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SUMMARY

Systems of convection–diffusion equations model a variety of physical phenomena which often occur
in real life. Computing the solutions of these systems, especially in the convection dominated case, is
an important and challenging problem that requires development of fast, reliable and accurate numerical
methods. In this paper, we propose a second-order fast explicit operator splitting (FEOS) method based on
the Strang splitting. The main idea of the method is to solve the parabolic problem via a discretization of
the formula for the exact solution of the heat equation, which is realized using a conservative and accurate
quadrature formula. The hyperbolic problem is solved by a second-order finite-volume Godunov-type
scheme.

We provide a theoretical estimate for the convergence rate in the case of one-dimensional systems
of linear convection–diffusion equations with smooth initial data. Numerical convergence studies are
performed for one-dimensional nonlinear problems as well as for linear convection–diffusion equations
with both smooth and nonsmooth initial data. We finally apply the FEOS method to the one- and
two-dimensional systems of convection–diffusion equations which model the polymer flooding process
in enhanced oil recovery. Our results show that the FEOS method is capable to achieve a remarkable
resolution and accuracy in a very efficient manner, that is, when only few splitting steps are performed.
Copyright q 2006 John Wiley & Sons, Ltd.

Received 9 May 2006; Revised 5 July 2006; Accepted 9 July 2006

KEY WORDS: convection–diffusion equations; operator splitting; polymer systems; finite-volume
methods; heat kernel

∗Correspondence to: Alexander Kurganov, Mathematics Department, Tulane University, New Orleans, LA 70118,
U.S.A.

†E-mail: kurganov@math.tulane.edu
‡E-mail: chertock@math.ncsu.edu
§E-mail: gpetrova@math.tamu.edu

Contract/grant sponsor: NSF; contract/grant numbers: DMS-0410023, DMS-0310585, DMS-0296020, DMS-0505501

Copyright q 2006 John Wiley & Sons, Ltd.



A. CHERTOCK, A. KURGANOV AND G. PETROVA

1. INTRODUCTION

We present a fast explicit operator splitting (FEOS) method for the initial value problem (IVP) for
the systems of convection–diffusion equations

ut + ∇x · f(u) = D�u, u(x, 0) =u0(x) (1)

Here, u(x, t) = (u1(x, t), . . . , ul(x, t))T is an unknown l-vector, f is a nonlinear convection flux,
and D = diag(�1, . . . , �l) is a constant diagonal matrix with positive entries. In the general multidi-
mensional case, u is a vector function of a time variable t and d-spatial variable x= (x1, . . . , xd)
with corresponding fluxes f= ( f 1, . . . , f d).

Systems of convection–diffusion equations arise in a variety of applications and represent mathe-
matical models for a number of (physical) processes in fluid mechanics, astrophysics, meteorology,
multiphase flow in oil reservoirs, polymer flow, financial modelling, and many other areas. The
convection dominated case, which is of a particular importance, is the most challenging one from
numerical perspective: although the solution of (1) is typically smooth for t>0, its gradients may
be very large and a full resolution of viscous shock layers may be out of practical reach, espe-
cially in the multidimensional case. Therefore, one may have to apply shock capturing methods,
originally developed for hyperbolic systems of conservation laws. At the same time, even though
the impact of diffusion is not too significant, its presence typically reduces the efficiency of an
explicit numerical scheme for (1). One of the ways to overcome this difficulty is to use an operator
splitting method, which can be briefly described as follows.

We denote by SH the exact solution operator associated with the corresponding hyperbolic
system

ut + ∇x · f(u) = 0 (2)

and by SP the exact solution operator associated with the (linear) parabolic system

ut = D�u (3)

Then, introducing a (small) time step �t , the solution of the original convection–diffusion system
(which is assumed to be available at time t) is evolved in time in two substeps. First, the hyperbolic
system (2) is solved on the time interval (t, t + �t]

u∗(x)=SH(�t)u(x, t) (4)

and then the parabolic solution operator is applied to u∗, which results in the following approximate
solution at time t + �t :

u(x, t + �t) =SP(�t)u∗(x)=SP(�t)SH(�t)u(x, t) (5)

In general, if all solutions involved in the two-step splitting algorithm (4)–(5) are smooth, the
operator splitting method is second-order accurate at each time step and first-order accurate when
it is applied for advancing the solution of the IVP (1) from t = 0 to the final time T = N�t, N ∈ N

(see, e.g. Reference [1]).
Higher-order operator splitting algorithms can be derived by considering further substeps. For

instance, one time step of the second-order Strang splitting method [1] consists of three substeps:
u(x, t + �t) =SH(�t/2)SP(�t)SH(�t/2)u(x, t) (6)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (in press)
DOI: 10.1002/fld



FAST EXPLICIT OPERATOR SPLITTING METHOD

We also refer the reader to Reference [2], where similar splitting methods were derived by simply
choosing certain longer time increment sequences, while again alternating SH and SP. The time
increments of methods of orders 4, 6 and 8 can be found, for example, in Reference [3]. Although
they are, in general, not unique, it can be shown that splitting methods of orders higher than two
will require some negative time increments [4], which may cause numerical instability when time
irreversible (dissipative) systems are solved.

In applications, the exact solution operators SH and SP are replaced by their numerical
approximations. Note that the main advantage of the operator splitting technique is the fact that
the hyperbolic, (2), and the parabolic, (3), subproblems, which are of different nature, can be
solved numerically by different methods.

Since hyperbolic (systems of) conservation laws usually develop discontinuities, the system (2)
should be solved by a (high resolution) shock capturing scheme. The ‘hyperbolic’ substep in our
FEOS method is based on finite-volume schemes. Our particular choice is the second-order semi-
discrete Godunov-type central schemes, originally introduced in Reference [5], and then further
improved in References [6–8], where the so-called central-upwind schemes have been developed.
We note, however, that the ‘hyperbolic’ substep of our FEOS method is not tied up to a specific
choice of a finite-volume scheme and can be implemented with one’s favourite projection–evolution
method, in which a piecewise polynomial interpolant of the solution is first evolved to a new time
level and then projected back onto the space of piecewise polynomial functions.

The outcome of every ‘hyperbolic’ substep is a global approximation of u∗, realized in terms of
polynomial pieces over spatial cells. The main idea of the proposed FEOS method is to perform
the ‘parabolic’ substep using the exact solution operator for the heat equation. The solution is in
the form of a convolution integral, which is approximated using an appropriate conservative and
sufficiently accurate quadrature. Such a quadrature is studied in Section 2.

