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Abstract

The purpose of this paper is to establish a new method for
proving the convergence of the particle method applied to the
Camassa-Holm (CH) equation. The CH equation is a strongly
nonlinear, bi-Hamiltonian, completely integrable model in the con-
text of shallow water waves. The equation admits solutions that
are nonlinear superpositions of traveling waves that have a discon-
tinuity in the first derivative at their peaks and therefore are called
peakons. This behavior admits several diverse scientific applica-
tions, but introduce difficult numerical challenges. To accurately
capture these solutions, one may apply the particle method to the
CH equation. Using the concept of space-time bounded variation,
we show that the particle solution converges to a global weak so-
lution of the CH equation for positive Radon measure initial data.
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1 Introduction

The purpose of this paper is to establish convergence results for the
particle method applied to the Camassa-Holm (CH) equation, given as

mt + (um)x + uxm = 0 with m = u− α2uxx, (1.1)

which is considered subject to the initial condition

m(x, 0) = m0(x). (1.2)

Here the momentum m and velocity u are functions of the time variable
t and the spatial variable x, and α is a length scale. Equation (1.1) arises
in diverse scientific applications and, for instance, can be described as
a bi-Hamiltonian model for waves in shallow water [3]. Equation (1.1)
can also be used to quantify growth and other changes in shape, such as
occurs in a beating heart, by providing the transformative mathematical
path between the two shapes, (see, e.g, [8]).

The CH equation exhibits some remarkable properties. Of notable
interest is the fact that the equation is completely integrable and yields
peakon solutions which are solitons (whose identity is preserved through
nonlinear interactions) with a sharp peak. Mathematically, this sharp
peak is characterized by a discontinuity at the peak in the wave slope,
and therefore are called peakons, [3].

Peakons may be accurately captured by applying particle methods
to the CH equation as shown in, e.g., [4, 5, 6, 8]. In these methods,
the solution is sought as a linear combination of Dirac distributions,
whose positions and coefficients represent locations and weights of the
particles, respectively. The solution is then found by following the time
evolution of the locations and the weights of these particles according
to a system of ODEs obtained by considering a weak formulation of the
problem. The main advantage of particle methods is their (extremely)
low numerical diffusion that allows one to capture a variety of nonlinear
waves with high resolution, see, e.g., [9] and references therein.

In this paper, we apply the particle method for numerical solution of
the CH equation. We begin with a brief overview of the particle method
and some of its main features which are relevant to our discussion. The
main analytical results we provide is the convergence proof of the particle
method. While previous convergence results have been established for
this equation (e.g. see [1, 2, 4, 7, 10]), we propose a new self-contained
method for showing the convergence by establishing BV estimates for
the particle solution. We then verify that both the particle solution and
its limit are weak solutions to the CH equation to complete our study
on the convergence analysis.
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2 Description of a Particle Method

To solve (1.1) by the particle method, we follow the method introduced
in [6]. That is, we look for a weak solution in the form of a linear
combination of Dirac delta distributions,

mN (x, t) =
N∑
i=1

pi(t)δ(x− xi(t))). (2.1)

Here, xi(t) and pi(t) represent the location of the i-th particle and its
weight, and N denotes the total number of particles. The solution is then
found by following the time evolution of the locations and the weights
of the particles according to the following system of ODEs [6]:

dxi(t)
dt

= uN (xi(t), t),

dpi(t)
dt

+ uNx (xi(t), t)pi(t) = 0.

