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Introduction

This thesis is concerned with the construction of implicit high-order finite-difference numer-
ical schemes, for hyperbolic initial boundary value problems (IBVPs). Examples of compu-
tational problems in which low order finite difference methods (second order or less) are not
accurate enough include acoustic, the propagation and scattering of electromagnetic waves
and fluid dynamics. The advantage of high-order finite difference methods is two-fold: they
allow either to increase the accuracy while keeping number of mesh points fixed or reduce
the computational cost by decreasing the grid dimension while preserving the accuracy, see
[17], [29].

However, in practical computing the schemes most widely used nowadays are still of the
first or second order of accuracy. The fact that high-order methods are not used routinely
is due to the fact that these schemes demand a more complex treatment of the statement
of the “physical” and numerical boundary conditions. To retain the formal accuracy of a
high-order scheme, boundary closures must be accomplished with accuracy at most one order
less than the interior scheme [9], [10]. On a Cartesian mesh, it is always possible to derive
non-symmetrical boundary operators that fulfill the boundary conditions and maintain the
overall accuracy of the scheme. The difficulty is to derive high accurate and stable operators.
In some cases high-order interior schemes have been used in combination with lower-order
boundary conditions, as no high-order stable boundary formulation were available (see for
example [22]). In so doing, the overall order of accuracy of the scheme can exceed the order
of accuracy of the boundary conditions by no more than one. This makes it somewhat hard
to justify the additional computation expenses that are associated with the use of high-order
methods.

Studying the numerical stability of a fully discrete approximation for a linear hyperbolic
partial differential equation is a difficult task even in one space dimension. Using the Laplace
transform technique, Godunov and Ryabenkii [8] obtained necessary conditions for stability,
analogous to the Von Neumann necessary condition for pure initial value problem. Kreiss
established the sufficient condition for stability [15] and developed the complete stability

theory for dissipative schemes [16]. His results, including some implicit and non-dissipative



methods were expanded by Osher [27], who derived Kreiss’ sufficient conditions for stability
as a corollary to a more general result. Gustafsson, Kreiss and Sundstrém [12] presented a
general stability theory, for hyperbolic IBVPs, based on normal mode analysis, for the fully
discrete case. According to their theory (known as G-K-S stability theory), in order to ensure
stability of the finite domain problem it is sufficient to show that the inner scheme is Cauchy
stable on (—o0,0) , and that each of the two semi-line problems is stable using the normal
mode analysis. For each semi-line problem, a necessary and sufficient condition for stability
of the IBVP is that there is no eigensolution. Later Strikwerda generalized this theory to
the semi-discrete case [34]. He showed that by using method of line approach in which
hyperbolic systems are discretized in space but the time is left continuous, the necessary
and sufficient conditions for stability are analogous to those obtained for finite-difference
equations by Gustafsson, Kreiss and Sundstrom in the fully discrete case. The stability for
the fully discrete approximation then follows, under mild assumptions (see Kreiss and Wu
[20] or Levy and Tadmor [23]), from the stability for the semi-discrete approximation, if
Runge-Kutta or other multi step time marching are used. Examples of several high-order
schemes that are G-K-S stable can be found in works by Gary [7] and Sjogreen [30]. In
these schemes, one-sided difference operators at the points close to the boundary are used

to approximate the space derivatives of the differential equation.

An important concept in the analysis is the notion of strong stability. An approxima-
tion is strongly stable if the solution, including the values at the boundary points, can be
estimated and bounded in terms of all data in the problem: the forcing function, initial
data and boundary data. Stability analysis based on the Laplace transform method leads
to strong stability if the Kreiss condition is satisfied as shown in [11]. In this book, there
is also a complete analysis of a semi-discrete explicit fourth-order approximation based on
the standard five-point scheme, which satisfies the Kreiss condition with various boundary
conditions. This scheme was later generalized to general order of accuracy 2r by Strand,
see [32], [33]. Stability analysis of an implicit difference operator for the IBVP was presented

in [13], where Gustafsson and Olsson proved strong stability for a fourth-order scheme.