In the case of a linear flux f, we provide a rigorous error estimate for the introduced FEOS
method (see Section 2). The theoretical results are also supported by numerical experiments,
reported in Section 3.1. The case of a nonlinear flux f is much more complicated since the solution
may develop jump discontinuities in the process of ‘hyperbolic evolution’. In this case, only
numerical convergence study is performed (see Section 3.2). Finally, we apply the FEOS method
to the one- (1-D) and two-dimensional (2-D) systems that model polymer flooding processes in
enhanced oil recovery [9–11]. The proposed FEOS method seems to outperform the existing
alternative approaches. However, it should be pointed out that the current form of our method
has an applicability limitation since the diffusion matrix D in (1) is considered to be a constant
diagonal one.

2. FAST EXPLICIT OPERATOR SPLITTING (FEOS) METHOD

In this section, we describe the FEOS method. For simplicity, we present only its 2-D version and
provide a convergence rate analysis in the 1-D case.

The FEOS method is based on the Strang operator splitting (6), in which the exact solution
operators SH and SP are replaced by their numerical approximations. The ‘hyperbolic’ substep
is carried out using a Godunov-type finite-volume scheme, in which a piecewise polynomial
interpolant is first reconstructed from cell averages (computed at the previous time step), and then
evolved to the next time level according to the integral form of the hyperbolic system (2). More
precisely, the projection–evolution Godunov-type approach may be described as follows.
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We introduce a uniform grid (the extension to nonuniform Cartesian grids is pretty straight-
forward) with x� = ��x and y� = ��y. Assume that we have computed the cell averages of the
solution at some time level t

ū j,k(t) ≈ ū(x j , yk, t) := 1

�x�y

∫ yk+1/2

yk−1/2

∫ x j+1/2

x j−1/2

u(x, y, t) dx dy

We then reconstruct a piecewise polynomial interpolant for each component of the vector
u= (u1, . . . , ul)T. The (formal) order of accuracy of these reconstructions usually determines
the (formal) spatial order of the finite-volume scheme. In this paper, we will focus on second-order
schemes that require conservative piecewise linear (in x and y) reconstructions of the following
form:

ũ(x, y; t) = ū j,k(t) + sxj,k(x − x j ) + syj,k(y − yk)

for (x, y) ∈ (x j−1/2, x j+1/2) × (yk−1/2, yk+1/2) (7)

where the slopes sxj,k and syj,k have to be (at least) first-order approximations of the partial
derivatives ux (x j , yk, t) and uy(x j , yk, t), respectively. In order to ensure a nonoscillatory behaviour
of the reconstruction, which is a necessary condition for the overall scheme to be nonoscillatory,
the slopes should be computed with the help of a nonlinear limiter. In our numerical experiments,
we have used the one-parameter family of minmod limiters (see, e.g. References [12–14])

sxj,k =minmod

(
�
ū j+1,k(t) − ū j,k(t)

�x
,
ū j+1,k(t) − ū j−1,k(t)

2�x
, �

ū j,k(t) − ū j−1,k(t)

�x

)
syj,k =minmod

(
�
ū j,k+1(t) − ū j,k(t)

�y
,
ū j,k+1(t) − ū j,k−1(t)

2�y
, �

ū j,k(t) − ū j,k−1(t)

�y

) (8)

where � ∈ [1, 2], and the multivariate minmod function is defined by

minmod(z1, z2, . . .) :=

⎧⎪⎪⎨⎪⎪⎩
min j {z j } if z j>0 ∀ j

max j {z j } if z j<0 ∀ j

0 otherwise

Notice that larger �’s correspond to less dissipative but, in general, more oscillatory limiters.
Finally, the solution at the new time level t + �tHYP is obtained by (approximately) solving the

integral form of system (2), subject to the piecewise linear initial data (7)–(8), prescribed at time t .
This may be done using either the central or the upwind approach. In this paper, we evolved the
solution using the semi-discrete central-upwind scheme from Reference [7].
Remark
Note that due to the CFL condition, �tHYP may be smaller than �t/2, where �t is the size of the
splitting step. In this case, the approximate ‘hyperbolic’ substep of the splitting algorithm would
consist of several smaller ‘finite-volume subsubsteps’ of size �tHYP. This is a typical situation, for
example, in applications to polymer flows (see Section 4), where one is interested in developing
a reliable operator splitting method that is capable to produce a high quality approximate solution
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with a small number of splitting steps, that is, while keeping �t relatively large (see, e.g. Reference
[15] and the references therein).

Once the solution of the first ‘hyperbolic’ substep in (6) is performed, the cell averages

ū∗
j,k ≈ 1

�x�y

∫ yk+1/2

yk−1/2

∫ x j+1/2

x j−1/2

SH(�t/2)u(x, y, t) dx dy

are available, and we reconstruct another piecewise linear interpolant ũ ∗(x, y) following (7)–(8).
This piecewise linear function is then used as an initial condition for the parabolic IVP

ut = D�u, u(x, y, t) = ũ ∗(x, y) (9)

which is now, according to the Strang splitting algorithm (6), to be solved on the time interval
(t, t + �t].

Note that since D is a diagonal matrix, the parabolic system in (9) is actually a set of l uncoupled
heat equations for each component of u

(ui )t = �i�ui , ui (x, y, t) = ũ ∗
i (x, y), i = 1, . . . , l (10)

From now on, we will simplify our notation by using v instead of any of the ui ’s and � instead of
any of the �i ’s.

Next, we recall that in the 2-D case, the exact solution of (10) at time t + �t may be expressed
in the following integral form:

v∗∗(x, y) := v(x, y, t + �t) =
∫

R2
G(x − �, y − �, ��t )̃v ∗(�, �) d� d� (11)

where G is the ‘heat’ kernel

G(x, y, t) = 1

4�t
e−(x2+y2)/(4t) (12)

Now, using the fact that ∫
R2

G(x − �, y − �, ��t) d� d�= 1

we write (11) in the equivalent form

v∗∗(x, y)= ṽ ∗(x, y) +
∫

R2
G(x − �, y − �, ��t)(̃v ∗(�, �) − ṽ ∗(x, y)) d� d� (13)

Formula (13) is more suitable for our purposes because it is symmetric and allows us to discretize
the spatial integral while preserving the conservation of v, that is, ensuring that the equality∫

R2
v∗∗(x, y) dx dy =

∫
R2

ṽ ∗(x, y) dx dy

is satisfied on a discrete level as well.
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Since for the next ‘hyperbolic’ substep only the cell averages of v∗∗(x, y) are needed, we
average (13) over the corresponding computational cells to obtain

v̄∗∗
j,k = v̄∗

j,k + 1

�x�y

∫ yk+1.2

yk−1/2

∫ x j+1/2

x j−1/2

×
[∫

R2
G(x − �, y − �, ��t)(̃v ∗(�, �) − ṽ ∗(x, y)) d� d�

]
dx dy

= v̄∗
j,k + 1

�x�y

∑
i,�∈Z

∫ yk+1/2

yk−1/2

∫ x j+1/2

x j−1/2

∫ y�+1/2

y�−1/2

∫ xi+1/2

xi−1/2

×G(x − �, y − �, ��t)(̃v ∗(�, �) − ṽ ∗(x, y)) d� d� dx dy (14)

Next, the integrals on the right-hand side (RHS) of (14) are discretized using the midpoint quadra-
ture, that is

v̄∗∗
j,k = v̄∗

j,k + �x�y
∑

i,�∈Z

G(x j − xi , yk − y�, ��t)(v̄
∗
i,� − v̄∗

j,k) (15)

Remarks

1. In practice, the computational domain is finite and the infinite sum on the RHS of (15) reduces
to the sum over all computational cells (we obviously need to assume that the solution is
‘exponentially flat’ near the artificially imposed boundaries).

