dimensions, where the main difficulty is that generalized flows in the sense of PDE, called transport flows, are
not unique and the weak stability of the conservation equation is presently out of reach, see, for example, [11,40,6,5]
and the references therein. We also refer the reader to [21], where several numerical schemes for one-dimensional
(1-D) transport equations with discontinuous coefficients were studied.

Particle methods have been used for a long time to give a numerical solution of purely convective problems, such
as the incompressible Euler equation in fluid mechanics [23,32,33] or the Vlasov equation in plasma physics [19]. In
these methods, the solution is sought as a linear combination of Dirac distributions:

ϕN(x, t) =
N∑

i=1

αi(t)δ
(
x − xp

i (t)
)
, (3)

whose positions, {xp
i (t)}, and coefficients, {αi(t)}, represent locations and weights of the particles, respectively. The

solution is then found by following the time evolution of the locations and the weights of the particles according
to a system of ODEs, obtained by considering a weak formulation of the problem and substituting (3) into (1)–(2).
In order to recover a proper approximation of the solution ϕ(x, t) at some time t > 0, one needs to regularize the
particle solution ϕN(x, t), and hence the performance of the method depends on the quality of the regularization
procedures, allowing the recovery of the approximate solution from its particle distribution. In the context of linear
transport equations with sufficiently smooth coefficients and initial data, the particle methods have been analyzed
in [41]. We also refer the reader to [12] for a general introduction of the particle methods and their numerical analysis
and to [9] for the study of the convergence rate of these methods. When a particle method is applied to problems with
nonsmooth data, the most challenging part of the overall algorithm is recovering point values of the computed solution
from its particle distribution. A commonly used type of the reconstruction is the regularization of a particle solution
performed by taking a convolution with a so-called cutoff function, which plays the role of a smooth approximation
to a delta-function. This procedure works perfectly fine for smooth functions, but may break down when applied to
nonsmooth (discontinuous) solutions: depending on the width of the convolution kernel, one may get either a smeared
or an oscillatory approximation, as it is demonstrated in Sections 2 and 3.

In this paper, we consider different algorithms for reconstruction of numerical solutions from particle distributions
and, in particular, suggest a strategy, which, in most cases, seems to provide the best solution of the recovery problem.
We first use a convolution with a low width cutoff function, which results in an oscillatory approximation of the point
values, which are then filtered by the nonlinear filter proposed in [15] for the treatment of solution cell averages. Even
though this strategy has worked reasonably well in all the examples (both one- and two-dimensional) we considered,
no convergence proof is available.

An alternative recovery approach we use in this paper is based on the concept of a dual solution. It was proposed
in [7] in the context of the transport equation that describes propagation of passive pollutant in shallow water. Here, we
extend it to treat the equation for the mass fraction of the burnt/unburnt gases in reactive flows. The resulting particle
method is similar (and in some cases, is equivalent) to the method of characteristics, and provides one with a set of
computed point values rather then a particle distribution of the solution. A similar situation occurs when advection of
a scalar quantity in a given incompressible flow field is considered.

We would also like to emphasize the advantage of using particle methods for solving the transport equation (1)
with a stiff term S. Such equations arise in many different applications, but in this paper we are concerned with the
1-D Euler equations that model a time-dependent flow of an inviscid, compressible reactive gas:(

ρ

ρu

E

)
t

+
(

ρu

ρu2 + p

u(E + p)

)
x

= 0, (4)

where ρ,u,p, and E are the density, velocity, pressure, and the total energy, respectively. The transport equations for
the mass fraction of the unburnt gas z:

(ρz)t + (ρuz)x = −1
ρzK(τ), (5)
ε



1420 A. Chertock, A. Kurganov / Applied Numerical Mathematics 56 (2006) 1418–1431
is coupled with the system (4) through the equations of state (EOS):

p = (γ − 1) ·
[
E − ρu2

2
− q0ρz,

]
, γ, q0 = const, (6)

and the Arrhenius kinetics term [13]:

K(τ) = e−τc/τ , (7)

where τ := p/ρ is the temperature and τc is the ignition temperature.
When 0 < ε � 1, the reaction is fast and the time scale associated with the stiff reaction term is much smaller

than that associated with the fluid advection. The main difficulty in solving such equations numerically is obtaining
the correct propagation speed of the detonation waves in the case of underresolved computations, that is, when both
temporal (	t) and spatial (	x) grid scales are much larger than ε. In such a case, one may want to use an operator
splitting (fractional step) method, and to replace the solution of the corresponding reaction ODE:

(ρz)t = −1

ε
ρzK(τ), (8)

with the deterministic projection operator. However, as it was first observed in [10], such a deterministic projection
method may lead to a spurious weak detonation wave that travels with an unphysical propagation speed of one grid cell
per time step. This is a result of numerical dissipation present in shock-capturing methods. To overcome this difficulty,
several method have been proposed (see, e.g., [1–3,24,25,27,38]). In Section 4, we demonstrate that applying low
dissipative, mesh-free particle methods to this model results in an accurate computed solution even when a problem
with a complicated wave interactions is considered.

2. Particle methods for transport equations with discontinuous coefficients

We begin with a brief description of the particle method for the initial-value problem (1)–(2). As it is mentioned
in Section 1, the solution is sought as a linear combination of Dirac distributions given by (3). Considering a weak
formulation of the problem and substituting (3) into (1)–(2) results in the following system of ODEs for the locations,
xp
i (t), and the weights, αi(t), of the particles:⎧⎨⎩

dxp
i (t)

dt
= u(xp

i , t),

dαi(t)
dt

= βi(t),
(9)

where βi reflects the contribution of the source term S (see, e.g., [41,9]). The initial positions of the particles, xp
i (0),

and their initial weights, αi(0), are chosen to provide a high-order approximation to the initial data (2), that is, to
accurately approximate the integral equation

N∑
i=1

αi(0)ψ
(
xp
i (0)

) =
∫
X

ϕ0(x)ψ(x)dx

for all C1
0 test functions ψ . For example, one may cover the support of ϕ0 with a mesh consisting of cells Bi,

i = 1, . . . ,N . Then, placing the particles at t = 0 into the centers of mass of the corresponding cells and using the
second-order midpoint quadrature gives the following initial data for the system (9):

xp
i (0) = xCM

i , αi(0) = |Bi |ϕ0
(
xCM
i

)
, (10)

where xCM
i denotes the center of mass of the corresponding cell Bi .

Notice that since both u and S may be nonsmooth, the right-hand side (RHS) of (9) may be discontinuous as well.
However, as long as it is bounded, the existence of a generalized solution of (9)–(10) is guaranteed by the theory of
Filippov [16–18]. The uniqueness of the solution of this initial-value problem for a general u ∈ L∞ and a possibly
singular source is a more delicate problem. However, in most practical applications, u is a piecewise smooth function:
it may be either given explicitly or obtained from the solution of another system as, for instance, in the case of the
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reactive Euler equations, where the velocity u in the transport equation (5) can be computed from (4) using a finite-
volume method (see, e.g., [20,26,37]). In the latter case, u(xp

i (t), t) in (9) can be replaced with ũ(xp
i (t), t), where ũ

is piecewise polynomial interpolant reconstructed from the cell averages of u, computed over the fixed computational
mesh. Such a piecewise polynomial will be, in general, discontinuous at every cell interface, but, for a fixed mesh,
ũ may only be discontinuous along the surfaces of codimension 1, and therefore one can replace ũ with its smooth
approximation. This would guarantee uniqueness of the solution of the initial-value problem (9)–(10). In practice,
however, no particular smoothing procedure is required: when the problem (9)–(10) is solved numerically, either the
left or the right or any intermediate value of u at the discontinuity may be used for computing the RHS of (9) if
(xp

i (t), t) happens to lie right on the discontinuity surface. As for a numerical treatment of a singular source S, we
would like to refer the reader to a specific approach discussed in [8,7] in the context of propagation of a passive
pollutant in shallow water.