Another type of stability is strict stability, which means that the energy dissipation
introduced by the boundaries is essentially preserved by the numerical scheme. In the case
of semi-discrete approximations, strict stability implies that for a fixed mesh size h , all
eigenvalues of the coefficient matrix of the correspondent system of ordinary differential
equations have non-positive real part. For calculations over long time intervals, strict stability
is especially important because it prevents exponential growth in time of the error for a fixed

mesh size h.

In [24], [33] strictly stable high-order explicit finite difference approximations for IBVPs,



which satisfy an energy estimate, are computed based on the work by Kreiss and Scherer [28],
[18]. In these schemes, the growth rates of the analytic and numerical solution are identical.
Strict stability is obtained by constructing discrete operators that satisfy summation by

parts formula, which imitates the integration by parts formula in the continuous case.

A series of compact high-order strictly stable as well as G-K-S stable schemes was con-
structed by Carpenter, Gottlieb and Abarbanel [4]. Compact implicit difference schemes are
built by using an approximation 88_1’ — P71Q , where P and Q are non-diagonal difference
operators. In spite of additional work required for solving the banded systems, the advan-
tage of these schemes in comparison with explicit difference schemes is that they have a
much smaller “error constant”. The stability characteristic of different compact fourth- and
sixth-order spatial operators were appraised in this work, using the theory of Gustafsson,
Kreiss and Sundstrom (G-K-S theory) for the semi-discrete IBVP. It was shown that many
of high-order scalar schemes, which are G-K-S stable, were not strictly stable. Moreover,
it was recently found that many high-order schemes, which are strictly stable in the scalar

case, exhibit time divergence when they are applied to systems of equations. The underlying

reason for the error growth in time is improper imposition of numerical boundary conditions.

In [19], Kreiss and Scherer presented a way to impose analytic boundary conditions by
adding a projection to the semi-discrete system. They derived stability results for various ex-
plicit difference operators, approximating hyperbolic partial differential equations in several
space dimensions, which satisfy a summation by parts rule. Generalizing this technique, Ol-
son [25], [26] proved strict stability for a larger class of finite difference operators than those
considered in [19]. Strand [33] obtained the stability results for explicit high-order finite
difference approximations using the G-K-S stability theory for the semi-discrete IBVPs. To
close the scheme near the boundary he obtained extra boundary conditions by extrapolating
the outgoing characteristic variables and by differentiating the analytic boundary conditions
and using the partial differential equation for the incoming characteristic variables. How-
ever, in some cases the approximation with such boundary conditions had eigenvalues with
positive real part and and in order to assure the time stability of the scheme the numerical
boundary conditions were modified by adding dissipative terms into the inflow part of the

boundary conditions.

For compact high-order difference schemes for one-dimensional hyperbolic systems Car-
penter, Gottlieb and Abarbanel [5] introduced a new procedure for imposing boundary con-
ditions so as to ensure strict stability, when using difference operators satisfying a generalized
summation by parts property. This methodology is based on solving the differential equation
everywhere, including the boundary points. In so doing, the semi-discrete scheme is modi-

fied by adding a so called Simultaneous Approximation Term, SAT for short, that takes the



boundary information into account and does not destroy the overall accuracy of the scheme.
Using this technique a time stable as well as G-K-S stable fourth-order implicit scheme,
which is tridiagonal both on the implicit and on the explicit side, was constructed. This
procedure is reminiscent of the usage of penalty terms.

Before proceeding further to the description of our own methodology let us, give here a
brief account of the SAT method presented in work by Carpenter, Gottlieb and Abarbanel
[5].

Consider the scalar hyperbolic equation

Ju Ju

gu N\ 0<z<1, t>0,A>0
8t+ Oz ’ == Z%ha=>5

with the following boundary and initial conditions:

u(0,1) = g¢g(t), >0,
u(z,0) = f(x) 0<z<I1.