2. The midpoint quadrature (15) is conservative:∑
j,k∈Z

v̄∗∗
j,k = ∑

j,k∈Z

v̄∗
j,k + �x�y

∑
j,k,i,�∈Z

G(x j − xi , yk − y�, ��t)(v̄
∗
i,� − v̄∗

j,k) = ∑
j,k∈Z

v̄∗
j,k

since G(±(x j − xi ),±(yk − y�), ��t) =G(x j − xi , yk − y�, ��t) due to the symmetry of the
‘heat’ kernel (12). We also note that one may use a higher-order quadrature for discretizing
the integrals in (14), which will be conservative as long as it is symmetric.

The third and last substep of the FEOS method is again ‘hyperbolic’. We start with the cell
averages ū∗∗

j,k , computed at the ‘parabolic’ substep, reconstruct a piecewise linear interpolant
û (following (7)–(8)), and then evolve it using the same finite-volume method as in the first
‘hyperbolic’ substep to obtain the cell averages of the solution of (1) at the new time level t + �t

ū j,k(t + �t) ≈ 1

�x�y

∫ yk+1/2

yk−1/2

∫ x j+1/2

x j−1/2

SH(�t/2)û(x, y) dx dy

This completes the description of one time step of the FEOS method.

2.1. Error analysis

Here, we study the convergence rate of the FEOS method. At each time step (t → t + �t), the
L∞-error of our method, E(�t), is a sum of three errors: the operator splitting error ES(�t),
the error EH(�t) of the ‘hyperbolic’ substep and the error EP(�t) of the ‘parabolic’ substep.
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The first two errors are hard (if not impossible) to estimate in the nonlinear case since then the
solution of the hyperbolic subproblem may develop discontinuities. Our error analysis will be thus
limited to the linear case only. However, we will be able to bound the quadrature error EP(�t) in
both smooth and nonsmooth cases and the resulting orders will depend on the smoothness of the
solution.

We begin with the simplest case: the 1-D system with a linear flux f and smooth initial data u0.
Then both solutions of the IVP (1) and of the corresponding hyperbolic system (2) are globally
smooth and, as it has been mentioned in Section 1, the error of one step of the Strang splitting is
ES(�t)�C(��t)3, where � := max(�1, . . . , �l).¶ To simplify the notation, we assume from now on
that �1 = · · · = �l = �. We also assume that the hyperbolic subproblem is numerically solved using
a convergent, uniformly second-order method. In our numerical experiments, reported in Section
3.1.1, we have used the ‘no limiter’ version of the second-order central-upwind scheme, in which
the slopes in (7) are computed using central differences. Then the size of EH(�t) can be bounded
by C�t (�x)2 (note that here, �t is the total time period for which the linear hyperbolic problem
is solved in substeps 1 and 3 of the FEOS method). We will show in this section that the error of
the ‘parabolic’ substep is

EP(�t)�C1(�x)
2 + C2

(�x)4

(��t)2
+ C3

(�x)4

(��t)3/2

Therefore, adding the three components of the error at each time step and taking into account that
the total number of splitting steps is proportional to 1/�t , we obtain the following estimate for
the the global L∞-error of the FEOS method:

E(�t)�C

[
�3(�t)2 + (�x)2 + (�x)2

�t
+ (�x)4

�t (��t)2
+ (�x)4

�t (��t)3/2

]
(16)

Note that the presence of the �3 factor in the first term on the RHS of (16), ensures that even
when the size of the splitting step (�t) is large, the overall error may be small in the convection–
dominated case, that is, when � is small. This is the reason why we have been able to obtain high
quality results for the polymer flow (see Section 4), where it is essential (from an application
perspective) to keep the number of splitting steps as small as possible.

In order to achieve (theoretically) the fastest convergence rate of the FEOS method, one needs
to balance the errors in (16), that is, one needs to select � in �t ∼ �−1(�x)� so that to mini-
mize the overall error E(�t). The optimal choice is � = 2/3, and then the best theoretical error
bound is

E(�t)�C max{(�x)2, �(�x)4/3}
Here, for small � the dominating factor in the error is O((�x)2). This explains why in our numerical
examples (see Section 4) we have observed a second-order of convergence even for nonoptimal
values of �.

¶Throughout this section, we denote by C,C1,C2, . . . the absolute constants, which are independent of the small
scales of both the PDE system: �1, . . . , �l , and the numerical method: �x,�t . Particular values of these constants
are of no (practical) importance, and thus we do not keep track of them.
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We now turn to the proof of the error estimate for EP(�t). Note that if we start with
a smooth initial condition u0, the exact solution is globally smooth, and thus the function
SH(�t/2)u(x, t) will be at least as smooth as u0. Let us denote by v(x) the i th component of this
function. Let

ṽ ∗(x)=
∞∑

j=−∞
[v̄∗

j + s j (x − x j )]�[x j−1/2,x j+1/2](x)

�[x j−1/2,x j+1/2](x) :=
{
1 if x j−1/2<x<x j+1/2

0 otherwise

be a second-order piecewise linear approximation of v, that is v̄∗
j = v(x j ) + O((�x)2) and

s j = v′(x j ) +O(�x). Then the formula for the cell averages of the solution obtained at the end of
the ‘parabolic’ substep, (14), reduces to

v̄∗∗
j = v̄∗

j + 1

�x

∫ x j+1/2

x j−1/2

∫ ∞

−∞
G(x − �, ��t)(̃v ∗(�) − ṽ ∗(x)) d� dx (17)

where G is the 1-D ‘heat’ kernel

G(z, ��t) = 1

2
√

���t
e−z2/(4��t)

Next, we compute the cell averages v̄∗∗
j by applying the midpoint quadrature to the integral on the

RHS of (17)

v̄∗∗
j = v̄∗

j + �x
∞∑

i=−∞
G(x j − xi , ��t)(v̄

∗
i − v̄∗

j )

incurring an error∣∣∣∣∣ 1

�x

∫ x j+1/2

x j−1/2

∫ ∞

−∞
G(x − �, ��t)(̃v ∗(�) − ṽ ∗(x)) d� dx − �x

∞∑
i=−∞

G(x j − xi , ��t)(v̄
∗
i − v̄∗

j )

∣∣∣∣∣
which is the error of the ‘parabolic’ substep of our method. Then, the following theorem holds.

