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Abstract

The past several decades have seen significant development in the design and numerical analysis
of particle methods for approximating solutions of PDEs. In these methods, a numerical solution is
sought as a linear combination of Dirac delta-functions located at certain points. The locations and
coefficients (weights) of the delta-functions are first chosen to accurately approximate the initial data
and then are evolved in time according to the system of ODEs obtained from a weak formulation of
the considered problem. The main advantage of the particle methods is their low numerical diffusion
that allows them to capture a variety of nonlinear waves with a high resolution. Even though the
most “natural” application of the particle methods is linear transport equations, over the years,
the range of these methods has been extended for approximating solutions of convection-diffusion
and dispersive equations and general nonlinear problems.

In this paper, we provide a mathematical introduction to deterministic particle methods and
review different aspects of their practical implementation such as recovering an approximate solution
from its particle distribution and an investigation of various particle redistribution algorithms.

1 Introduction

In recent years, particle methods have become a useful tool for approximating solutions of PDEs and
been successfully used to treat a broad class of problems arising in astrophysics, plasma physics, solid
state physics, medical physics, and fluid dynamics; see, e.g., [29,31,58,69–71,73,82,83] and references
therein. In these methods, the solution is sought as a linear combination of Dirac distributions
whose positions and coefficients represent locations and weights of the particles, respectively. The
solution is then found by following the time evolution of the locations and the weights of the particles
according to a system of ODEs, obtained by considering a weak formulation of the problem. In
order to recover point values of the the computed solution at some time t > 0, the particle solution
needs to be regularized, and hence the performance of the particle method depends on the quality
of the regularization procedures, allowing the recovery of the approximate solution from its particle
distribution. A commonly used regularization of a particle solution performed by taking a convolution
with a so-called cut-off function, which plays the role of a smooth approximation to the δ-function and
after a proper scaling takes into account the tightness of the particle discretization. When a particle
method is applied to problems with nonsmooth data, the reconstruction procedure becomes the most
challenging part of the overall algorithm — it works perfectly fine for smooth functions, but may break
down when applied to nonsmooth (discontinuous) solutions.

Mesh-free particle methods have many advantages compared to Eulerian (finite-difference, finite-
volume, finite-element etc.) methods. The amount of numerical viscosity introduced by most nonoscil-
latory Eulerian discretizations of the convective terms may seriously degrade the accuracy of a com-
putational method especially if a coarse grid is forced to be used. Lagrangian-type methods, on the
other hand, can ameliorate most of the problems posed by the presence of numerical viscosity since
particles provide a non-dissipative approximation of the convection. Furthermore, in some scientific
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applications, such as kinetic theory, for instance, FD schemes cannot be applied to a realistic case,
because of the dimensionality of the problem [33], while in particle schemes, the particles are concen-
trated in the relevant region of the phase space, optimizing the memory storage of the computer. As
mesh-free, particle methods are also very flexible, and, therefore beneficial, when problems with very
complicated geometries and/or moving boundaries are considered.

Particle methods have been used for a long time to give a numerical solution of purely convective
problems, such as the incompressible Euler equation in fluid mechanics [70, 82, 83] or the Vlasov
equation in plasma physics [61]. Over the years, the range of particle methods has been extended
to treat other type of equations including convection-diffusion, dispersive and others and we refer
the reader to several books and survey monographs, where a large variety of particle-type methods
are being reviewed, see,e.g., [40, 84, 95] and references therein. Particle method approximations of
hyperbolic PDEs with oscillatory solutions were studied in [54]. A detailed description of particle
methods with an emphasis on vortex methods and smooth particle hydrodynamics (SPH) and their
applications can also be found in [40,94].

It is generally possible to divide the particle methods for convection-diffusion equations into two
classes: stochastic and deterministic ones. The most widely used treatment of diffusion terms, the
random vortex method, was developed in [30]. There, diffusion was introduced by adding a Wiener
process to the motion of each vortex. Numerous works followed that pioneering paper and properties
of the random vortex method have been extensively studied in the literature (for a comprehensive
list we refer the reader to [101] and [40]). Several deterministic methods have been explored for
treating the diffusion terms in particle schemes. Among them is the so-called weighted particle method
[42, 43, 49, 90, 91]), in which the convective part of the equation is modeled by the convection of the
particles, while the diffusion part of the equation is taken into account by changing the particle
weights. Another example is the diffusion-velocity method, which is based on defining the convective
field associated with the heat operator which then allowed the particles to convect in a standard
way ( [50, 78, 79, 86]), and others ( [34, 52, 53, 59, 104–106]). In this case, the PDE is rewritten as
if it was an advection equation with a speed that depends on the solution and its derivatives. The
solution is then obtained by implementing the particle method with the only difference being that the
point values of the computed solution should be recovered from the particle distribution at every time
step during the time integration (unlike linear advection problems, in which the solution is recovered
only at the final time). The diffusion-velocity particle method has been also applied to linear and
nonlinear dispersive equations as well as used for direct simulations of solitary waves interactions, see,
e.g., [12, 16,24–28,47,48,92].