At the final time tfin, the solution ϕ(x, tfin) should be recovered from the computed particle approximation
ϕN(x, tfin). As it has been mentioned above, a commonly used way of computing point values of the numerical
solution is a regularization of (3), which is usually performed by taking a convolution product with a smooth kernel
ζε(x), namely, by approximating

ϕ(x, tfin) ≈ (ϕ ∗ ζε)(x, tfin) :=
N∑

i=1

αi(tfin)ζε

(
x − xp

i (tfin)
)
, (11)

where ζε serves as a smooth approximation of the δ-function satisfying

ζε = 1

εd
ζ

(
x
ε

)
, ε > 0,

∫
Rd

ζ(x)dx = 1. (12)

There is an extensive discussion in the literature on the selection of a cutoff function ζ and its relation to the accuracy
of particle methods (see, e.g. [12,41] and the references therein). In particular, classical error estimates, obtained
in [41] for the linear transport equation with sufficiently smooth coefficients and initial data, show that the error is
equal to C1ε

k + C2(	x/ε)m, where 	x is a mean interparticle distance, m is related to the smoothness of ζ , and k is
a number of vanishing moments of ζ . Since C1 and C2 depend on the smoothness of the data [41], this estimate, in
general, fails when the coefficients and/or initial data are discontinuous, in which case the above regularization may
either smear the discontinuities or lead to oscillations, depending on the value of ε. In the following example, we
illustrate the failure of the smoothing procedure (11) and propose a way of its improvement. Even though we show the
numerical results for this particular example only, the new recovery method can be easily extended to a more general
case.

Example 1. Consider the 1-D transport equation:

ϕt + (
u(x, t)ϕ

)
x

= 0, u(x, t) =

⎧⎪⎨⎪⎩
1
2 (x + 1), if −1 < x < 0,

1
2 , if 0 < x < t,

0, otherwise,

(13)

subject to the initial condition

ϕ(x,0) =
{

1, if −1 < x < 1,

0, otherwise.
(14)

In this case, the weights obviously do not change in time, that is, αi(t) ≡ αi(0) =: αi , and the system (9) reduces to

dx
p
i (t)

dt
= u

(
x

p
i , t

)
. (15)

The system (15) has been solved numerically by the third-order strong stability preserving (SSP) Runge–Kutta
method [22] and at the final time t = tfin point values of the computed solution are recovered using formula (11). In
all the computations the Gaussian kernel, ζε(x) = 1√

2πε
e−x2/2ε2

, has been used, but we note that other smooth kernels
give similar results.
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Fig. 1. The solution of (13)–(14) obtained with: (left) εi = 0.25
√

	max
i

, (right) εi = 0.75
√

	max
i

.

The choice of suitable values of its width parameter ε plays now an essential role. Intuitively, it is clear that if ε

is too small compared to the distances between the particles and their neighbors, the approximate solution defined by
(11) will vanish away from the ε-neighborhood of the particles and is thus irrelevant. On the other hand, large values
of ε will generate unacceptable smoothing errors.

It is known (see, e.g. [41]) that for sufficiently smooth solutions, ε ∼ √
	x, where 	x is a mean interparticle

distance, usually leads to reliable results. However, since neither the solution of the initial-value problem (13)–(14)
nor the coefficient in Eq. (13) is smooth, the ratio between the largest and the smallest distance between neighboring
particles may be very large and the mean interparticle distance becomes useless. Therefore, we first of all modify the
“standard” convolution procedure (11) by taking kernels of locally varying width, whose size depends on the distance
between the particles, that is, we approximate the solution at the final time by

ϕε
N(x, tfin) =

N∑
i=1

αiζεi

(
x − x

p
i (t)

)
. (16)

Here the smoothing length εi of each local kernel is selected in a point-wise manner, according to the following
formula:

εi = C

√
	max

i , 	max
i = max

(|xi+1 − xi |, |xi − xi−1|
)
, (17)

and the values of C depend on 	max
i .