Theorem 2.1
Let us assume that ṽ ∗ is a second-order piecewise linear approximation of the function v ∈ C2(R),

whose second derivative is uniformly bounded in R. Then the error EP(�t) of the ‘parabolic’
substep in the FEOS method is

EP(�t)�C1(�x)
2 + C2

(�x)4

(��t)2
+ C3

(�x)4

(��t)3/2
(18)

where C1,C2, and C3 are absolute constants that are independent of �t, �x, and �.
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Proof
We first rewrite EP(�t) as follows:

EP(�t) = 1

�x
max
j∈Z

∣∣∣∣∣ ∞∑
i=−∞

[∫ x j+1/2

x j−1/2

∫ xi+1/2

xi−1/2

G(x − �, ��t)(̃v ∗(�) − ṽ ∗(x)) d� dx

−(�x)2G(x j − xi , ��t)(v̄
∗
i − v̄∗

j )

]∣∣∣∣∣
Then, we fix the point (x j , xi ), denoted by I j,i :=[x j−1/2, x j+1/2] × [xi−1/2, xi+1/2] the corre-
sponding square centred at this point, and consider the Taylor expansion up to order four of a
sufficiently smooth function h(x, �) about this point. Integrating the Taylor expansion of h over
I j,i and using the fact that∫ x j+1/2

x j−1/2

(x − x j )
2k+1 dx = 0,

∫ xi+1/2

xi−1/2

(� − xi )
2k+1 d� = 0, k = 0, 1, . . .

we obtain the local midpoint quadrature rule for the cell I j,i∫
I j,i

h(x, �) d� dx = h(x j , xi )(�x)
2 + E j,i + Ẽ j,i

Here, the two components of the error are:

E j,i = K1(�x)
4

(
�2h
�x2

(x j , xi ) + �2h

��2
(x j , xi )

)
(19)

and

|Ẽ j,i |�K2(�x)
6 max

(x,�)∈I j,i

{∣∣∣∣∣ �4h

�x����
(x, y)

∣∣∣∣∣ , � + ��4, ��0, ��0

}
(20)

where the constants K1 and K2 are independent of both �x and h. Then we have

EP(�t)� 1

�x
max

j

∣∣∣∣∣ ∞∑
i=−∞

E j,i +
∞∑

i=−∞
Ẽ j,i

∣∣∣∣∣�max
j

E j + max
j

Ẽ j (21)

where the following notation has been used:

E j := 1

�x

∣∣∣∣∣ ∞∑
i=−∞

E j,i

∣∣∣∣∣ , Ẽ j := 1

�x

∞∑
i=−∞

∣∣Ẽ j,i
∣∣ (22)

We now take h(x, �) =G(x − �, ��t)(̃v ∗(�) − ṽ ∗(x)), which is a C∞ function on the domain
(x j−1/2, x j+1/2) × (xi−1/2, xi+1/2), and estimate the errors E j and Ẽ j . To this end, we first compute
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the second derivatives of h

�2h
�x2

(x j , xi ) =Gzz(x j − xi , ��t)(v̄
∗
i − v̄∗

j ) − 2Gz(x j − xi , ��t)s j

�2h

��2
(x j , xi ) =Gzz(x j − xi , ��t)(v̄

∗
i − v̄∗

j ) − 2Gz(x j − xi , ��t)si

and after plugging them into (19) and (22), we obtain

E j = 2K1(�x)
3

∣∣∣∣∣ ∞∑
i=−∞

Gzz(x j − xi , ��t)(v̄
∗
i − v̄∗

j ) −
∞∑

i=−∞
Gz(x j − xi , ��t)(si + s j )

∣∣∣∣∣
Using the fact that Gz(z, ��t) is an odd function of z, Gzz(z, ��t) is an even function of z, and
that Gz(0, ��t) = 0, and applying the triangle inequality, we bound E j as follows:

E j�2K1(�x)
3

∞∑
i=1

{
|Gzz(i�x, ��t)|

∣∣∣∣∣ v̄
∗
j+i + v̄∗

j−i

2
− v̄∗

j

∣∣∣∣∣+ |Gz(i�x, ��t)‖s j−i − s j+i |
}

(23)

Next, the Taylor formula applied to v and v′ results in

∣∣∣∣∣ v̄
∗
j+i + v̄∗

j−i

2
− v̄∗

j

∣∣∣∣∣=
∣∣∣∣v(x j+i ) + v(x j−i )

2
− v(x j ) + O((�x)2)

∣∣∣∣
=
∣∣∣∣ (i�x)22

v′′(	i ) + O((�x)2)

∣∣∣∣�C1(i�x)
2 (24)

and

|s j−i − s j+i | = |v′(x j−i ) − v′(x j+i ) + O(�x)| = |2(i�x)v′′(
i ) + O(�x)|�C2(i�x) (25)

since v′′ is uniformly bounded in R. Then, substituting (24) and (25) into (23), and bounding the
resulting series by the corresponding improper integral, we obtain

E j �C(�x)3
∞∑
i=1

{(i�x)2|Gzz(i�x, ��t)| + (i�x)|Gz(i�x, ��t)|}

�C(�x)2
∫ ∞

0
{z2|Gzz(z, ��t)| + z|Gz(z, ��t)|} dz (26)

Next, we compute the required z-derivatives of the ‘heat’ kernel

Gz(z, ��t) = K1
z

(��t)3/2
e−z2/(4��t)

Gzz(z, ��t) =
(
K2

1

(��t)3/2
+ K3

z2

(��t)5/2

)
e−z2/(4��t)

(27)
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and therefore, using the triangle inequality and making the substitution s = z/(2
√

��t), we obtain
a uniform upper bound on the integral on the RHS of (26)∫ ∞

0
{z2|Gzz(z, ��t)| + z|Gz(z, ��t)|} dz�C1

∫ ∞

0
(s4 + s2)e−s2 ds =C2

Hence, the first component of the error EP(�t) in (21) is bounded by

E j�C1(�x)
2 (28)

We proceed now with estimating Ẽ j . First, we note that

max
(x,�)∈I j,i

∣∣∣∣∣ �4h

�x����
(x, �)