For a compact spatial operator, the approximation to the first derivative can be written as

ov
0.0.1 P—=Qv
0.0.1) g
where @ the vector of the unknowns (v, ...,vy)T corresponding to the grid points @q,..., 2y,

and P and () are matrices, which satisfy the conditions:

1. Equation (0.0.1) is accurate to order m.

2. The matrix P has a simple structure, which is easily invertible.

These two assumptions are common to any useful compact scheme. In order to construct
difference approximations for 88_1’ , which satisfy a generalized summation by parts formula,

additional conditions have to be satisfied: there exists a matrix H such that

o the matrix W = HP is a symmetric positive definite matrix;

e the matrix V = HQ is almost skew-symmetric, i.e. (V +V7) /2 has only two ele-

ments: voo and vyy (Voo < 0 < vyy) .

Applying the difference operator D, = P7'(Q) on the differential equation gives a semi-
discrete ODE system:
dv

0.2 P— = -\Qv
(0.02) = Qi



with boundary conditions not yet incorporated. However, as was mentioned above, the im-
position the boundary conditions may destroy the summation by parts property, resulting in
an unwanted exponential growth. Unlike the standard procedure of satisfying the boundary
conditions directly by setting vy = ¢(¢) , the SAT method involves an indirect statement
of the boundary conditions. It is accomplished by adding a term to the derivative operator,
which is proportional to the difference between the discrete value vg and the boundary

term ¢(t), and rewriting the approximation (0.0.2) as follows:

dv . o
(0.0.3) PE = —AQT + A\tvooSo(vo — g(t))
where
(0.0.4) So=H™"(1,0,...,0)".

It should be noted again, that this equation is solved at all points including boundary points.
It was shown in [5] that the SAT method of imposing the analytic boundary conditions did
not degrade the overall accuracy of the original spatial approximation. It was also proved
that if the spatial operator satisfied a generalized summation by parts energy norm, and the
SAT boundary procedure was used then the resulting numerical discretization was strictly
stable both for scalar case and for one-dimensional hyperbolic systems.

In the present work the method proposed by Carpenter, Gottlieb and Abarbanel in
[5], for constructing time stable high-order finite-difference approximations, for hyperbolic
initial boundary value problems (IBVPs), is generalized. Fourth- and sixth-order compact
implicit finite-difference schemes are constructed, analyzed, and numerical experiments are
performed.

This paper is organized in two parts: Part I discusses numerical methods for solving one-
and two-dimensional problems in the scalar case and Part II discusses numerical methods
for solving one- and two dimensional hyperbolic systems.

In Part I, Chapter 1 starts with a consideration of the scalar hyperbolic IBVP. Approxi-

)

mating = — D, = P7'(Q) , we change some conditions which the matrices P and @ must

satisfy. On the one hand, we assume as before that:
1. The approximation is m-order accurate;

2. The matrix P has a simple structure, which is easily invertible.

On the other hand, we assume additionally that:

3. The matrix P is a symmetric positive definite matrix;



4. The matrix @) is almost skew-symmetric, except in (n+ 1) x (n + 1) corners.

These properties of the matrices P and () enable us to choose the matrix H as the identity
matrix. This, in turns, (i) simplifies the construction of the approximation of desirable
accuracy from the technical point of view, and (ii) allows us to extend this method to the
solution of two-dimensional problems. The boundary conditions are imposed using the SAT
boundary procedure with the extra SAT term modified accordingly. Most of the effort in
constructing the scheme went into insuring that all eigenvalues of the coefficient matrix of
the corresponding ODE system have a negative real part. We shall prove that the norm of
the solution error vector, ||¢|| , is bounded by a function of the time ¢, mesh size h, and the
exact solution u, i.e. ||¢|| < Kh™t, K = K(u) , indicating the convergence of the scheme
for all ¢ > 0 (and at most a linear temporal growth of the error). Numerical experiments
performed in this chapter using fourth- and sixth-order schemes show a good agreement with
theoretical results. The convergence rate predicted by the theory of Gustafsson [9], [10] is
verified by doing a grid refinement study. The time stability of the scheme is illustrated by
both computing the error for long time integrations and determining the eigenvalue spectrum
for the semi-discrete system. The actual numerical solution had a temporal error bounded
by a constant rather by a linear growth.

