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ABSTRACTComputing solutions of convection-diffusion equatiorspegially in the convection
dominated case, is an important and challenging problem tequires development of fast,
reliable numerical methods. We propose a second-orderebgdicit operator splitting (FEOS)
method based on the Strang splitting. The main idea of thbaodes to solve the parabolic
problem via a discretization of the formula for the exactusion of the heat equation, which
is realized using a conservative and accurate quadratureéta. The hyperbolic problem is
solved by a second-order finite-volume Godunov-type schéme FEOS method is applied
to the one- and two-dimensional systems modeling two phatte&eomponent flow in porous
media. Our results demonstrate that the method achievewarkable resolution and accuracy
in a very efficient manner, that is, when only few splittirepstare performed.

RESUME Le calcul de solutions d’équations de type convectionusiifin est, specialement dans
les cas ou les effects convectifs dominent, un problemeriamet délicat qui requiert le déve-
lopement de méthodes numeériques rapides, précises etesbidous proposons une méthode
explicite d’ordre deux de type “operator splitting” baséerda méthode du “Strang splitting”.
L'idée principale est de résoudre un probléme paraboligizeuwne discrétisation de I'expres-
sion de la solution exacte de I'équation de la chaleur par omighode d’intégration numérique
conservative. Le probléeme hyperbolique est résolu par hérsa volume finis de type Godu-
nov d’ordre deux. La méthode est appliquée a des systemex hidimensionels modélisant
des écoulements biphasiques en milieu poreux. Nos réséitablissent clairement la remar-
guable précision et efficacité de la méthode et le fait quésspielques pas de “splitting” sont
nécessaires.

KEYWORDS:convection-diffusion equations, polymer system, opersptitting, finite-volume
schemes, central-upwind schemes.
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MOTS-CLES equations convectives-diffusives, polymeéres, “opersplitting”, schémas volumes
finis, schémas centrés en amont.

1. Introduction

We present a fast explicit operator splitting (FEOS) metfadhe initial value
problem (IVP) for the system of convection-diffusion eqoas:

u; + Vx - f(u) = DAu, u(x,0) = up(x), x € R%. Q)
Here,u(x,t) = (ui(x,t),...,w(x,t))" is ani-vector,f is a nonlinear convection
flux, andD = diag(eq, . .., €;) is a constant diagonal matrix with positive entries.

Systems of convection-diffusion equations arise in a #aé applications and
model different (physical) processes in fluid mechanicspphlysics, meteorology,
flow in porous media, and many other areas. In this paper, wsider systems
that describe polymer flooding processes in enhanced ailvezg, see, for exam-
ple, [JOH 88, RIS 91, TVE 90]. These systems are convectionimated, which is
the most challenging case from a numerical perspectiveoadth the solution of (1)
is typically smooth for > 0, its gradients may be very large and a full resolution of
viscous shock layers may be out of practical reach. Thezeéor application of shock
capturing methods, originally developed for hyperbolisteyns of conservation laws
may be advantageous. At the same time, even when the impdiffusfion is not too
significant, its presence typically reduces the efficierfaxplicit numerical schemes.

One way to overcome this difficulty is to use an operatortpdjtalgorithm, which
can be briefly described as follows. We denote&y the exactsolution operator
associated with the corresponding hyperbolic system:

u; + Vi - f(u) =0, 2
and bySp theexactsolution operator associated with the (linear) parabgtatesn:
u; = DAu. 3

Then, introducing a time stet, the solution of the original convection-diffusion
system (which is assumed to be available at ijnge evolved in time in three substeps:

u(x, t + At) = Sp(At/2)Sp(AH)Sk (At/2)u(x, ). @)

In general, if all solutions are smooth, this three-stejittapd algorithm, called the
Strang operator splitting, is second-order accurate ésge,[STR 68]).

In practice, the exact solution operatékg andSp are replaced by their numerical
approximations. Note that the main advantage of the opesaldting technique is
the fact that the hyperbolic, (2), and the parabolic, (3ppsablems, which are of
different nature, can be solved numerically by differentmoels.
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The “hyperbolic” substep in our FEOS method is based on fwstame schemes.
Our particular choice is the second-order semi-discretu@ov-type central scheme,
originally introduced in [KUR 00b], and then further impexvin [KUR 01], where
the so-calleccentral-upwindschemes have been developed. We note, however, that
the “hyperbolic” substep is not tied up to a specific choica fifhite-volume scheme
and can be implemented with one’s favorite Godunov-typéoukt

The outcome of the first “hyperbolic” substep in (4) is a gladgaproximation of
u* = Sy (At/2)u(x,t), realized in terms of linear pieces over spatial cells. The
main idea of our method is to perform the “parabolic” substemg the exact so-
lution operator for the heat equation. The solution is in fibven of a convolution
integral, which is approximated using an appropriate camgive and sufficiently ac-
curate quadrature, presented in §2.