One must be aware, however, that the self-adaptivity of the particle positions to the local flow
map comes at the expense of the regularity of the particle distribution: inter-particle distances may
change in time, and just as particles may cluster in the immediate region of the discontinuity they may
spread too far from each other near nonsmooth fronts. This may lead not only to a poor resolution of
the computed solution, but also to an extremely low efficiency of the methods. The latter is related
to the fact that the time step for the ODE solver used to evolve the particle system in time depends,
in general, on the distance between the particles. The success of various particle i methods relies
thus not only upon accurate reconstruction procedures used to recover point values of the numerical
solution from its particle distribution, but also upon accurate and efficient redistribution algorithms,
which will ensure that different regions in the computational domain are adequately resolved. A large
variety of remeshing techniques were proposed in the literature over the last decades including both
global interpolation-type methods, see, e.g, [7–10, 14, 37, 37, 38, 40, 40, 41, 44, 44, 45, 65, 74, 76, 80, 88,
93, 96–98, 100, 100, 102, 108, 110, 111] and local particle merger algorithms, see, e.g., [23, 81, 109]. it is
also well-known that particle methods encounter difficulties in the accurate treatment of boundary
conditions, while their adaptivity is often associated with severe particle distortion that may introduce
spurious scales. Recent research efforts that attempt to address these issues are outlined in [75].
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There are many applications, for which a hybridization of the Eulerian and Lagrangian approaches
may be beneficial or even crucial for achieving high resolution of the computed solution since particle
methods have their own applicability limitations if the considered problems involve additional terms
besides linear convection (e.g. collision terms, diffusion, or dispersion, and/or nonlinear terms). Hybrid
methods involve combination of mesh-based schemes and particle methods in an effort to utilize the
specific advantages of each part of the hybrid method in the right place, see, e.g., [15, 17–20, 22, 35,
36, 46, 70, 97]. It should also be noted, that since in many problems where some sharp interfaces are
needed to be captured, the use of particle methods may be critical for obtaining a high resolution of
the computed solution due to the low dissipativeness nature of these methods, see also [55,56,72,77].

The purpose of this manuscript is to provide a mathematical review of deterministic particle meth-
ods for advection equations as well as to discuss various aspects related to the practical implementation
of these methods. The paper is organized as follows: We start, in Section 2, with a description of de-
terministic particle methods in the context of linear transport equations and provide a review of major
analytical results. We then discuss, in Section 3, various remeshing techniques that ensure consistent,
efficient, and accurate simulations by particle methods. We conclude, in Section 4, with particle
approximations for derivative operators, which are presented in the context of convection-diffusion
equations.

2 Description of the Particle Method

In this section, we describe the derivation of the particle method using the example of linear transport
equation, here written in the divergence form:

ut +∇x · (au) + a0u = S, x ∈ Rd, t > 0, (2.1)

and considered subject to initial data

u0(x) := u(x, 0), (2.2)

where, u is an unknown function of a time variable t and d-spatial variables x = (x1, . . . , xd)
T , the

velocity vector a = (a1(x, t), . . . , ad(x, t))
T , the coefficient a0(x, t), and the source/sink term S(x, t)

are given functions.

As it was mentioned above, the main idea of the particle methods is to seek a solution of a PDE
as a linear combination of Dirac distributions,

uN (x, t) =

N∑
i=1

wi(t) δ(x− xi(t)),

for some set (xi(t), wi(t)) of points xi(t) ∈ Rd and coefficients wi(t) ∈ R that are chosen at time t = 0
to accurately approximate the initial data and then evolved in time according to the system of ODEs
obtained from a weak formulation of the underlying PDE. Such solutions are called particle solutions
and the δ-functions in the above formula are called particles. The coefficients wi(t) are called particle
weights, since they represent the amount of the physical quantity u, carried by the ith particle, which
is located at xi(t) at time t, and N is the total number of particles. It should be emphasized that the
introduced particles are mathematical objects rather than (physical) particles of a certain material. An
important step in implementation of particle methods is the recovery of point values of the computed
solution from its particle distribution. In what follow, we describe each one of the aforementioned
steps, i.e., initialization, evolution and reconstruction.
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2.1 Particle Approximation of the Initial Data

The first step in the derivation of the particle method consists of approximating the initial data (2.2)
by a linear combination of Dirac distributions:

uN0 (x) =
N∑
i=1

wi(0) δ(x− xi(0)), (2.3)

where wi(0) are given coefficients and xi(0) are the initial locations of the δ-functions. This can be
done, for instance, in the sense of measures. Namely, for any test function φ ∈ C0

0 (Ω), the inner
product (u0(·), φ(·)) should be approximated by

∫
Ω

u0(x)φ(x) dx ≈ (uN0 (·), φ(·)) =

N∑
i=1

wi(0)φ(x). (2.4)

Based on (2.4), we observe that that determining the initial weights, wi(0), is exactly equivalent to
solving a standard numerical quadrature problem. One way of solving this problem is to first divide

the computational domain Ω into a set of N nonoverlapping subdomains Ωi:
N⋃
i=1

Ωi = Ω, Ωi
⋂

Ωl =

∅, ∀i 6= l. Then the location of the ith particle, xi(0), is set at the center of mass of Ωi and the entire
mass of u0 in Ωi is ”placed” into the ith particle so that its initial weight is

wi(0) :=

∫
Ωi

u0(x) dx. (2.5)

For instance, one can take

wi(0) = |Ωi|u0(xi(0)),

which will correspond to the midpoint rule for (2.5). In general, one can build a sequence of basis
functions that will aid in solving the numerical quadrature problem given by (2.4), see, e.g., [26, 27].
One may also prove (see, e.g., [26, 40,103]) that uN0 converges weakly to u0 as N →∞, i.e., if

max
i
|Ωi| → 0 as N →∞, (2.6)

then for all φ ∈ C0
0 (Ω)

lim
N→∞

∫
Ω

(uN0 (x)− u0(x))φ(x) dx = 0.