In Chapter 2, a numerical approximation for solving two-dimensional hyperbolic scalar
problems in a rectangular domain is built by analogy with the one-dimensional case. Using
the same differentiation matrices as in the one-dimensional case once in the z-direction and
once more in the y-direction, we approximate 88_1’ + aa_y by D, + D, . In order to ensure
time stability of the scheme it is sufficient to show that all eigenvalues of the coefficient
matrix have a negative real part. From the fact that each of the matrices has eigenvalues
with a negative real part does not follow that the sum of these matrices will preserve this
virtue. This implies that the matrix D, + D, should be checked for stability. This is
done by proving that Re (u,(D, + Dy)u), <0 Vu € RN in some norm H.' Numerical
experiments are performed on a hyperbolic model problem in two space-dimensions. The
fourth- and sixth-order schemes are examined with respect to convergence rate and long time
integrations. The results of numerical simulations agree well with the theoretical results.

Part II is devoted to solving one- and two-dimensional hyperbolic systems. In Chapter
3, the methodology presented in Chapter 1 is adopted to accommodate partially reflecting

boundary conditions and to solve the one-dimensional hyperbolic system. As was mentioned

TOf course, if Dz, Dy were negative definite matrices, we would not have paid special attention to
the sum of these matrices. Solving IBVPs on irregular domain, Abarbanel and Ditkowski [1] constructed a
differentiation matrix whose symmetric part is negative definite. Technically, it was a very difficult task as, in
particular, confirmed by the fact that they succeeded to construct only second order explicit approximation
for 3/0x and fourth-order explicit approximation for §%/dx2.



above, the time stability in the scalar case does not imply the time stability for systems.
Despite the fact that for hyperbolic systems we succeeded in proving the time stability only
for some special cases, numerical examples show that the method is effective and provide
time stability even when a theoretical foundation is lacking. Asin the scalar case, the fourth-
and sixth-order schemes are used for solving model problems. The formal accuracy of each
scheme is determined by doing a grid refinement study. The numerical results show that the
convergence rate of the schemes used here agrees well with the theory. In order to investigate
numerically if the schemes are time stable we compute the error for long time integrations,
and additionally determine the eigenvalue spectrum of the semi-discrete system. In all cases,
no eigenvalues with positive real part are found which indicate time stability of the schemes.

As an application where high-order accurate approximations are needed we consider in
Chapter 4 the two-dimensional Maxwell’s equations in free space. The SAT method used
for the diagonalized system in 1-D is adopted to solve the two-dimensional system, which
can not be digonalized. The problem is solved using both the fourth- and the sixth-order
schemes. Numerical results are compared with those obtained by E. Turkel and A. Yefet in
[35], [36]. They solved the same problem by using the Ty(2,4) scheme, which is a fourth-order
compact implicit difference scheme on staggered meshes.

In Appendixes A and B, a way to construct sixth- and fourth-order compact implicit
difference schemes, which satisfy all above mentioned conditions, is described in detail. It
should be observed here that the construction of such schemes is technically a very difficult

task, especially in the case of the sixth-order scheme.



Part 1
The Scalar Case






Chapter 1

1-D Hyperbolic Equations

1.1 Description of the method and proof of the main
theorem

We consider the scalar hyperbolic equation

ou ou
1.1.1 A = <z<l1 >
( ) 8t+ o 0, 0<az<I, > ()

with initial conditions prescribed at ¢ = 0,

(1.1.2) u(z,0) = f(x) 0<a<I1.
For positive A we have the boundary condition:

(1.1.3) u(0,1) = g(1), t>0.