Numerical solutions of (13)–(14) at time tfin = 0.5 for the values of C = 0.25 and C = 0.75 are presented in
Fig. 1 (the solid line represents the exact solution). One can clearly observe an oscillatory behavior for C = 0.25 in
Fig. 1 (left) and a poor resolution of discontinuities for C = 0.75 in Fig. 1 (right). In both cases, the number of initially
uniformly distributed particles is N = 200.

In the case of a smaller C, however, the oscillation can be removed by applying a nonlinear filter proposed in [15].
To this end, we first compute discrete values {ϕ(xj , tfin)} of the solution at uniform grid points xj and then utilize
a filter algorithm similar to Algorithm 2.3 in [15]. Notice, that the nonlinear filter is applied only once, as a post-
processing, not after every time step as in [15], and only if oscillations are observed. The “filtered” and the exact
solutions of the initial-value problem (13)–(14) are shown in Fig. 2. As one clearly see, the oscillations, caused by the
recovering procedure (16) with εi = 0.25

√
	max

i , have been successfully removed by the nonlinear filter.

Remark. Another possibility to recover point values of the computed solution from its particle distribution was studied
in [8] in the context of modeling the transport of passive pollutant in shallow water. The computed particle data were
interpreted as integrals of the approximated solution over some nonoverlapping intervals around the particles (the
union of the intervals has to cover the whole computational domain). Then, dividing the weights αi by the lengths of
the corresponding intervals, the cell averages ϕi were obtained. Still, in some cases the resulting piecewise constant
approximation were oscillatory and the nonlinear filter from [15] or another filtering procedure should be implemented
as a post-processing (see, e.g., the numerical experiments in [7]). Since in the case of more than one space dimension,
particles can form a very complicated unstructured grid, a multi-dimensional generalization of this technique is rather
problematic, and therefore it is not considered in this paper.
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Fig. 2. The solution from Fig. 1 (left) after filtering.

3. Advection in incompressible flow

In this section, we consider a special case in which the advection of a scalar concentration or density function
ϕ(x, t) in a specified velocity field u(x, t) is governed by the conservation law

ϕt + divx(uϕ) = 0. (18)

We assume that the flow is incompressible, so that

divx u = 0 (19)

everywhere and Eq. (18) can be written equivalently as a variable coefficient advection equation

ϕt + u · ∇xϕ = 0. (20)

In this case, the particle method is equivalent to the method of characteristic and provides one with a set of computed
point values rather then a particle distribution of the solution. Indeed, the particle trajectories for Eq. (18), determined
by (9), coincide with the characteristic curves for Eq. (20), and thus the corresponding point values of the solution at
the final time t = tfin are

ϕ
(
xp
i (tfin), tfin

) = ϕ
(
xp
i (0),0

)
. (21)

Solving Eq. (18) or (20) numerically is a rather challenging task. A number of (conservative and nonconservative)
high-resolution advection algorithms have been developed in recent years (see, e.g., [14,34,37] and the references
therein). Methods based on the advection form (20) are sometimes more successful than the conservative schemes [34],
but can often cause nonconservative behavior and a change in the total mass that is unacceptable in many applications.
Conservative high-resolution algorithms for (18) may, on the other hand, lead to oscillations and loss of positiv-
ity [14,34], and, as a result, to physically irrelevant (and unstable) solutions. A great feature of the particle method is
that it combines the advantages of the built-in conservation (since the weights do not change in time) and positivity
preserving property (due to the characteristics interpretation (21)). As an example we consider a two-dimensional
(2-D) problem taken from [34], which has also been considered in [14].

Example 2. We solve a 2-D test problem in which a passive tracer is advected in a nondivergent deformational flow
according to the equation

ϕt + (uϕ)x + (vϕ)y = 0, (x, y) ∈ [0,1] × [0,1]. (22)

The initial concentration of the tracer is given by

ϕ(x, y,0) = 1 + cos(πr)

2
, r(x, y) = min

(
1,4

√(
x − 1

4

)2

+
(

y − 1

4

)2 )
. (23)

The velocity field is a swirling shear flow defined as follows:{
u(x, y) = sin2(πx) sin(2πy) cos(πt/5),

2
(24)
v(x, y) = − sin (πy) sin(2πx) cos(πt/5),
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Fig. 3. Locations of particles at time t = 2.5 (left) and t = 5 (right). N = 2500.