2.2 Time Evolution of Particles

As it was mentioned above, particle methods are obtained by considering a weak formulation of the
underlying problem and therefore we start by defining a weak solution of (2.1), (2.2). Following [103],
we denote by M(Ω) the space of measures defined on Ω ⊂ Rd, that is, the space dual to the space
C0

0 (Ω) of continuous functions Ω → R with compact support. A weak solution is then defined as
follows.
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Definition 2.1 A function u ∈ M(Rd × [0, T )) is called a weak solution of the Cauchy problem
(2.1), (2.2) if

−
∫
Rd

u0(x)ϕ(x, 0) dx−
T∫

0

∫
Rd

u(x, t) [ϕt(x, t) + a(x, t) · ∇ϕ(x, t)] dx dt

+

T∫
0

∫
Rd

a0(x, t)u(x, t)ϕ(x, t) dx dt =

T∫
0

∫
Rd

S(x, t)ϕ(x, t) dx dt

(2.7)

holds for any test function ϕ ∈ C1
0 (Rd × [0, T )).

Note that this definition makes sense if u0 ∈M(Rd) and S ∈M(Rd × [0, T )).

Equipped with the definition of a weak solution, we now prove the following proposition, which
holds in the homogeneous case of S ≡ 0.

Proposition 2.1 Let

ut + ∇x · (au) + a0(x, t)u = 0, (2.8)

be a homogeneous linear transport equation considered subject to the initial data (2.3), where wi(0) are
given coefficients and xi(0) are the initial locations of the δ-functions. Assume that a0, a1, . . . , ad ∈
C(Rd × [0, T ]). Then a weak solution of (2.8), (2.3) is given by

uN (x, t) =
N∑
i=1

wi(t) δ(x− xi(t)), (2.9)

where
dxi(t)

dt
= a(xi(t), t),

dwi(t)

dt
+ a0(xi(t), t)wi(t) = 0, i = 1, . . . , N.

(2.10)

Proof: Let ϕ ∈ C1
0 (Rd × [0, T )). Substituting (2.9) into the weak formulation (2.7) and changing the

order of summation and integration yields:

−
N∑
i=0

wi(0)ϕ(xi(0), 0)−
N∑
i=0

T∫
0

wi(t) [ϕt(xi(t), t) + a(xi(t), t) · ∇ϕ(xi(t), t)] dt

+

N∑
i=0

T∫
0

wi(t)a0(xi(t), t)ϕ(xi(t), t) dt = 0.

(2.11)

We now add and subtract
N∑
i=0

∫ T

0
wi(t)

dxi(t)

dt
· ∇ϕ(xi(t), t) dt in the last equation, use the fact that

the time derivative of ϕ along the curve xi = xi(t) is

dϕ(xi(t), t)

dt
= ϕt(xi(t), t) +

dxi(t)

dt
· ∇ϕ(xi(t), t),
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and rewrite equation (2.11) as follows:

−
N∑
i=0

wi(0)ϕ(xi(0), 0)−
N∑
i=0

T∫
0

wi(t)
dϕ(xi(t), t)

dt
dt

+

N∑
i=0

T∫
0

wi(t)

[
dxi(t)

dt
− a(xi(t), t)

]
· ∇ϕ(xi(t), t) dt+

N∑
i=0

T∫
0

wi(t)a0(xi(t), t)ϕ(xi(t), t) dt = 0.

(2.12)
Integrating by parts the second term in the first row in (2.12) and rearranging other terms, we finally
obtain:

N∑
i=0

T∫
0

wi(t)

[
dxi(t)

dt
− u(xi(t), t)

]
· ∇ϕ(xi(t), t) dt

+
N∑
i=0

T∫
0

[
dwi(t)

dt
+ wi(t)a0(xi(t), t)

]
ϕ(xi(t), t) dt = 0.

(2.13)

Since the functions xi(t) and wi(t) satisfy the system (2.10), the last equation holds for any ϕ implying
that uN defined by (2.9), (2.10) is a weak solution of (2.8), (2.3). This completes the proof. �

In the general case of S 6= 0, a particle solution of (2.1), (2.2) is obtained by solving the initial-value
problem (2.1), (2.3), whose solution uN (x, t) is still given by (2.9), but the locations and weights of
the particles satisfy a different system of ODEs (compare with the system (2.10)):

dxi(t)

dt
= a(xi(t), t),

dwi(t)

dt
+ a0(xi(t), t)wi(t) = βi(t),

(2.14)

where βi reflects the contribution of the source term S (see, e.g., [32,103]). To evaluate βi, we consider
a particle approximation of S, given by

S(x, t) ≈ SN (x, t) :=
N∑
i=1

βi(t) δ(x− xi(t)),

where

βi(t) =

∫
Ωi(t)

S(x, t) dx ≈ S(xi(t), t) |Ωi(t)|. (2.15)

Here, Ωi(t) is the subdomain of Ω that includes the ith particle and should satisfy the following two
properties for all t (not only at t = 0):

Ω =
N⋃
i=1

Ωi(t), Ωi(t)
⋂

Ωl(t) = ∅, ∀i 6= l, wi(t) ≈
∫

Ωi(t)

u(x, t) dx.