In 83, we apply the FEOS method to the one- (1-D) and two-dgiwgral (2-D)
polymer systems. The proposed FEOS method seems to outpetfe existing al-
ternative approaches.

2. Fast Explicit Operator Splitting (FEOS) Method

For simplicity, we present here only the 1-D version of theOFEmethod. We
introduce a uniform spatial grid of siz&z and assume that the solution is known at
timet.

The “hyperbolic” substep in (4) is carried out using a secordker Godunov-type
finite-volume scheme, in which we begin with the computetiaerages

Titrd
1
0, (t) = u(z;,t) := N / u(x,t) dz.

[N

The conservative piecewise linear (thinterpolant for each component of the vector
u is then reconstructed in each grid c[ei}_% , :rj+%] and is given by

u(a;t) = w;(t) + sj(z — x;), (%)

where the slopes; have to be (at least) first-order approximations of the ahurti
derivativesu, (z;, t). In order to ensure a non-oscillatory behavior of the retrons
tion, which is a necessary condition for the overall scheoniget non-oscillatory, the
slopes should be computed with the help of a nonlinear lingite have used the one-
parameter family of minmatllimiters, see, for example, [LIE 03, SWE 84]). Then,
the solution at the new time level+ Atyyp is obtained by (approximately) solv-
ing the integral form of the system (2), subject to the pidsewvinear initial data (5),
prescribed at time. In this paper, the solution is evolved using the semi-@iscr
central-upwind scheme from [KUR 01].
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ReEMARK. — Note that due to the CFL conditio\typ may be smaller thatht/2,
whereAt is the size of the splitting step. In this case, the “hypdadislbstep of the
splitting algorithm would consist of several smaller “faritolume subsubsteps” of
size Atgyp. This is a typical situation, for example, in applicatioagpblymer flows
(see 83), where one is interested in developing a reliabdeadpr splitting method
that is capable to produce a high quality approximate smiutiith a small number of
splitting steps, that is, while keepiiyt relatively large.

Once the solution of the first “hyperbolic” substep in (4) &formed, the new cell
averagesii; ~ - Jj]’*l% Sy (At/2)u(z, t)dx, are available, and we reconstruct an-
i1

other piecewise linear i2nterpolaﬁt (x) following (5). This piecewise linear function
is then used as an initial condition for the parabolic IVP:

u; = Dug,, u(zx,t) = u*(z), (6)
which is now, according to the Strang splitting algorithr (4 be solved on the time

interval (¢, t + At]. Note that sinceéD is a diagonal matrix, the parabolic system in (6)
is actually a set of uncoupled heat equations for each componeni of

(wi), = €i(Ui) s wi(z,t) =ui(z), i=1,...,10 (7)

From now on, we will simplify our notation by usinginstead of any of the,’s and
¢ instead of any of the,’s.

Next, we recall that the exact solution of (7) at time At may be expressed in
the following integral form:

v (x) = 0" () + / Gz — & eAt) (v°(§) — v (z)) dE, (8)
wheredG is the “heat” kernel:
1 e
G(z,t) = 2—\/56 T, 9)

We use the solution formula (8) since it is symmetric andvedlais to discretize the
spatial integral while preserving the conservationahat is, ensuring that the equal-
ity, /7 _v**(z)dx = [7_v*(z)dw, is satisfied on a discrete level as well.

Since for the next “hyperbolic” substep only the cell aversagfv** (z) are needed,
we average (8) over the corresponding computational aebibtain:

— sk —%
’U .

1
J it Az

<
I

/G(z—g,eAt) (U*(&) — v (x)) d§| dx

1
2

= @;+§Z/ /G(x—g,gm)(a*(g)—5*(x))dgdx. (10)
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Next, the integrals on the right-hand side (RHS) of (10) aserdtized using the mid-
point quadrature, that is,

U5 =0+ Az Z Gz — zi,eAt) (v — 7). (11)
1,EZL

It can be easily verified that this quadrature is consergatite to the symmetry of the
“heat” kernel (9).

REMARK. — In practice, the computational domain is finite and thenitdisum on the
RHS of (11) reduces to the sum over all computational celis@twiously need to as-
sume that the solution is “exponentially flat” near the anitfily imposed boundaries).