(2.2)

Using the special relationship between m and u given in (1.1), one can
directly compute the velocity u and its derivative, by the convolution
uN = G ∗mN , where G is the Green’s function

G(|x− y|) =
1

2α
e−|x−y|/α, (2.3)

associated with the one dimensional Helmholtz operator in (1.1). Thus
we have the following exact expressions for both u(x, t) and (by direct
computation) ux(x, t):

uN (x, t) =
1

2α

N∑
i=1

pi(t)e−|x−xi(t)|/α, (2.4)

uNx (x, t) = − 1
2α2

N∑
i=1

pi(t)sgn(x− xi(t))e−|x−xi(t)|/α. (2.5)

In practice, except for very special cases, the functions xi(t) and
pi(t), i = 1, . . . , N have to be determined numerically and the system
(2.2) must be integrated by an appropriate ODE solver. In order to
initiate the time integration, one should choose the initial positions of
particles, x0

i , and the weights, p0
j , so that (2.1) represents a high-order

approximation to the initial data m0(x) in (1.2), as it is shown in [6, 9].
The system (2.2) may be derived in one of two ways. Following [6],

we may consider a weak formulation of the problem and make a suit-
able substitution to derive (2.2) or one may follow [4, 5] by considering
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the Hamiltonian structure of (1.1). The latter property of the particle
system and its complete integrability allows one to establish the global
existence results for the solution of (2.2) and to show that for a relatively
wide class of initial data there are no particle collisions in finite times
[5, Proposition 2.3].

3 Convergence Results

In this section,we show that the particle method given by (2.1) and (2.2)
converges to a weak solution of the CH equation (1.1). While others have
shown this result in a variety of ways, we propose a self-contained concise
way of showing convergence by establishing BV estimates for uN and
uNx . Once these estimates are established, we use the compactness result,
associated with BV functions, to pass to the limit and show that the
particle solution associated with the CH equation converges to a weak
solution of (1.1). Throughout this section, we shall assume that the
initial momenta pi(0) are positive and that there are no particle collisions
in finite time. It should also be noted that the total momentum of the
particle system is conserved as it was shown in [6].

3.1 Space and Time BV Estimates

In what follows, we recall the definition of the total variation of a function
and prove that the total variations of both uN (x, t) and uNx (x, t) are
bounded.

Definition 3.1. Consider a (possibly unbounded) interval J ⊆ R and a
function u : J → R. The total variation of u is defined as

Tot.Var. {u} ≡ sup


N∑
j=1

|u(xj)− u(xj−1)|

 , (3.1)

where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of
points xj ∈ J such that x0 < x1 < · · · < xN . If the right hand side of
(3.1) is bounded, then we say that u has bounded variation, and write
u ∈ BV (R).

The following theorem establishes the necessary space and time BV
estimates.

Theorem 3.2. Let uN (x, t) and uNx (x, t) be functions defined in (2.4)
and (2.5), respectively. Then, both uN (x, t) and uNx (x, t) are BV func-
tions in the two variables x, t.
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Proof. We begin with showing that Tot. Var.
{
uN (·, t)

}
and Tot. Var.

{
uNx (·, t)

}
are bounded. Indeed, from (2.3) we have Tot.Var.{G(x)} = 1/α and
Tot.Var.{Gx(x)} = 2/α2. Using the fact that the total momentum of
the particle system is conserved, we obtain

Tot.Var.{uN (·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{G(x)} =
1
α

N∑
j=1

pj(t) =
1
α
|m0|,

(3.2)

Tot.Var.{uNx (·, t)} ≤
N∑
j=1

pj(t)Tot.Var.{Gx(x)} =
2
α2

N∑
j=1

pj(t) =
2
α2
|m0|.

(3.3)

In order to prove that uN (x, t) and uNx (x, t) have bounded variation with
respect to t as well, it now suffices to show that uN and uNx are both
Lipschitz continuous in time in L1, [1, Theorem 2.6].

We first consider expression (2.4) for uN to have
∞∫
−∞

|uN (x, t)− uN (x, s)| dx ≤ 1
2α

∞∫
−∞

N∑
i=1

pi(t)
∣∣∣e−|x−xi(t)|/α − e−|x−xi(s)|/α

∣∣∣ dx
+

1
2α

∫ ∞
−∞

N∑
i=1

e−|x−xi(s)|/α|pi(t)− pi(s)| dx.