These requirements are hard to guarantee, but noticing that in order to use (2.15) only the size of
Ωi(t) is needed, one may apply the Liouville theorem (see, e.g., [3, 31]) to obtain the following ODE

d

dt
|Ωi(t)| = ∇x · a(xi(t), t) |Ωi(t)|, (2.16)

which has to be solved together with the system (2.14) to complete the construction of the particle
method.
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Remark 2.1 We note that in the case when the velocity vector field u is divergence-free, that is,
when ∇x · a ≡ 0, the size of the ith subdomain does not change, that is, |Ωi(t)| ≡ |Ωi| ∀t. Otherwise,
|Ωi(t)| changes in time and the coefficients (weights) βi in (2.15) would depend on t even when the
source S = S(x) only.

Remark 2.2 It should be observed that in practice, except in very special cases, the functions xi(t)
and wi(t) have to be determined numerically. In fact, the ODE system (2.10) can be solved by means
of a classical numerical method using one’s favorite ODE solver.

The above discussion leads to the following algorithm for obtaining a particle solution of (2.1), (2.2):

• Divide the computational domain Ω into a set of N nonoverlapping subdomains Ωi:

N⋃
i=1

Ωi = Ω, Ωi
⋂

Ωl = ∅, ∀i 6= l.

• Replace the the initial datum u0 in (2.2) by its particle approximation uN0 , (2.3),

for some set (xi(0), wi(0)) of points xi(0) in the computational domain Ω and weights

wi(0) computed according to (2.5).

• If S ≡ 0 in the right-hand side of equation (2.1), consider the system (2.8), (2.3)

and obtain its particle solution (2.9) by numerically integrating the system of ODEs

(2.10).

• If S 6= 0, replace S(x, 0) with its particle approximation to compute the coefficients

βi(0) according to (2.15) with t = 0. Consider the system (2.1), (2.3) and obtain

its particle solution (2.9) by numerically solving the system of ODEs (2.14)-(2.16).

Finally, the basic convergence result for particle methods is stated in the following theorem.

Theorem 2.1 Consider equation (2.8) with the coefficients ai ∈ L∞(0, T ;W 1,∞(Ω)), i = 1, . . . , d and
a0 ∈ L∞(Ω × (0, T )). Let the initial condition u0 ∈ C0(Ω) and its particle approximation is given by
(2.3). Then, for all ϕ ∈ C0

0 (Ω)

lim
N→∞

∫
Ω

(u(x, t)− uN (x, t))ϕ(x) dx = 0 uniformly in t ∈ [0, T ].

Theorem 2.1 guarantees that for sufficiently regular coefficients a, a0 and initial datum w0, the
particle solution will converge to the exact one in the sense of measures. However, the above result is
of little use when one is interested in obtaining point values of the computed solution. In this respect,
it is more useful to associate the particle solution uN (·, t) with a continuous function uNε (·, t), which
approximates the solution u(·, t) in a more classical sense. In a next section we provide an example of
how such an approximation can be constructed.

2.3 Particle Function Approximations

The regularization of particle solution is usually performed by taking a convolution product with a
mollification kernel (or, so-called, cut-off function), ζε(x), that after a proper scaling takes into account
the initial tightness of the particle discretization, namely,

u(x, t) ≈ uε(x, t) := (u(·, t) ∗ ζε(·))(x) =

∫
u(y, t)ζε(x− y) dy, (2.17)
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where ζε ∈ C0(Rd)
⋂
L1(Rd) satisfies the following properties

ζε(x) :=
1

εd
ζ
(x
ε

)
,

∫
Rd

ζ(x) dx = 1, (2.18)

and ε denotes a characteristic length of the kernel, see, e.g., [103]. The particle approximation of the
regularized solution is then defined as

u(x, t) ≈ uNε (x, t) := (uN (·, t) ∗ ζε(·))(x) =
N∑
i=1

wi(t)ζε(x− xi(t)). (2.19)

It is clear from the above discussion that the approximation of the computed solution by formula
(2.19) is one of the key ingredients of the particle method and hence, the performance of the method
depends on the quality of this smoothing procedure. The error introduced by the quadrature (2.19)
of the mollified approximation uNε for the function u can be divided into two parts:

u− uNε = (u− u ∗ ζε) + (u− uN ) ∗ ζε. (2.20)

The first term in equation (2.20) denotes the mollification error that can be controlled by appropriately
selecting the kernel properties. The second term denotes the quadrature error due to the approximation
of the integral in (2.17) on the particle location. The accuracy of the particle method will thus be
related to the moments of ζ that are being conserved, and we say that the kernel is of order k when:

∫
Rd

ζ(x) dx = 1,

∫
Rd

xαζ(x) dx = 0, for all multiindexes α such that 1 ≤ |α| ≤ k − 1,

∫
Rd

|x|k|ζ(x)| dx <∞.