The third and last substep of the FEOS method is again “hytiefbWe start with
the cell averages’*, computed at the “parabolic” substep, reconstruct a pisgew
linear interpolanti (following (5)), and then evolve it using the same finitetuole
method as in the first “hyperbolic” substep to obtain the aedirages of the solution
of (1) at the new time levela,; (t + At) ~ == f;ﬂ'*l% Sy (At/2)a(x) du.

Az
J

This completes the description of one time step of the FEOtBade

3. Application to the Polymer System

In this section, we apply the FEOS method to the 1-D and 2-Esysf convection-
diffusion equations that model polymer flooding processesnhanced oil recovery
(see [JOH 88, RIS 91, TVE 90] and the references therein)ifitial data in our ex-
amples are taken form [KAR 01] and [HAU 01], and thus a congmariof our method
with some existing alternative methods can be made.

3.1. One-Dimensional Examples

We first consider the 1-D system of two convection-diffusgations:

St + f(S, C)m = ESupux
{ be + (cf(s,¢))z = by, (12)

with b = b(s,c) = sc + a(c). Here,(s,c)T is the unknown state vectar,> 0 is a
small scaling parameter, and

s2 c

fi=flsc) = 2+ u(1l +ve)(1 —5)2° ‘= a(c):m.

(13)

In the numerical experiments, presented in this sectiortakey = 1/2 andv = 2.

We will compare the numerical solution computed by the FE@#d with a ref-
erence solution obtained without any operator splittingtybining the second-order
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central-upwind scheme with the explicit second-order redsifference approxima-
tion of the diffusion term in (12). In our numerical experimg, we use the minmod1
limiter, since the flux here is nonconvex and, as it has beemdstrated in [KUR],
the use of a more compressive minmdichiter with 6 > 1 may lead to a convergence
to a “wrong” solution that does not satisfy the entropy ctindifor all entropies. This
may not be a problem whenis large, but we are focusing on the convection domi-
nated regime, in which a large error at the “hyperbolic” sapsxannot be “fixed” by

a small diffusion acting at the “parabolic” substep.

Example 1. Here, we consider the polymer system (12) subject to tHevigig
discontinues initial data:

[ (1.0,0.5), x<0.25,
(s,¢)(,0) = { (0.1,0.1), x> 0.25. (14)
In the inviscid case, these initial data correspond to a Rienproblem, whose solu-
tion consists of an-shock, followed by a-shock and as-rarefaction wave.

In Figure 1, we plot the approximate solutions of (12),(Hjt{ed line) at time =
1fore = 0.001 ande = 0.01, computed by the FEOS method with two splitting steps
and 500 uniform grid cells. The solid line represents a exfee solution computed
with 10000 cells. As one can clearly see, for 0.001 the computed solution agrees
well with the reference one, while far = 0.01 the s-component of the solution is
smeared. Therefore, one needs to perform more than twairgplgteps. In Figure
2, the solutions computed fer= 0.01 by the FEOS method with 8 and 32 splitting
steps are shown. Now the resolution of betindc fronts is very high.

We also numerically study the convergence rate of the FEQBadevith respect
to the number of splitting steps. In order to do this, we fix $patial mesh to 1000
uniform cells and increase the number of splitting stepstia compute the relative
L' errors and convergence rates, which are shown in Table 1.nAsan see, the
convergence rates start decreasing after a certain nurhgitting steps. This occurs
since the “heat” kernel (9) develops a singularity/ss — 0, and thus the splitting
step in the FEOS method cannot be taken too small. A similavergence study was
performed in [KAR 01] and we would like to point out that théatéve errors obtained
in the FEOS method are, on the average, ten times smallerthioge obtained in
[KAR 01] (we refer the reader to that work for comparison).

Example 2. This example is a Riemann problem corresponding to a cosape
shock in the inviscid case, in which both theand thec-characteristics go into a
shock and contribute to its self-sharpening. The initiaddition is given by

[ (0.75,0.8), x < 0.25,
(s,)(,0) = { (0.839619,0.4), z > 0.25. (15)
If this Riemann problem is slightly perturbed, the solutitkanges from a single shock
to a composition of waves moving with almost the same spess] ésg., [KAR 01]).
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€ =0.001, 2 splitting steps €=0.01, 2 splitting steps

0.8

0.6

0.4

0.2

% 05 1 15 2 % 05 1 15 2

Figure 1. Solution of (12),(14) witle = 0.001 ande = 0.01 by the FEOS method
with 2 splitting steps (dotted line). The solid line represethe reference solution.

€=0.01, 8 splitting steps €=0.01, 32 splitting steps
1 1
0.8 /S ] 0.8
0.6 ] 0.6
0.4 C/ ] 0.4
0.2 ] 0.2
% 05 1 15 2 % 05 1 15 2

Figure 2. Solution of (12),(14) wite = 0.01 by the FEOS method with 8 and 32
splitting steps (dotted line). The solid line representsridference solution.