∣∣∣∣∣� max
(x,�)∈I j,i

|Gzzzz(x − �, ��t)| · max
x∈R

|̃v ∗(x)|

+ max
(x,�)∈I j,i

|Gzzz(x − �, ��t)| · max
m∈Z

|sm |

= max
z∈(( j−i−1)�x,( j−i+1)�x)

|Gzzzz(z, ��t)| · max
x∈R

|̃v ∗(x)|

+ max
z∈(( j−i−1)�x,( j−i+1)�x)

|Gzzz(z, ��t)| · max
m∈Z

|sm |

Then, we use this estimate in (20) and (22) to obtain

Ẽ j �C(�x)5
[
max
x∈R

|̃v ∗(x)|
∞∑

i=−∞
max

z∈(( j−i−1)�x,( j−i+1)�x)
|Gzzzz(z, ��t)|

+ max
m∈Z

|sm |
∞∑

i=−∞
max

z∈(( j−i−1)�x,( j−i+1)�x)
|Gzzz(z, ��t)|

]

�C(�x)5
[
max
x∈R

|v∗(x)|
∞∑

�=−∞
max

z∈(��x,(�+2)�x)
|Gzzzz(z, ��t)|

+ max
m∈Z

|sm |
∞∑

�=−∞
max

z∈��x,(�+2)�x)
|Gzzz(z, ��t)|

]
(29)

Next, we calculate the third and the fourth z-derivatives of G and bound them as follows:

|Gzzz(z, ��t)|�
(
C1

|z|3
(��t)7/2

+ C2
|z|

(��t)5/2

)
e−z2/(4��t)

|Gzzzz(z, ��t)|�
(
C3

z4

(��t)9/2
+ C4

z2

(��t)7/2
+ C5

1

(��t)5/2

)
e−z2/(4��t)
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These bounds are then used to estimate the sums on the RHS of (29)

∞∑
�=−∞

max
z ∈ (��x,(�+2)�x)

|Gzzzz(z, ��t)|

�C6

∞∑
�=0

{
((� + 2)�x)4

(��t)9/2
+ ((� + 2)�x)2

(��t)7/2
+ 1

(��t)5/2

}
e−(��x)2/(4��t)

� C7

�x(��t)2

∫ ∞

0
(s4 + s2 + 1)e−s2 ds = C8

�x(��t)2
(30)

and similarly

∞∑
�=−∞

max
z∈(��x,(�+2)�x)

|Gzzz(z, ��t)| �C9

∞∑
�=0

{
((� + 2)�x)3

(��t)7/2
+ (� + 2)�x

(��t)5/2

}
e−(��x)2/(4��t)

� C10

�x(��t)3/2

∫ ∞

0
(s3 + s)e−s2 ds = C11

�x(��t)3/2
(31)

Substituting (30) and (31) into (29) results in

Ẽ j�C2
(�x)4

(��t)2
max
x∈R

|̃v ∗(x)| + C3
(�x)4

(��t)3/2
max
m∈Z

|sm | (32)

Finally, we note that by the assumptions of the theorem both the interpolant ṽ ∗(x) and the slopes
sm are uniformly bounded. Thus, combining the estimates (28) and (32), we obtain the desired
error bound (18), and the proof is completed. �

Next, we establish a bound on the error of the ‘parabolic’ substep in the case of nonsmooth
initial data and/or a nonlinear flux f in (1). In this case, the piecewise linear approximation ṽ ∗ is
still uniformly bounded in R, but its slopes may be large (proportional to 1/�x) due to either the
initial layer or the breakdown of the solution at the ‘hyperbolic’ substep. Therefore, the accuracy
of the midpoint quadrature used in the ‘parabolic’ substep reduces as quantified in the following
theorem.

Theorem 2.2
Let us assume that ṽ ∗ is a (formally) second-order piecewise linear approximation of the piecewise
smooth function v, and |̃v ∗(x)|�C for all x ∈ R and |s j |�C(�x)−1 for all j . Then the error
EP(�t) of the ‘parabolic’ substep in the FEOS method is

EP(�t)�C

(
�x√
��t

)
provided

�x√
��t

�1 (33)

where C is an absolute constant that is independent of �t , �x and �.

Proof
We proceed as in the proof of Theorem 2.1 and obtain estimate (23). However, since the function v

is only piecewise smooth now, the bounds (24) and (25) cannot be established. We instead use the
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assumptions on ṽ ∗ and its slopes, namely, |̃v ∗(x)|�C ∀x ∈ R and |s j |�C(�x)−1 ∀ j , the formulae
for Gz and Gzz in (27), and apply the substitution s = z/(2

√
��t) to obtain the following bound

on E j (compare with (26)):

E j �C1(�x)
3

∞∑
i=1

|Gzz(i�x, ��t)| + C2(�x)
2

∞∑
i=1

|Gz(i�x, ��t)|

�C1(�x)
2
∫ ∞

0
|Gzz(z, ��t)| dz + C2(�x)

∫ ∞

0
|Gz(z, ��t)| dz

� C1(�x)2

��t

∫ ∞

0
(s2 + 1)e−s2 ds + C2(�x)√

��t

∫ ∞

0
se−s2 ds�C

((
�x√
��t

)2

+ �x√
��t

)

Finally, combining this estimate with (32) and assuming that �x�
√

��t , we obtain the error
bound (33). This completes the proof of the theorem. �

3. NUMERICAL CONVERGENCE STUDY

In this section, we present a numerical study of the convergence rates of the FEOS method. We
consider the 1-D scalar linear convection–diffusion equation subject to both smooth and nonsmooth
initial data and the nonlinear Burgers’ equation. We observe a second-order convergence rate for
the linear equation with smooth initial data, which correlates reasonably well with our theoretical
results in Section 2.1. In the case of nonsmooth initial data, the convergence rate reduces to first-
order. In the nonlinear case, we surprisingly recover the same second-order (in the L1-norm) as
in the linear case. We also observe that the convergence rates are not too sensitive to the change
in the size of the splitting steps (�t).

3.1. 1-D linear convection–diffusion equation

We apply the FEOS method to the 1-D linear convection–diffusion equation

ut + ux = �uxx , �= 0.01 (34)

subject to the compactly supported initial data

u(x, 0) = u0(x) (35)

We take the computational domain to be [−1.5, 1.5] and the final time to be t = 0.2.
The exact solution of the IVP (34)–(35) is available and is given by

u(x, t) := 1

2
√

��t

∫ ∞

−∞
e−(x−t−�)2/(4�t)u0(�) d�

A numerical convergence study is performed by calculating the L∞-error (the required values of
the exact solution are computed using the fourth-order Simpson quadrature over the uniform grid
with 12 800 cells). In the next two subsections, we present the experimental convergence rates in
the case of smooth and nonsmooth initial data.
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Table I. Linear convection–diffusion equation with smooth initial data—the L∞-errors.