(2.21)

Example 2.1 (Gaussian and Generalized Gaussian) A (generalized) Gaussian can be consid-
ered as an example of a cut-off function and is obtained by taking the inverse Fourier transform of the

function e−|ξ|
2l

, where l ∈ N and ξ ∈ Rd:

ζl(x) = Cl

∫
Rd

eix·ξ e−|ξ|
2l
dξ. (2.22)

Taking an appropriate normalizing coefficient Cl, one can ensure that the C∞-functions ζl, which
rapidly decay at ∞, satisfy the conditions (2.21) with k = 2l. Thus, these mollifiers are of order l. In
particular, when l = 1 we obtain the first-order Gaussian

ζ1(x) =
1

πd/2
e−|x|

2
.

When l = 2, (2.22) reduces to the second-order super-Gaussian, which in the one-dimensional (1-D)
case reads

ζ2(x) =
1√
π

(
3

2
− x2

)
e−x

2
.
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Example 2.2 (Compactly Supported Mollifiers) The simplest example of a compactly supported
1-D cut-off function is the quadratic B-spline:

ζ(x) =



3

4
− x2, |x| ≤ 1

2
,

1

2

(
3

2
− |x|

)2

,
1

2
≤ |x| ≤ 3

2
,

0, otherwise.

For this cut-off function k = 2, and thus it is only first-order accurate. An advantage of compactly
supported cut-off functions is that it is easy to implement the summation in (2.19) in a very efficient
way, which is one of the crucial points in practical implementation of particle methods. Higher order
compactly supported kernels can be obtained by ensuring that more moments are conserved and can
be found in, e.g., [40, 88,93].

There is an extensive discussion in the literature on the selection of a cut-off function and its
relation to the overall accuracy of particle methods, [5–7,30,40,66,68,101]. See also [1,32,49,50,67,75,
91,93,94,96,98,103]. Obviously, the accuracy of the particle method will depend both on the choice of
cut-off function (2.18) and on its width ε as it is given by the following theorem [103] (note that similar
error estimates can also be obtained for compactly supported cut-off functions, see, e.g., [57, 103]).

Theorem 2.2 Let (2.21) are satisfied for some integer k ≥ 1. Assume that both ζ and the coefficients
in (2.1) are sufficiently smooth, more precisely: ζ ∈ Wm,∞(Rd)

⋂
Wm,1(Rd) for some integer m > d

and a1, . . . , ad, a0 + ∇ · a ∈ L∞(0, T ;W l,∞(Rd)), where l = max(k,m). Then, if the initial datum
is also smooth (u0 ∈ W l,p(Rd)), then there exists a positive constant C = C(T ), such that for any
t ∈ [0, T ],

‖u− uNε ‖Lp(Rd) ≤ C
{
εk ‖u0‖k,p,Rd +

(
h

ε

)m
‖u0‖m,p,Rd

}
, (2.23)

where h > 0 is the size of nonoverlapping d-dimensional cubes covering Rd.

Accuracy. The two terms in the error estimate (2.23) may be balanced by choosing an appropriate
size of ε. Intuitively, it is clear that if the smoothing parameter ε is too small in comparison to the
minimal distance between particles, the approximate solution defined by (2.19) will vanish away from
the ε-neighborhood of the particles and is thus irrelevant. On the other hand, large values of ε will
generate unacceptable smoothing errors. Theoretically ε is chosen so that the smoothing error and the
discretization error are of the same order and it is common to take ε ∼

√
h, see, e.g., [20, 21, 67, 103].

It should be noted, however, that it is not clear what the optimal proportionality constant is. That
strongly depends on both the smoothness of the flow and the cut-off function and its value at the origin.
It has been also observed in various numerical experiments that the overall accuracy of the particle
method can deteriorate over long time integrations, see, e.g., the discussion in [7,65,67,75,96,98] and
in references therein.

Smooth vs. discontinuous solutions. The procedure for point values recovery described above
provides an optimal order of accuracy when the captured solution is sufficiently smooth. However,
when a and/or u in (2.1) are discontinuous, approximation (2.19) may be inaccurate and even unac-
ceptable, as it has been demonstrated in [18,20,22]. In order to overcome this difficulty, the convolution
procedure (2.19) can be, for instance, modified by taking kernels of locally varying width, whose size
was selected in a point-wise manner depending on the distance between the particles, [8, 20, 39, 74].
Another approach for recovering point values of the computed solution from its particle distribution is
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based on interpreting the particle data as integrals of the approximated solution over some nonover-
lapping domains around the particles, see, e.g., [18, 22]. Then, the averaged values of the numerical
solution can be obtained dividing the weights wi(t) by the volumes of the corresponding domains.
We also refer the reader to [41], where total variation diminishing (TVD) reconstruction formulae for
discontinuous solutions were proposed for particle methods in the context of nonlinear conservation
laws.