Simple calculations show that
∞∫
−∞

∣∣∣e−|x−xi(t)|/α − e−|x−xi(s)|/α
∣∣∣ dx ≤ 4|xi(t)−xi(s)| and

∞∫
−∞

e−|x−xi(t)|/α dx ≤ 2α,

and hence, we have∫ ∞
−∞
|uN (x, t)− uN (x, s)| dx ≤ 2

α

N∑
i=1

pi(t)|xi(t)−xi(s)|+
N∑
i=1

|pi(t)− pi(s)|.

(3.4)
Using the ODE system (2.2), it now follows from (3.4) that∫ ∞

−∞
|uN (x, t)− uN (x, s)| dx ≤ 3

2α2
|m0|2 (t− s) ,

proving that uN is Lipshitz continuous in time in L1 and thus has
bounded variation with respect to both x and t.

Similarly, for uNx we have:∫ ∞
−∞
|uNx (x, t)− uNx (x, s)| dx ≤ 3

2α3
|m0|2(t− s),
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which together with (3.3) proves that uNx (x, t) is a BV function in x, t
and the statement of the theorem.

3.2 Compactness and Convergence

In this section, we use compactness properties associated with BV func-
tions to prove convergence of the particle method. To this end, we first
give a definition of a weak solution of the CH equation (1.1) and show
that the particle solution (mN , uN ) obtained from (2.1), (2.2) is indeed
a weak solution of the CH equation.

Definition 3.3. u(x, t) ∈ C(0, T ;H1(R)),m(x, t) = u(x, t)−α2uxx(x, t)
is said to be a weak solution to (1.1) if

∫ ∞
−∞

φ(x, 0)m(x, 0) dx+

∞∫
0

∞∫
−∞

[
φt(x, t)− α2φtxx(x, t)

]
u(x, t) dxdt

+

∞∫
0

∞∫
−∞

[
3
2
φx(x, t)− α2

2
φxxx(x, t)

]
u2(x, t) dxdt

+

∞∫
0

∞∫
−∞

α2

2
φx(x, t)u2

x(x, t) dxdt = 0

(3.5)
for all φ ∈ C∞0 (R× R+).

Proposition 3.4. Assume that m0 ∈ M(R), then the particle solution
(mN (x, t), uN (x, t)) given by (2.1), (2.2) is a weak solution of the problem
(1.1), (1.2).

Proof. Let mN (x, 0),mN (x, t) and uN (x, t), uNx (x, t) be given by formu-
lae (2.1) and (2.2), respectively, and φ ∈ C∞0 (R× R+) be a test function.
Then, the following relations can be easily established by direct substi-
tutions:

〈mN , φt〉 = 〈uN , φt − α2φtxx〉, (3.6)

〈mNuN , φx〉 =
〈

(uN )2, φx −
α2

2
φxxx

〉
+ α2

〈
(uNx )2, φx

〉
, (3.7)

〈
mNuNx , φ

〉
=
〈
α2(uNx )2 − (uN )2

2
, φx

〉
. (3.8)

Using (3.6)–(3.8) and substituting mN (x, t) as defined by (2.1) into (3.5),
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yields

N∑
i=1

pi(0)φ(xi(0), 0) +
∫ ∞

0

N∑
i=1

pi(t)φt (xi(t), t) dt+

∫ ∞
0

N∑
i=1

pi(t)uN (xi(t), t)φx (xi(t), t) dt−
∫ ∞

0

N∑
i=1

pi(t)uNx (xi(t), t)φ (xi(t), t) dt = 0.

(3.9)

We now add and subtract
N∑
i=1

∫ ∞
0

pi(t)
dxi
dt
φx(xi(t), t) dt into the last

equation, use the fact that

dφ(xi(t), t)
dt

= φx(xi(t), t)
dxi(t)
dt

+ φt(xi(t), t)

and rewrite (3.9) as follows:

N∑
i=1

pi(0)φ(xi(0), 0) +
∫ ∞

0

N∑
i=1

pi(t)
dφ(xi(t), t)

dt
dt

∫ ∞
0

N∑
i=1

pi(t)
[
uN (xi(t), t)−

dxi(t)
dt

]
φx (xi(t), t) dt

−
∫ ∞

0

N∑
i=1

pi(t)uNx (xi(t), t)φ (xi(t), t) dt = 0.