Number of �= 1
3 �= 2

3 �= 1
grid cells

L∞-error Rate L∞-error Rate L∞-error Rate

100 2.41e-02 — 3.17e-02 — 2.46e-02 —
200 5.75e-03 2.07 5.71e-03 2.47 5.80e-03 2.08
400 1.42e-03 2.02 1.42e-03 2.00 1.42e-03 2.03
800 3.51e-04 2.01 3.51e-04 2.02 3.51e-04 2.02

1600 8.75e-05 2.00 8.75e-05 2.00 8.75e-05 2.00
3200 2.19e-05 2.00 2.19e-05 2.00 2.19e-05 2.00

3.1.1. Smooth initial data. We solve Equation (34) subject to the smooth initial data

u(x, 0)=
⎧⎨⎩cos4

(�x

2

)
if |x |�1

0 otherwise
(36)

Since the solution of the IVP (34), (36) as well as the ‘intermediate solutions’ obtained at the
‘hyperbolic’ substeps are globally smooth, the nonlinear limiting mechanism in the hyperbolic
solver (the central-upwind scheme) has been switched off.

The size of the splitting steps is taken �t =C�−1(�x)�. The corresponding convergence rates
for different values of � are shown in Table I, where the second-order of convergence can be
clearly observed for both the (theoretically) optimal value of � = 2

3 and the nonoptimal ones, � = 1
3

and � = 1.

3.1.2. Nonsmooth initial data. Next, we numerically solve Equation (34) subject to the following
nonsmooth initial condition:

u(x, 0) =

⎧⎪⎪⎨⎪⎪⎩
1 if − 1�x<0

−1 if 0�x<1

0 otherwise

using the FEOS method. Since initially the solution contains very large gradients, we apply the
(nonlinear) minmod limiter (8) with � = 2 in the beginning, but after t = 5�tHYP the limiters are
safely switched off since Equation (34) is linear and thus does not have any built-in breakdown
mechanisms.

In Tables II and III, we present the computed L∞- and L1-errors and the corresponding numerical
convergence rates. We note that since in the case of nonsmooth initial data our error analysis is
not complete, it is not clear what the optimal value of � should be. If we assume that the accuracy
of one Strang splitting step is the same as in the smooth case, then balancing the error bound in
(33) with the splitting error of size (��t)3 results in the optimal � = 2

7 . However, it is natural to
expect that in this case the order of the splitting algorithm would be smaller and then balancing
�x/

√
��t with (��t)2 would give us another optimal � = 2

5 . One can observe the convergence
rate of about 0.8–0.9 in the L∞-norm and of 1 in the L1-norm. As in the case of smooth initial
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Table II. Linear convection–diffusion equation with nonsmooth initial data—the L∞-errors.

Number of �= 1
7 �= 2

7 �= 2
5 �= 4

5
grid cells

L∞-error Rate L∞-error Rate L∞-error Rate L∞-error Rate

100 7.07e-01 — 5.51e-01 — 4.32e-01 — 5.75e-01 —
200 2.97e-01 1.25 2.99e-01 0.88 3.12e-01 0.47 3.24e-01 0.83
400 1.72e-01 0.79 1.70e-01 0.82 1.71e-01 0.87 1.86e-01 0.80
800 9.85e-02 0.81 9.71e-02 0.81 9.69e-02 0.82 9.33e-02 1.00

1600 6.22e-02 0.67 5.05e-02 0.94 5.92e-02 0.71 5.33e-02 0.81
3200 3.73e-02 0.74 2.89e-02 0.81 3.11e-02 0.93 3.13e-02 0.76

Table III. Linear convection–diffusion equation with nonsmooth initial data—the L1-errors.

Number of �= 1
7 �= 2

7 �= 2
5 �= 4

5
grid cells

L1-error Rate L1-error Rate L1-error Rate L1-error Rate

100 2.21e-01 — 1.68e-01 — 1.39e-01 — 1.70e-01 —
200 6.10e-02 1.85 6.58e-02 1.35 6.46e-02 1.11 6.35e-02 1.43
400 3.34e-02 0.87 3.34e-02 0.98 3.31e-02 0.96 3.35e-02 0.92
800 1.73e-02 0.95 1.72e-02 0.96 1.72e-02 0.95 1.73e-02 0.96

1600 8.84e-03 0.97 8.79e-03 0.97 8.79e-03 0.97 8.75e-03 0.98
3200 4.49e-03 0.98 4.44e-03 0.98 4.43e-03 0.99 4.40e-03 0.99

data (Section 3.1.1), these rates are higher than expected, but the effect of boundary layer can be
clearly seen via comparison of the data in Tables II and III with the results reported in Table I.

3.2. Burgers’ equation

In this section, we use the FEOS method to compute the solution of the nonlinear 1-D
Burgers’ equation

ut +
(
u2

2

)
x

= �uxx , �= 0.01 (37)

subject to the smooth compactly supported initial data (36). The computational domain is
[−1.5, 1.5], and the final time is t = 1, which is a post-shock time for the corresponding in-
viscid Burgers’ equation. Unlike the case of a linear convection–diffusion equation, the splitting
solution may now break down at the ‘hyperbolic’ substep. Therefore, the hyperbolic solver employs
the minmod limiter (8) with � = 2 at each time step.

The exact solution of the IVP (37), (36) is given by the Hopf formula

u(x, t) =
∫∞
−∞(x − �)e−�(x,�,t)/(2�) d�∫∞

−∞ te−�(x,�,t)/(2�) d�
, �(x, �, t) := (x − �)2

2t
+
∫ �

0
u0(�) d�
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Table IV. Burgers’ equation—the L∞-errors.

Number of �= 1
7 �= 2

7 �= 2
5 �= 4

5
grid cells

L∞-error Rate L∞-error Rate L∞-error Rate L∞-error Rate

100 1.99e-02 — 1.98e-02 — 2.29e-02 — 2.31e-02 —
200 6.11e-03 1.71 6.10e-03 1.70 6.06e-03 1.92 5.78e-03 2.00
400 1.56e-03 1.97 1.55e-03 1.97 1.55e-03 1.97 1.48e-03 1.96
800 3.91e-04 2.00 3.90e-04 2.00 3.90e-04 1.99 3.91e-04 1.92

1600 1.50e-04 1.37 1.20e-04 1.70 1.18e-04 1.72 1.07e-04 1.87
3200 8.60e-04 0.78 5.37e-05 1.16 4.68e-05 1.33 1.93e-05 1.87

Table V. Burgers’ equation—the L1-errors.