Efficiency. Besides the accuracy of particle methods, the computational speed is also important.
The most time-consuming aspect in particle simulations is accurately evaluating the long-range inter-
actions of particles that appear in the summation formula (2.19). The direct method of computing
values of the cut-off function requires O(N2) flops, where N is the total number of particles. There
is a number of fast summation algorithms known to reduce the computational cost of the particle
method to O(N logN). Example of such methods include particle-mesh techniques that account for
particles in close proximity in terms of grid spacing, see, e.g. [73] and references therein. There are
also mesh-free fast summation techniques that are based on the concept of multipole end Taylor ex-
pansions, see, e.g., [2, 4, 13, 63, 85]. These methods employ clustering of particles and use expansions
of the potentials around the cluster centers with a limited number of terms to calculate their far-field
influence onto other particles. These techniques rely on tree data structures to achieve computational
efficiency. The tree allows a spatial grouping of the particles, and the interactions of well-separated
particles is computed using their center of mass or multipole and Taylor expansions.

3 Remeshing for Particle Distortion

As evidenced by the foregoing discussion, the time evolution of particle positions is dictated by the
gradients of the flow field and, as the result, inter-particle distances constantly change. This self-
adaptation of particles to the local flow map comes at the expense of the regularity of their distri-
bution since particles may either spread away from each other or cluster in the regions of the large
velocity gradients or near discontinuities even if the velocity function a is a smooth function of its
arguments. This becomes a critical issue in preserving the accuracy of particle methods and their
efficient implementation.

While the lack of particles in certain areas may result in deterioration of the accuracy of the method
and poor resolution of the computed solution (appearance of artificial vacuum areas), local particle
accumulations may lead to an extremely low efficiency of the method making it almost impractical.
The latter is related to the fact that the time step of numerical ODE solvers for (2.10) (or (2.14))
depends on the distance between the particles as the stability condition imposes that no characteristic
curves or their trajectories should intersect in finite time. The latter leads to a time-step constraint
of the type

∆t ≤ C‖∇a‖−1
∞ , (3.1)

where C depends on the specific numerical solver used. As the result, the success of various particle
methods relies not only upon accurate reconstruction procedures used to recover numerical solution
from its particle distribution but also upon accurate and efficient particle redistribution algorithms,
which will ensure that different regions in the computational domain are adequately resolved.

The redistribution of particles is in general performed through interpolation formulae and consists
of (occasional) re-initialization (remeshing) of particle locations onto a new regularized set of particles
and recalculating the particle weights on these new locations. The resulting problem of extracting
information on a regular grid from a set of scattered points has a long history and we refer the reader to
an extensive list of redistribution algorithms, which are based on various techniques ranging from global
rezoning using fixed, one-sided and variable size kernels, see, e.g., [7, 40, 44, 65, 74, 93, 96, 98, 100, 108]
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and particle-mesh methods, see, e.g., [9,10,14,37,37,38,40,41,44,45,76,80,88,97,100,102,110,111] to
multilevel adaptive particle methods, see, e.g., [8, 75] and references therein.

3.1 Particle Weights Redistribution

For completeness of the presentation, we provide here several examples that illustrate basic, yet com-
monly used, global and local remeshing ideas. To this end, we denote by {xi}Ni=1 and {x̃j}Jj=1 re-
spectively the old (distorted) and the new (regular) set of particles and we denote by wi and w̃j the
corresponding particle weights at the old and new locations at certain time t. For the sake of sim-
plicity, we also assume that the new particles, x̃j(t), lie at the centers of the nonoverlapping cells,

{Cj}Ji=1,
J⋃
j=1

Cj = Ω, Cj
⋂
Cl = ∅, ∀j 6= l, of size h that cover the computational domain Ω.

Convolution. One of the simplest and natural ways of computing new particle weights w̃j is to re-
initialize particle approximation (2.19) at the new nodes by just replacing x by x̃j(t) in the formula,
that is,

uNε (x̃j(t), t) =
N∑
i=1

wi(t)ζε(x̃j(t)− xi(t)), j = 1, . . . , J, (3.2)

see, e.g., [7, 20,24,25,40,74,93,96]. Using the relation

w̃j(t) =

∫
Cj

u(x, t) dx, (3.3)

the new weights can be recomputed by, say, the midpoint rule as w̃j(t
∗) = huNε (x̃j(t), t), ∀j = 1, . . . , J ,

and then the particle method is restarted.