Fig. 4. The characteristics solution of (22)–(24) at t = 2.5, recovered using the bilinear-linear procedure—contour (left) and surface (right) plots.
N = 10 000.

and satisfies u = v = 0 on the boundaries. The flow slows down and reverses direction in such a way that every fluid
parcel returns to its original position after five time units, so that the correct tracer distribution at t = 5 should be
identical to the initial field. This gives a very useful test problem since we know the true solution at time tfin = 5 even
though the flow field has a quite complicated structure.

We start by uniformly distributing particles inside the support of ϕ at time t = 0, and let them evolve according to
(9), which is solved numerically using the explicit large stability domain Runge–Kutta ODE solver [35,36]. Locations
of N = 2500 particles at tfin = 2.5 and tfin = 5, are shown in Fig. 3. As one may clearly see, the particle distribution
at time tfin = 5 is almost uniform, while this is not the case for the intermediate stage of evolution, tfin = 2.5, where
certain gaps between the particles are observed. Appearance of these gaps makes it difficult to recover point values of
the computed solution at the points (x, y) �= (x

p
i (tfin), y

p
i (tfin)).

We first assume that the point values at (x
p
i (tfin), y

p
i (tfin)) are given by (21). Then, the values at the points inside the

spiral-like structure, formed at time tfin = 2.5, are obtained with the help of a bilinear interpolation, while the values
at the points near the spiral boundary are computed by the corresponding “one-sided” linear extrapolation. Such a
bilinear-linear recovery procedure results in a reasonable approximate solution, especially when the number of parti-
cles is relatively large, see Fig. 4. Obviously, a more sophisticated interpolation-extrapolation technique may be used,
though it is clear that when gaps between particles are developed, a certain part of the solution cannot be accurately
captured. An alternative approach is to recover the point values of the computed solution with the help of the convo-
lution with the Gaussian kernel of an appropriate (?!) width followed by the filtering (the nonlinear filter from [15] is
now applied in a dimension-by-dimension manner). This also leads to a reasonable solution though appearance of an
artificial spike-like structure in the middle of the spiral significantly affects the quality of the resolution, see Fig. 5.
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Fig. 5. The particle solution of (22)–(24) at t = 2.5, recovered using the convolution with the Gaussian with constant ε = 1.5
√

	 followed by the
filtering—contour (left) and surface (right) plots. N = 10 000, 	 is an initial mean interparticle distance.

Fig. 6. The same as Fig. 5 but with ε = 2.5
√

	.

Fig. 7. The finite-volume solution of (22)–(24) at t = 2.5 computed by the semi-discrete second-order upwind scheme on the 226 × 226 uniform
mesh—contour (left) and surface (right) plots.

Obviously, one may take larger εi , but then the resulting solution gets much more diffusive (Fig. 6), and the main
advantage of low dissipative particle methods is completely lost.

It is instructive to compare the results obtained by the characteristics/particle method with the solution computed
by an alternative, say, finite-volume method. For fair comparison, we take the uniform 113 × 113 and 226 × 226
meshes, which provide the same resolution of the initial pulse as its initial particle approximations with 2500 and
10 000 particles, respectively. In Fig. 7, we show the solution of the problem (22)–(24) at tfin = 2.5, computed by the
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Fig. 8. The characteristics solutions of (22)–(24) at t = 5, computed with N = 2500 (left) and N = 10 000 (right) particles and recovered using the
bilinear-linear procedure.

Fig. 9. The finite-volume solutions of (22)–(24) at t = 5 computed by the semi-discrete second-order upwind scheme on a on the 113 × 113 (left)
and 226 × 226 (right) uniform meshes.