We want to solve the above problem by finite difference approximations. In this work, we
will deal with compact schemes for the discretization of the spatial operator 88_1" We therefore

introduce the mesh width A, and divide the interval [0, 1] into subintervals of length h. We
use with 7 =0,..., N and N = 1/h the notation

(1.1.4) vj=jh,  u(t) = u(x;,t),

where w;(t) is the projection of the exact solution u(x,?) unto the grid. We denote by i the
vector (ug(t),...,uy(t))T and by @ the numerical approximation to the projection .

The implicit approximation for the first derivative can be written as

(1.1.5) P _ op
dx
where P = (p;;) and @ = (¢;) are (N + 1)x (N + 1) Teoplitz matrices with small

perturbations at the corners due to the boundary conditions (a detailed discussion regarding

10



the construction of these matrices is given in Appendixes A and B). Using (1.1.5), we may

write the following approximation for (1.1.1)

dv
1.1. P— = —)\Q7
( 6) dt v

In order to satisfy the analytic boundary conditions, (1.1.3), we use the SAT methodology
introduced in [5] that involves an indirect treatment of the boundary conditions. Using this
method we do not satisfy the boundary conditions directly by imposing v = ¢(#), but add to
the derivative operator a term, which is proportional to the difference between the discrete
value vg and the boundary term ¢(#) and solve a derivative equation everywhere, including

the boundary points. This approach will be elaborated later.

Throughout this work we make three main assumptions:

1. Equation (1.1.5) is accurate to order m, i.e

or .
(1.1.7) Pe= = Qi+ PT.

where T is the truncation error due to the numerical differentiation and

(1.1.8) 1T = O(h™)

2. The matrix P is a symmetric positive definite matrix with simple structure which is easily

invertible and there exist positive constants ¢q, ¢; independent of N such that

(1.1.9) ol i | < (P, i0) < ] 1 |

where || i | = (i, ), and ¢ is the largest eigenvalue of P, i.e. ¢; =|| P || because P is
positive definite symmetric matrix.

3. The matrix @ is almost skew-symmetric except in (n 4+ 1) x (n + 1) corners. It means

11



that

Qoo -+ Qon— qQon 0
Qon—1 --+ Up—in—1 Gn-1n 0
Qon -+ Qnn— AQnn 0
0 0 0 0
Q+Q7
2
0 0 0 0
0 qu qQi+1 .- din
0 qusr digti41 - Qigin
0 qin Qi+iv -+ Qwnnw

(1.1.10)

Actually we shall show in Appendixes A and B that the matrix @ = (¢;;) can be constructed

in such a way that n = 1, that is

Qoo 91 0

qoi 9i1 0 O

0 0 0

T
(1.1.11) Cre _
2

0 0 0

O 0 gnv_1nv_1 gn-1n
0 drv_in qnrn

12



1
Goo 5(%1 + %0) 0
1
5(%1 + %0) 11 0 O
0 0 0
0 0 0
O 1
0 gdN-1N-1 5((]1\71\7_1 + QN—1N)
1
0 5((]1\71\7—1 + QN—1N) gnnN

We now rewrite the semi-discrete problem for ¢ in the following form:

i -
(1.1.12) Pd—: = —\Q¥ + \So(vo — ¢(1))
where
Tqoo
do1 + q10
(1.1.13) So = 0
0

Theorem 1.1.1 The approximation (1.1.12),(1.1.13) preserves the order of accuracy - m of
the spatial operator and is strictly stable under the following conditions on T and the corner

entries of the matriz () :

(1—=7)goo >0 g1 > 0,
(1.1.14)
QNNU?V + (QN—1N + qNN—l)uNuN—l + QN—1N—1UJQ\7_1 > 07 qu7 un_, € R.
Proof. Denote as before by @@ = (ug(t),...,uy(t))T, i.e the values of the true solution at

the grid points and by ¢ its numerical approximation . Combining the accuracy condition

13



found in assumption 1 , with equation (1.1.12) we may write

dii . .
(1.1.15) Pd—? = —\Qii + Mo (uo(t) — g(1)) + PT

Note that ug(t) — ¢(t) = u(0,1) — g(t) = 0. To get the equation for the solution error vector,
€(t) = u(t) — v(t), we subtract (1.1.12) from (1.1.15):

dé B} )
(1.1.16) Pd—j = —AQZ+ ASpeo + PT

where ¢y = vo — ¢(t) = vo — uo.