Number of �= 1
7 �= 2

7 �= 2
5 �= 4

5
grid cells

L∞-error Rate L∞-error Rate L∞-error Rate L∞-error Rate

100 2.16e-03 — 2.06e-03 — 2.50e-03 — 2.57e-03 —
200 6.76e-04 1.68 6.74e-04 1.61 6.23e-04 1.90 6.62e-04 1.96
400 1.75e-04 1.94 1.76e-04 1.94 1.75e-04 1.94 1.76e-04 1.91
800 4.59e-05 1.93 4.57e-05 1.94 4.57e-05 1.94 4.59e-05 1.94

1600 1.30e-05 1.82 1.23e-05 1.90 1.22e-05 1.90 1.19e-05 1.95
3200 6.69e-06 0.96 4.27e-06 1.52 3.80e-06 1.69 3.07e-06 1.96

Its point values, needed to calculate the errors, are obtained using the fourth-order Simpson
quadrature over a uniform grid with 12 800 cells. The computed L∞- and L1-errors are shown in
Tables IV and V. Once again, the optimal value of � in �t =C�−1(�x)� is not known, but we
observe that the convergence rates are now larger for larger � (and thus, for smaller �t). Even
though the formal proof is unavailable, this phenomenon is quite expected since the solution of
the inviscid Burgers’ equation, solved at the ‘hyperbolic’ substeps, typically breaks down after
a certain time, and when �t is relatively small, the ‘hyperbolic’ solution remains smooth. This
pushes the orders of convergence all the way up to second-order. However, when � is small, that
is, when the number of splitting steps is small, the accuracy reduces to first-order, which has also
been observed in the linear case with nonsmooth initial data. At the same time, we would like to
point out that in the latter case, the error is still very small. This suggests that our FEOS method
may be efficiently applied to more interesting problems (see Section 4), for which the ability of
the method to achieve a reasonably high accuracy while performing only few splitting steps is a
very important feature.

4. APPLICATION TO THE POLYMER SYSTEM

In this section, we apply our FEOS method to 1-D and 2-D models describing flow in porous media.
We numerically solve the systems of convection–diffusion equations (38) and (43), see Sections
4.1 and 4.2 below. These systems model polymer flooding processes in enhanced oil recovery (see
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References [9–11] and the references therein). The initial data in our examples are taken form
References [15, 16], and thus a comparison of our method with some existing alternative methods
can be made.

4.1. One-dimensional examples

We first consider the 1-D system of two convection–diffusion equations{
st + f (s, c)x = �sxx

bt + (c f (s, c))x = �bxx
(38)

with b= b(s, c)= sc+a(c), subject to the initial data s(x, 0) = s0(x), c(x, 0) = c0(x). Here, (s, c)T

is the unknown state vector, �>0 is a small scaling parameter, and

f := f (s, c)= s2

s2 + �(1 + 
c)(1 − s)2
, a := a(c)= c

5(1 + c)
(39)

In all the numerical experiments, presented in this section, we take � = 1
2 and 
 = 2.

We will compare the numerical solution computed by the FEOS method with a reference solution
obtained without any operator splitting by combining the second-order central-upwind scheme with
the explicit second-order central-difference approximation for the diffusion term in (38). In all our
numerical experiments, we will take the value of the minmod (see (8)) parameter � = 1, since the
flux here is nonconvex and, as it has been demonstrated in Reference [17], the use of compressive
minmod limiter with �>1 may lead to a convergence to a ‘wrong’ solution that does not satisfy
the entropy condition for all entropies. Obviously, this will not be a problem when � is large, but
we are focusing on the convection-dominated regime, in which a large error at the ‘hyperbolic’
substep cannot be ‘fixed’ by a small diffusion acting at the ‘parabolic’ substep.

Example 1
In the first example, we consider the polymer system (38) subject to the following discontinuous
initial data:

(s0, c0)(x)=
{

(1.0, 0.5), x�0.25

(0.1, 0.1), x>0.25
(40)

In the inviscid case, these initial data correspond to a Riemann problem, whose solution consists
of an s-shock, followed by a c-shock and an s-rarefaction wave.

In Figure 1, we plot the approximate solutions of (38), (40) (dotted line) at time t = 1 for
� = 0.001 and � = 0.01, computed by the FEOS method with two splitting steps and 500 uniform
grid cells. The solid line represents a reference solution computed with 10 000 cells. As one can
clearly see, for � = 0.001 the computed solution agrees well with the reference one, while for
� = 0.01 the s-component of the solution is smeared. Therefore, one needs to perform more than
two splitting steps. In Figure 2, the solutions computed for � = 0.01 by the FEOS method with 8
and 32 splitting steps are shown. Now the resolution of both s and c fronts is very high.

We also study the convergence rate of the FEOS method with respect to the number of splitting
steps. In order to do this, we fix the spatial mesh to 1000 uniform cells and increase the number
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Figure 1. Solution of (38), (40) with �= 0.001 and �= 0.01 computed by the FEOS method with 2
splitting steps (dotted line). The solid line represents the reference solution.
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Figure 2. Solution of (38), (40) with � = 0.01 computed by the FEOS method with 8 and 32 splitting
steps (dotted line). The solid line represents the reference solution.

of splitting steps by powers of two. We then compute relative errors in the L∞ and L1 norms for
each component of the solution according to the following formulae:

E∞ = ‖u − uref‖∞
‖uref‖∞

, E1 = ‖u − uref‖1
‖uref‖1

where u denotes one of the components of the splitting solution and uref denotes the corresponding
component of the reference solution. Tables VI and VII show the errors (computed at time t = 1
in both norms for �= 0.001 and 0.01) and the convergence rates for the s- and c-components of
the solution, respectively. As one can see, in all cases, the convergence rate start decreasing after
a certain number of splitting steps since, as it follows from the error estimates (18) and (33), the
splitting step in the FEOS method cannot be taken too small. A similar convergence study has
been performed in Reference [15] and we would like to point out that the relative errors obtained
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Table VI. Example 1. Estimated errors and convergence rates for the s-component of the solution.

Number �= 0.001 �= 0.01
of steps

L∞-error Rate L1-error Rate L∞-error Rate L1-error Rate

2 2.46e-01 — 2.53e-03 — 2.05e-01 — 8.80e-03 —
4 1.16e-01 1.10 1.66e-03 0.61 1.46e-01 0.50 5.94e-03 0.57
8 8.40e-02 0.46 1.09e-03 0.61 8.50e-02 0.78 3.47e-03 0.78
16 3.29e-02 1.35 7.74e-04 0.49 3.42e-02 1.31 1.57e-03 1.14
32 1.93e-02 0.77 6.14e-04 0.33 1.27e-02 1.43 5.96e-04 1.40
64 4.82e-02 −1.32 5.56e-04 0.14 4.87e-03 1.38 2.07e-04 1.52

128 5.60e-02 −0.21 5.20e-04 0.09 2.35e-03 1.04 9.05e-05 1.19
256 5.69e-02 −0.03 5.14e-04 0.01 1.70e-03 0.48 7.38e-05 0.30

Table VII. Example 1. Estimated errors and convergence rates for the c-component of the solution.