Table 1
CPU times required to compute the solution at time t = 5

Second-order upwind scheme Particle method

Number of cells CPU time Number of particles CPU time

56×56 7.12 625 0.69
113×113 64.51 2500 3.14
226×226 512.0 10 000 19.1

Notice that in order to perform a fare comparison of the methods, the number of cells (left column) and
the number of particles (right column) are taken to be different due to the nonuniform initial distribution of
particles.

positivity-preserving semi-discrete second-order upwind scheme (a spatial piecewise linear reconstruction is obtained
using the generalized MinMod2 limiter [31,42,39] and the time discretization is performed using the third-order SSP
Runge–Kutta method [22]). This solution is nonoscillatory but a little more diffusive than the one in Fig. 4. The
main advantage of the particle/characteristics method is, however, its much better shape-preserving property. In order
to clearly demonstrate this, we compare the characteristics and finite-volume solutions at a larger time tfin = 5: the
characteristics solutions with 2500 and 10 000 particles, shown in Fig. 8, are much more accurate than their finite-
volume counterparts, presented in Fig. 9. Another advantage of the particle method is its self adaptivity (due to the
mesh-free nature) and computational efficiency. To demonstrate the latter, we compare the CPU times required to
obtain the solution by both the second-order upwind scheme and the particle method at time tfin = 5, see Table 1. The
CPU times were measured on a Power Mac G4 1.25 GHz processor.
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4. Hybrid finite-volume-particle method for stiff detonation waves

We consider the 1-D reactive Euler equations (4)–(7) with a very fast reaction rate (ε � 1). We are interested in
developing underresolved (	t � ε,	x � ε) numerical methods that are capable to accurately capture the main wave
structure of the solution without resolving the small scale detonation waves. As it was mentioned in Section 1, an
operator splitting, followed by the deterministic projection method for the fast reaction ODE (8), typically results in
appearance of weak detonation waves propagating with an unphysical speed, proportional to the spatial mesh size.
This is caused by a numerical dissipation, which artificially smears discontinuities present in the mass fraction of the
unburnt gas z. Several strategies have been proposed as a remedy to this problem [1–3,24,25,27,38]. Here, we propose
a new method, which may become a simple, robust and reliable alternative to the existing methods.

Our main idea is to solve the system (4) by a finite-volume method, while applying a particle method to the stiff
transport equation (5). By doing so, we take an advantage of the low dissipation and the mesh-free feature of the
particle method: the only smearing will be caused by the recovery procedure, which will be performed in a special
way that ensures that no artificially fast or slow reaction will be triggered. The resulting hybrid finite-volume-particle
(FVP) method is the method we have developed in [8,7] for the models of propagation of passive pollutant in shallow
water.

Our particular choice of the finite-volume method is the semi-discrete second-order central-upwind scheme from
[28], which is a recent low dissipative modification of the central-upwind schemes introduced in [30,29]. We use
the central-upwind scheme with the generalized MinModθ piecewise linear reconstruction [31,42,39] with θ = 1.3
and the third-order SSP Runge–Kutta ODE solver from [22]. Since the system (4) can be solved independently of
the transport equation (5), the aforementioned particle method (9) with ϕ := ρz and S := − 1

ε
ρzK(τ) can be applied

directly to (5). In this case, βi = − 1
ε
K(τ)αi and the velocities u(x

p
i (t), t) can be calculated from the piecewise linear

reconstruction of ρu and ρ, used for solving (4) by the central-upwind scheme. After applying the particle method
to Eq. (5), the point values of ρz can be, in principle, recovered using (11). However, since ρz should be used in the
EOS (6), it has to be recovered at every time step, and the smearing caused by doing so may trigger a reaction of a
wrong rate.