Interpolation. Another widespread redistribution procedure is based on a classical interpolation
rule:

w̃j(t) =

N∑
i=1

wi(t) Φ

(
|x̃j(t)− xi(t)|

h

)
, j = 1, . . . , J, (3.4)

where Φ is an interpolation kernel whose properties determine the type and the quality of the redis-
tribution procedure and is typically designed to conserve a certain number of moments of the particle
distribution, see, e.g., [20,21,23,40,73,93,99,107]. This technique (unlike the previously described con-
volution approach) is in particularly appealing in applications, where, conservation of total amount of
u may be crucial for designing a good numerical method. In the context of redistribution of particles,
the conservation requirement can be stated as

J∑
j=1

w̃j(t) =
N∑
i=1

wi(t). (3.5)

There are many choices for Φ(r) that ensure (3.5) and we consult here [99] to bring two particular
examples: a first-order:

Φ(r) =


1

8

(
5− 2r −

√
−7 + 12r − 4r2

)
, if |r| < 1,

1

8

(
3− 2r −

√
1 + 4r − 4r2

)
, if 1 < |r| < 2,

0, otherwise
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and a second-order kernel:

Φ(r) =



φ(r), |r| < 1,

1

6
r3 − 7

8
r2 +

7

12
r +

21

16
− 3

2
φ(r − 1), 1 < |r| < 2,

− 1

12
r3 +

3

4
r2 − 23

12
r +

9

8
+

1

2
φ(r − 2), 2 < |r| < 3,

0, otherwise,

with

φ(r) =
1

12
r3 − 11

56
r2 − 11

42
r +

61

112
+

1

336

√
3(−112r6 + 336r5 + 500r4 − 1560r3 − 748r2 + 1584r + 243).

Remark 3.1 Both the convolution and redistribution techniques described above are global (all par-
ticle locations and weights are changed) and are not limited to uniform auxiliary grids and allow to
obtain point values of the computed particle approximation at any prescribed set of points. These
methods would, in general, work perfectly fine in smooth regions, yet may smear out discontinuities
that may appear in the solution or develop oscillations near nonsmooth fronts.

Remark 3.2 The time scale on which remeshing is done is mostly empirical. It is clearly correlated
to the strain rate (velocity gradient) of the flow and constrained by (3.1). A simple rule that proved
to be efficient in various calculations is to remesh every few time steps or even at the end of every
time step. It should be observed, however, that if a redistribution procedure is applied too often,
the overall resolution of the computed solution may deteriorate. Therefore, one has to come up with
an (ad-hoc) strategy on when to redistribute particles, for instance, one may apply the redistribution
procedure either when the smallest/largest distance between the particles becomes smaller/larger than
a prescribed critical value. Additional strategies can be found in, e.g., [7, 20, 21, 23–25, 40, 41, 88, 96]
and references therein.

3.2 Particle Merger — a Local Redistribution Technique

The major drawback of the aforementioned global redistribution techniques is numerical diffusion
brought to the particle method every time the locations of the particles are changed and the weights
are recalculated. This may be unavoidable in the case of spreading particles, but when the particles
cluster, another redistribution technique — merger of clustering particles — may be used to improve
the efficiency of the particle method, see, e.g., [23, 81, 109]. Particle merger techniques seem also to
work perfectly well for the models with point mass concentrations and strong singularity formations
(δ-functions along the surface as well as at separate points) as it was demonstrated in [23], where
a sticky particle method was introduced in the context of the Euler equations of pressureless gas
dynamics, [11, 112].

The simplest particle merger algorithm can be described as follows, [23]. When at a certain time t,
the distance |xi(t)−xj(t)| is smaller then a prescribed (ad-hoc) parameter for some i and j, then the
ith and jth particles are merged into a new partcle located, say, at the center of mass of the replaced
particles, i.e.,

x̃ =
wi(t)xi(t) + wj(t)xj(t)

wi(t) + wj(t)

and carrying the weight
w̃ = wi(t) + wj(t).
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The cell occupied by the new particle is then set to be the union of Ωi(t) and Ωj(t):

|Ω̃| = |Ωi(t)|+ |Ωj(t)|.

It should be noted that this particle merging procedure also serves as an excellent discontinuities
detector — as long as the number of particles stays equal to the initial number of particles, the
solution can be assumed continuous, but after the merger occurs, we assume that a discontinuity has
been already formed. Moreover, by keeping a record of the location of particle, one may track the
discontinuity location as well. Obviously, in large time simulations, the overall accuracy of the method
may decrease due to particle mergers, since the overall number of particles decreases in time. In such
a case, one would need to periodically add new particles into the smooth parts of the solution.

4 Applications to Convection-Diffusion Equations

Even though the most natural application of the particle methods is pure transport equations, over
the years, the range of these methods has been extended. Many practical problems involve additional
terms, besides convection (e.g. collision terms or diffusion), and hence, a demand for particle meth-
ods, which are capable to treat diffusion, dispersion and general nonlinear terms was created. As a
consequence, the original particle method has been modified in a number of different ways and several
approaches have been suggested for approximating derivatives as the latter became a key aspect in
the development of particle methods.

The most widely used treatment of diffusion terms, the random vortex method, was introduced
in [30]. In this method, the diffusion is treated by adding a Wiener process to the motion of each
particle. This way the diffusion only affects the position of particles, xi(t), while the particle weights,
wi(t), remain constant in time. Numerous works followed this pioneering paper (see, e.g., [1, 5–7, 62,
64, 66, 68, 83, 87, 96]). Properties of the random vortex method have been also extensively studied in
the literature. For a comprehensive list we refer to [40,101].

Deterministic particle approximations of the derivative operators can be constructed, for instance,
through the integral approximations. This can be easily achieved by taking the derivatives in equation
(2.19) as convolution and derivative operators commute in unbounded or periodic domains. These ap-
proximations can be cast in a conservative formulation and have been implemented in various versions
of particle methods (like, e.g., SPH [94, 95]). An alternative formulation involves the development of
integral operators that are equivalent to differential operators. We review here both approaches in the
context of convection-diffusion while leaving the discussion of other particle approximations out of the
scope of this paper.