Number �= 0.001 �= 0.01
of steps

L∞-error Rate L1-error Rate L∞-error Rate L1-error Rate

2 1.34e-02 — 7.06e-04 — 1.31e-02 — 3.28e-03 —
4 9.63e-03 0.48 5.33e-04 0.41 7.93e-03 0.72 1.87e-03 0.81
8 7.27e-03 0.40 4.11e-04 0.38 4.05e-03 0.97 9.25e-04 1.02
16 5.70e-03 0.35 3.34e-04 0.30 1.74e-03 1.21 3.96e-04 1.23
32 4.66e-03 0.29 3.28e-04 0.02 6.04e-04 1.53 1.45e-04 1.44
64 5.17e-03 −0.15 3.54e-04 −0.11 1.43e-04 2.08 4.31e-05 1.75

128 5.96e-03 −0.21 3.77e-04 −0.09 8.97e-05 0.67 2.01e-05 1.10
256 6.42e-03 −0.10 3.92e-04 −0.05 9.38e-05 −0.06 2.58e-05 −0.36

in the FEOS method are, on the average, ten times smaller than those obtained in Reference [15]
(we refer the reader to that work for comparison).

Example 2
Next, we consider system (38) subject to the following nonmonotone Riemann initial data:

(s0, c0)(x)=
{

(0.45, 0), x�0.25

(0.20, 1), x>0.25
(41)

In the inviscid case, the solution of this IVP consists of five intermediate states, separated by
simple waves (see, e.g. Reference [9]). Figure 3 shows both components of the computed solution
(dotted lines) at time t = 1 of the viscous case with �= 0.0025, obtained using the FEOS method
with two splitting steps only. The computed solutions are compared with the reference solutions
(solid lines). As in Example 1, the approximate solutions are computed with 500 uniform grid cells
and the reference solution is computed with 10 000 cells, using the second-order central-upwind
scheme without splitting. As one can see, the implementation of the FEOS method results in a
fairly accurate approximation of the c-wave while the s-component is again smeared. In order to
demonstrate the convergence, we increase a number of splitting steps and show, in Figure 4, the
s-component of the solution, computed by the FEOS method with 8 and 32 splitting steps.
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Figure 3. Solution of (38), (41) with � = 0.0025 computed by the FEOS method with 2 splitting steps
(dotted line). The solid line represents the reference solution.
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Figure 4. s-component of the solution of (38), (41) with � = 0.0025 computed by the FEOS method with
8 and 32 splitting steps (dotted line). The solid line represents the reference solution.

Example 3
This example is a Riemann problem corresponding to a compressive shock in the inviscid case, in
which both the s- and the c-characteristics go into the shock and contribute to its self-sharpening.
The initial condition is given by

(s0, c0)(x)=
{

(0.75, 0.8), x�0.25

(0.839619, 0.4), x>0.25
(42)

If this Riemann problem is slightly perturbed, the solution changes from a single shock to a
composition of waves moving with almost the same speed (see, e.g. Reference [15]). There are two
possible results of the perturbation: either a monotone or a nonmonotone solution. In the viscous
case, the problem will be perturbed instantly, which results in a truly nonlinear phenomenon:
monotone initial data evolve into nonmonotone solutions. In Figure 5, we plot the approximate
solutions of (38), (42) with �= 0.005 (dotted lines) at time t = 1, computed by the FEOS with two
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Figure 5. Solution of (38), (42) with � = 0.005 computed by the FEOS method with 2 and 4 splitting
steps (dotted line). The solid line represents the reference solution.

and four splittings steps. As in the previous two Examples, we compare these solutions computed
with 500 uniform grid cells with the corresponding reference solutions computed with 10 000
cells. The exact (reference) solution has a dip due to the presence of the diffusion term. As one
can observe, the dip in the s-component of the solution is not resolved well when only two or
four splitting steps are performed. Therefore, in Figure 6, we show the results obtained with 8 and
32 splittings steps, where a very high resolution is achieved. We would like to point out that the
alternative operator splitting methods, described in Reference [15], fail to resolve the dip in the
s-component of the solution (see Figures 10 and 11 in Reference [15]).

4.2. Two-dimensional example

Finally, we consider the 2-D polymer system:

st + f (s, c)x + f (s, c)y = �(sxx + syy)

bt + (c f (s, c))x + (c f (s, c))y = �(bxx + byy)
(43)
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Figure 6. s-component of the solution of (38), (42) with �= 0.005 computed by the FEOS method with
8 and 32 splitting steps (dotted line). The solid line represents the reference solution.
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Figure 7. s (left) and c (right) components of the solution of (43)–(44) with �= 0.01 computed by the
FEOS method on a 200× 200 grid with 4 splitting steps.

where, as in the 1-D case, b= b(s, c)= sc+ a(c) and f and a are given by formula (39). We now
take �= 
= 1 and consider the 2-D Riemann problem with the following initial data:

(s, c)(x, y, 0)=

⎧⎪⎪⎨⎪⎪⎩
(1.0, 0.0), x<0, y<0

(1.0, 0.1), x>0, y>0

(0.0, 0.0) otherwise

(44)

The example is taken from Reference [16], where the corresponding inviscid system was numer-
ically solved by a front tracking method. Here, we consider the viscous case with �= 0.01. The
solution, computed at time t = 0.4 by the FEOS method with 200× 200 grid cells and four splitting
steps, is plotted in Figure 7. In order to demonstrate convergence of the method, we also show, in
Figure 8, the same solution but computed on 400× 400 grid with two and four splittings steps.
As one can see, all major waves are already accurately captured with four splittings steps for the
s-component of the solution and with only two steps for the c-component of the solution.
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Figure 8. s (left) and c (right) components of the solution of (43)–(44) with �= 0.01 computed by the
FEOS method on a 400× 400 grid with 2 and 4 splitting steps.

It should be pointed out that a fast and efficient implementation of the FEOS method in two
(and more) dimensions can only be achieved by taking into account the special form of the heat
kernel given by (12). The presence of the exponents of the type e−(x j−xi )2+(yk−y�)2/4��t on the
RHS of the midpoint rule (15), used in the ‘parabolic’ substep of the FEOS method, allows one to
perform the summation only in a (relatively) small neighbourhood of each cell, where the exponents
do not practically vanish. This significantly reduces CPU times and thus makes the FEOS method
very efficient.
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