Therefore, we use the method, proposed in [7], that allows to completely avoid any loss of resolution attributed to
the regularization of the particle distribution. The idea is to consider an equation for z,

zt + uzx = −1

ε
K(τ)z, (25)

which is equivalent to Eq. (5) for smooth solutions, and, at the same time, is dual to it. Then, multiplying (5) by z and
(25) by ρz, adding them up, and integrating with respect to x, we obtain

d

dt

∫
R

(ρz)zdx = −
∫
R

2

ε
K(τ)(ρz)zdx, (26)

provided either z or u vanish at infinity. Let us now take (ρz)(x,0) to be a single particle, αi(0)δ(x − x
p
i (0)), which,

as it is explained above, will evolve in time according to the ODE system (9). Then Eq. (26) reduces to the single
ODE along the generalized characteristics x

p
i (t):

d

dt

[
(αz)

(
xi(t), t

)] = −2

ε
K(τ)

(
αz

)(
x

p
i (t), t

)
, (27)

which is solved in combination with (9). Finally, the point values of z are obtained by

z
(
x

p
i (t), t

) = (αz)(x
p
i (t), t)

αi(t)
.

As we will illustrate below (see Figs. 10–12), this usually results in a very sharp resolution of the interfaces in z.
However, the obtained point values of z are only available at x = x

p
i (t), and in order to be able to use the EOS (6)

at x �= x
p
i (t), the values of z there has to be interpolated. In our numerical experiments, we have used the simplest

linear spline interpolation, which is good enough since typical z is a piecewise constant function. Notice that almost
every interpolation will introduce some intermediate values, which will be, in fact, projected to either z = 0 or z = 1
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Fig. 10. Solutions of (4)–(5), (28)–(29) computed by both the FVP and FVDP methods at t = 2.

(provided ε is small), but since {xp
i (t)} is not mesh-oriented for t > 0, this will not lead to a wrong reaction speed

proportional to 	x.
We demonstrate the performance of the proposed FVP method by applying it in a rather complicated situation,

where a detonation wave collides with a shock, a contact discontinuity, and a rarefaction wave. This example is taken
from [25,2]. The parameters are:

γ = 1.2, q0 = 50, τc = 3,
1

ε
= 230.75. (28)

The initial data are:

(ρ,u,p, z)(x,0) =
⎧⎨⎩

(ρl, ul,pl,0), if x � 10,

(ρm,um,pm,1), if 10 < x � 40,

(ρr , ur ,pr ,1), if x > 40,

(29)

where ρl = 3.64282, ul = 6.2489,pl = 54.8244;ρm = 1, um = 0,pm = 1; and ρr = 4, ur = 0,pr = 10. These data
correspond to a right moving detonation, a left moving shock, a stationary contact, and a right moving rarefaction.
A series of collisions occur after the detonation catches up with the other waves.

We compare the solutions, computed by the FVP method and by the “finite-volume deterministic projection”
(FVDP) method, which is obtained by applying the semi-discrete second-order central-upwind scheme to the system
(4)–(5) using the operator splitting and the deterministic projection method for solving the reaction ODE (8). We
take both the initial distance between the uniformly distributed particles and the uniform mesh size 	x = 0.125, and
	t = 0.05. The reference solution is computed using the fully resolved calculation with 	x = 0.005 and 	t =
0.00025.

In Fig. 10, we show the computed solutions (density, pressure, temperature, and fraction of unburnt gas) at time
t = 2 (before collisions). At this time, both methods provide rather accurate approximations. The results at the later
time t = 4 (after the collision with the shock, but before the collision with the rarefaction wave) are shown in Fig. 11.
At this time, only the density is sufficiently accurately captured by the FVDP method, while an unphysical weak
detonation wave has already appeared in the other components. At the same time, the location and amplitude of
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Fig. 11. Solutions of (4)–(5), (28)–(29) computed by both the FVP and FVDP methods at t = 4.

Fig. 12. Solutions of (4)–(5), (28)–(29) computed by both the FVP and FVDP methods at t = 8.
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discontinuities, obtained by the FVP method, are correct. Finally, in Fig. 12, we present the results obtained at time
t = 8 (after all the collisions). The computations by the FVDP method are now completely wrong, while the resolution,
achieved by the FVP method, is as high as at the smaller times.
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