There are two possible results of the perturbation: eithraoaotone or a nonmono-
tone solution. In the viscous case, the problem will be pbed instantly, which re-
sults in a truly nonlinear phenomenon: monotone initiahdatolve into nonmonotone
solutions. In Figure 3, we plot the approximate solutionél@),(15) withe = 0.005
(dotted lines) at tim¢ = 1, computed by the FEOS with four splittings steps. As
in the previous Example, we compare these solutions cordpuitth 500 uniform
grid cells with the corresponding reference solutions coteg with 10000 cells. The
exact (reference) solution has a dip in tieomponent due to the presence of the dif-
fusion term. As one can observe, the dip is not resolved wediimfour splitting steps
are performed. Therefore, we also show the results obtaiithdB and 32 splittings
steps, where a very high resolution is achieved. We woukltiikpoint out that the
alternative operator splitting methods, described in [K&R, fail to resolve the dip
in the s-component of the solution (see Figures 10 and 11 in [KAR.01])
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Numbel s-component c-component
of e =0.001 e =0.01 e =0.001 e =10.01
steps | L'-error Rate| L'-error Rate| L'-error Rate| L'-error Rate
2 2.53e-03 - | 8.80e-03 - | 7.06e-04 - | 3.28e-03 -

4 1.66e-03 0.61 5.94e-03 0.57 5.33e-04 0.41| 1.87e-03 0.81
8 1.09e-03 0.61 3.47e-03 0.78 4.11e-04 0.38| 9.25e-04 1.02
16 | 7.74e-04 0.49 1.57e-03 1.14 3.34e-04 0.30| 3.96e-04 1.23
32 | 6.14e-04 0.33 5.96e-04 1.40 3.28e-04 0.02| 1.45e-04 1.44
64 | 5.56e-04 0.14 2.07e-04 1.52 3.54e-04 -0.11 4.31e-05 1.75
128 | 5.20e-04 0.09 9.05e-05 1.19 3.77e-04 -0.09 2.01e-05 1.10
256 | 5.14e-04 0.0l 7.38e-05 0.30 3.92e-04 -0.0§ 2.58e-05 -0.36

Table 1. Example 1. Estimated errors and convergence rates for staad c-
components of the solution, computed by the FEOS methadet & 1.

€=0.005, 4 splitting steps €=0.005, 4 splitting steps
0.84 0.
v C
0.82
0.7
0.8
0.78 04
0.76 0.5
0.74 04
0-7% 0.5 1 15 2 0 0.5 1 15 2
€=0.005, 8 splitting steps €=0.005, 32 splitting steps
0.84 0.84
0.82 0.82
0.8 0.8
0.78 0.78
0.76 0.76
0.74 0.74
073 05 1 15 2 7% 0.5 1 15 2

Figure 3. Solution of (12),(15) witlk = 0.005 by the FEOS method with 4, 8, and 32
splitting steps (dotted line). The solid line representsriéference solution.

3.2. Two-Dimensional Example

Finally, we consider the 2-D polymer system:

s¢+ f(5,¢)a + f(5,0)y = e(Sea + 5yy)
{ b+ (f (5:€))a + (F(5,))p = £lbas + byy). (16)
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where, as in the 1-D cask= b(s, c) = sc + a(c) andf anda are given by (13). We
now takey = v = 1 and consider the 2-D Riemann problem with the initial data:

(1.0,0.0), = <0,y<0,
(s,¢)(z,y,0) =< (1.0,0.1), x>0,y >0, a7
(0.0,0.0), otherwise.

The example is taken from [HAU 01], where the correspondinigcid system was
numerically solved by a front tracking method. Here, we dd&rsthe viscous case
with e = 0.01. The solutions, computed at timte= 0.4 by the FEOS method with
400 x 400 grid cells and two and four splitting steps, are plotted igufe 4. As one

can see, all major waves are already accurately capturédaevit splittings steps for
the s-component of the solution and with only two steps for theomponent of the

solution.

It should be pointed out that a fast and efficient implemémadf the FEOS
method in two (and more) dimensions can only be achieved kipganto account
the special form of the heat kernel given by (9). The presefi@xponents of type

~ (zj—x)24 (v —ye)2

e~ zat onthe RHS of (11), used in the “parabolic” substep of the FEOS
method, allows one to perform the summation only in a (reddy) small neighbor-
hood of each cell. This significantly reduces CPU times ang thakes the FEOS
method very efficient.
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