4.1 Particle Methods for Convection-Diffusion Equations

We consider the following convection-diffusion equation:

ut + ∇x · (au) = ν∆u, ν > 0, (4.1)

which is studied subject to the initial condition (2.2) and explore two deterministic methods for treating
the diffusion terms in particle schemes.

4.1.1 Weighted Particle Method

In the so-called weighted particle method proposed in [49] (see also [42, 91]), the convective part of
the equation is modeled by the convection of particles, while the diffusion part is taken into account
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by changing the weights of the particles. This deterministic particle method is then based on the
following integro-differential approximation of the convection-diffusion equation (4.1):

uσt + ∇x · (auσ) = ν∆σuσ, (4.2)

where

∆σuσ :=
1

σ2

∫
Rd

ησ(x− y) (u(y)− u(x)) dy, (4.3)

and the function

ησ(x) =
1

σd
η
(x
σ

)
,

where η ∈ L1(Rd) is an even function, that is, η(−x) = η(x) for all x ∈ Rd.
The main idea of the weighted particle method is to apply the particle method to equation (4.2)

(instead of the original equation (4.1)) and to treat the modified viscosity ν∆σuσ as a source term.
Substituting the particle expansion (2.9) into a weak formulation of (4.3), leads to the following system
of ODEs for the particle locations and their weights:

dxi(t)

dt
= a(xi(t), t),

dwi(t)

dt
= βi(t), i = 1, . . . , N,

where

βi(t) =
ν

σ2

N∑
j=1

ησ(xi(t)− xj(t)) {wj(t)|Ωi(t)| − wi(t)|Ωj(t)|} ,

and |Ωj(t)| is still given by (2.16).
Convergence properties of the weighted particle method have been investigated in [49], where the

convergence of the solution of problem (4.2) towards the solution of (4.1) has been proven and the
stability and convergence results for the weighted particle method in L∞ have been established.

Remark 4.1 The weighted particle method has been applied to first-order systems in [51,89,90] and
to the systems of gas dynamics in [60].

Remark 4.2 Starting from this formulation, a general deterministic integral representation for deriva-
tives of arbitrary order was presented in [53].

Remark 4.3 A different technique in which particle methods were used for approximating solutions of
the heat equation and related models (such as the Fokker-Planck equation, a Boltzmann-like equation
– the Kac equation and Navier-Stokes equations), was introduced in [104, 105]. In these works, the
diffusion of the particles was described as a deterministic process in terms of a mean motion with a
speed equal to the osmotic velocity associated with the diffusion process. In a following work, [106], the
method was shown to be successful for approximating solutions to the 2-D Navier-Stokes equation in
an unbounded domain. In this setup, the particles were convected according to the velocity field while
their weights evolved according to the diffusion term in the vorticity formulation of the Navier-Stokes
equations.

We also refer to [59] where a different way to discretize viscous terms of the Navier-Stokes equations
was suggested. The idea was to approximate the Laplacian of the vorticity by the explicit differentia-
tion of the cut-off function. Another approach, see for example [34, 52, 53], is based on discretization
of an integro-differential equation in which an integral operator approximates the diffusion operator.
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4.1.2 Diffusion-Velocity Particle Method

Another deterministic approach for approximating solutions of the parabolic equations with particle
methods was introduced in [50]. Their so-called diffusion-velocity method is based on defining the
convective field associated with the heat operator which then allowed the particles to convect in a
standard way. To this end, equation (4.1) is rewritten as a purely transport equation:

ut + ∇x · (apu) = 0, where ap = a− ν∇xu

u
. (4.4)

Here, ap depends on u and ∇xu, therefore, it can not be considered as a given function. Moreover,
since the product of δ-functions is not well defined, the standard particle method has to be modified.
This can be done by defining a “smoothed” velocity

aζ(u) = a− ν u ∗∇xζε
u ∗ ζε

, (4.5)

where ζε is a cut-off function defined in (2.18). Equation (4.4) is then replaced by the following
transport equation

ut + ∇x(aζ(u)u) = 0, (4.6)

which is called the diffusion-velocity transport equation. The resulting diffusion-velocity particle
method is obtained by considering a particle approximation as a distribution of the form (2.19), where
xi(t) and wi(t) are the solutions to

dxi
dt

= aζ(u
N
ε (xi(t), t)) = a(xi(t), t)− ν

N∑
j=1

wj∇xζε(xi(t)− xj(t))

N∑
j=1

wjζε(xi(t)− xj(t))

,

dwi(t)

dt
= 0,

i = 1, . . . , N. (4.7)

Notice that in this method, the computed solution uNε should be recovered from its particle distribu-
tions at every time step during the time integration (4.7) (unlike for linear transport equations, where
the solution is recovered only at the final time).

The convergence properties of the diffusion-velocity particle method were investigated, e.g., in
[78, 79], where short time existence and uniqueness of solutions for the resulting diffusion-velocity
transport equation were proved. Convergence results for a porous-media equation were also obtained
in [86].
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