Taking the scalar product of € with (1.1.16) one gets:

1 d et -

We notice that (Q¢,€) = ((Q + QT)é/2,¢) and that means that

(Qe,6) = QOOG?) + (o1 + q10)€0€1 + 91163
(1-1-18) + qNN6]2\7 + (QN—1N + QNN—1)6N—16N + QN—lN—16]2\7_1

From (1.1.13) follows that

(1.1.19) (goéo, €) = 7'9006(2) + (qo1 + q10)€0€r
Using (1.1.18),(1.1.19) in (1.1.17) one gets:

d .
_d_(P67 g) — —)\(1 — T)qOoﬁg — )\Qllei

(1-1-20) —A |:qNN6]2\7 + (QN—1N + QNN—1)6N—16N + QN—1N—16?\7_1] + (Pf, g)

If we require (and achieve by construction) that

qNN6]2\7 + (QN—1N + QNN—1)6N—1 Ex + gnoivoa 612\7_1 >0

for all ey, ex_y, € R, then for (1 — 7)goo > 0 and ¢11 > 0, and define fl = 2f, the equation

14



(1.1.20) leads to the inequality

(1.1.21) ~(pe,&) < (PT, 9

dt

We now use the inequality
(1122) PTl, H PTl,Tl P6 6

to obtain

(1.1.23) 20\ [(PE8) < (PT. T

After integrating (1.1.23) and using (1.1.9) we get

B 1 /e =
(1.1.24) [l <5/ sup ITa(r)] 4

Co 0<r<t

which proves the convergence of the scheme for all + < oo (and at most a linear temporal

growth of the error)¥. The linear temporal bound on || €| is given by (1.1.24), shows that

the scheme is not only Lax stable but also strictly stable. O

Remarks.

1. The construction of the matrices P and () will be described in detail in Appendixes A

and B. We note that if we succeeded in constructing the matrices P and ) then we
know exactly the value of qoo, ¢11, Gn_in—1, Gn_in + Gun—1, Gux - This implies that
actually stability of the scheme (1.1.12), (1.1.13) depends only on 7. For example, for
our sixth-order implicit scheme with five-order boundary closure the matrices P, ()
were constructed in such a way that ¢oo = —%, 11 = é, In_in_1 = é, Gn_in+ Gun_y =

1 _ 1 .
3> Gvnv = 3 and therefore the expression

qNN6]2\7 + (QN—1N + QNN—1)6N—1 Ex + gnoivoa 612\7_1

1 1 1
2 + —€x_i€n + —¢?

1
= EGN 3 6 N-1 = (6N_1 —I_ GN)z —I_ 6612\7

S| =

iNote that the behavior of € with k depends on the smoothness of the solution. To maintain the order
of the approximation we need u(z,t) € C™, where m is the order of accuracy. If, for example, the initial

data contains only a first derivative this will degrade the behavior of || T [| with A.

15



is positive for all ey, ex_; € R and the scheme is strictly stable for 7 > 1, see (1.1.20).