(3.10)

Integrating by parts the second term in the first row in (3.10), and
rearranging other terms, we finally obtain:∫ ∞

0

N∑
i=1

pi(t)
[
dxi(t)
dt

− uN (xi(t), t)
]
φx (xi(t), t) dt

+
∫ ∞

0

N∑
i=1

[
dpi(t)
dt

+ pi(t)uNx (xi(t), t)
]
φ(xi(t), t) dt = 0.

(3.11)

Since the functions xi(t) and pi(t) satisfy the system (2.2), the last equa-
tion holds for any φ implying that mN , uN defined by (2.1), (2.4) is a
weak solution of (1.1), (1.2). This completes the proof.

We are now in a position to establish a convergence result for the
particle method. Using the BV estimates for uN (x, t) and uNx (x, t), and
the fact that the particle solution is a weak solution to the CH equation,
we may establish the following convergence result.
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Theorem 3.5. Suppose that (mN (x, t), uN (x, t)) is a particle solution
of (2.1), (2.2) with initial approximation mN (·, 0) ∗⇀m0, m0 ∈M+(R).
Then there exist functions u(x, t) ∈ BV(R×R+) and m(x, t) ∈M+(R×
R+) such that mN (x, t) and uN (x, t) converge to m(x, t) and u(x, t),
respectively in the sense of distributions as N → ∞. Furthermore, the
limit (u,m) is the unique weak solution to the CH equation (1.1) with
regularity u ∈ C(0, T ;H1(R)), ux ∈ BV(R× R+).

Proof. Using BV estimates for uN (x, t) and uNx (x, t), we refer to the
compactness property in [1, Theorem 2.4] and conclude that there exist
functions u and ux and a subsequence (still labeled as uN (x, t)) such
that

||uN − u||L1
loc(R×R+) → 0, ||uNx − ux||L1

loc(R×R+) → 0 (3.12)

as N →∞.
From Proposition 3.4, we know that (mN , uN ) is a weak solution and

thus satisfy equation (3.5). To complete the proof, we need to show that
each terms in (3.5) converges to that of the limit solution (m,u). Indeed,
by the construction of the initial approximation, one has

lim
N→∞

∫ ∞
−∞

φ(x, 0)mN (x, 0) dx =
∫ ∞
−∞

φ(x, 0)m(x, 0) dx (3.13)

Furthermore, for any φ ∈ C∞0 (R× R+), we have∣∣∣ ∫∫ φ
(
uN )2 − (u)2

)
dxdt

∣∣∣ =
∣∣∣ ∫∫ φ(uN + u)(uN − u)dxdt

∣∣∣
≤ ‖φ‖L∞(‖uN‖L∞ + ‖u‖L∞)

∫∫
(x,t)∈supt of φ

∣∣uN (x, t)− u(x, t)
∣∣ dxdt→ 0,

and thus ∫∫
φ(uN )2dxdt→

∫∫
φu2dxdt,

as as N →∞. Similarly, we obtain∫∫
φ(uNx )2dxdt→

∫∫
φ(ux)2dxdt.

This shows that the limit (m,u) is indeed a weak solution to the CH
equation.

4 Conclusion

In this paper, we have provided a new way of showing that for posi-
tive Radon measure initial data, the particle method applied to the CH
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equation will converge to the unique global weak solution. To this ex-
tent, we have only highlighted some of the main results obtained from
our study. A full version of this paper will be published in the future
and will provide additional details and some verification of results that
were omitted above. Furthermore, numerical experiments will be per-
formed that illustrates the no-crossing behavior of the solutions to the
CH equation as well as the soliton behavior obtained by the complete
integrability of the CH equation.
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