. For negative A we have the boundary condition at = = 1:
(1.1.25) u(l,t) = g(1), t>0

In this case we will write the following semi-discrete approximation for v:
(1.1.26) P— = = XQU + ASy(vy —g(1))

where (P);; = (P)yoin—j, (Q)ij = —(Q)noin—j forall 0<id,j<N

(1.1.27) Sy = 0

—(go1 + ¢10)
—Tqoo

and

Because of the Teoplitz structure of matrices P and () it means that the matrices P

Q+Q7
2

Q+Q7
and 5

are almost identical to the matrices P and

. They differ only

in the corners which are transformed in such a way that the matrix P still satisfies the

conditions of assumption 2 with the same constants cg, ¢; and the matrix

Q+ Q"

is

2
of the form
- 1, -
qoo 5(%1 + ¢10) O
1 - -
5(901 + Gio) q11 0 O
0 0 0
Q+Q"
5 =
0 0 0
O ~ 1 -
0 gdN-1N-1 5((]1\71\7_1 + QN—1N)
1 . - -
0 5((]1\71\7—1 + QN—1N) gnnN

16




1
—q4nN _5((]1\7—11\7 + QNN—1)

1
_5((]1\7—11\7 + QNN—1) —qdN-1N-1 O

O 1
—q11 —5(%1 + ¢10)

1

—5(901 + ¢10) —4qoo

and we recall that (1—7)ge > 0, ¢, > 0 and the expression Goou? + (go1 + q10)uous +

E]vlluf = QNNU(Q) + (QN—1N + QNN—1)U0U1 + QNNU% is pOSitiV@ for all Ug, U1 € R.

. Sometimes it is useful to rewrite the approximation (1.1.12) in the following matrix

form

d% )
(1.1.28) Pd—: = —\Q7 — AS,g(t),

where Q and S are (N +1) x (N 4 1) matrices defined by

T oo 0 0
go1 +¢qio 0 ... 0
(1.1.29) Q=0Q -5, S =
0
0

and the vector Sy is defined by (1.1.13).

Note that all the boundary information is incorporated into the matrix Q and that
the time-stability of the numerical scheme (1.1.28) depends directly on the properties

of this matrix.

It should be also observed that if the inequalities (1.1.14) hold then the matrix Q is
positive definite, that is

(7.Q0) = (7. (Q+ Q") ¥) >0 VieR"

1
2

17



And it follows that real part of each eigenvalue of the matrix P~'Q is positive. One

can verify this by writing:
PlQ=P7i (PTEQPT) PR

which means that the matrices P~'Q and P_%QP_% are similar and therefore
have the same eigenvalues. And since P is a positive definite symmetric matrix (and

therefore also the matrices Pz and P~% are positive definite matrices), the matrix

P_%QP_% satisfies
(17, (P—%QP—%) 17) — (P—%J,Q (P—%ﬁ)) >0 VoeR".
The last inequality implies that the real part of each eigenvalue of P_%QP_% and

therefore of P~'Q is positive.

In the next section we show a graphical representation of this fact. Figure (1.5),
(1.6) show the eigenvalue spectrum of —P~'Q for fourth-order and sixth-order ap-
proximation respectively for various grids. All eigenvalues of these matrices ( N =

20,40, 60,80 ) are distinct and no eigenvalues with positive real part exist.

. In a similar fashion, if we define

0
0 r 0
. 0 . :
(1.1.30) Q=Q -5, S=1{ o 0 —(go1 + qu0) | > Sy = 0
—(go1 + ¢10)
0 ... 0 —Tqoo —T{qoo

we can rewrite the approximation (1.1.26) for A <0 as follows:

_di _ .
(1.1.31) Pd—: = Q7 — ASyg(1),

In this case it can be shown that the matrix 6 is negative definite and all eigenvalues

of the matrix ]5_16 have negative real part.
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1.2 Numerical results

In this section we consider the scalar model problem

(1.2.1) u(w,t) + ug(x,t) =0, 0<z<1, t>0
(1.2.2) u(z,0) = f(x), 0<az<1,

(1.2.3) u(0,t) = g(1), t>0

jam)

with f(z) =sinwz, ¢(t) = —sinwt.

The exact solution is
(1.2.4) u(x,t) = sinw(z — 1) 0<a2<1, t > 0.

In order to highlight the difference in the quality of results obtained using standard
and SAT-type boundary conditions, we solve the scalar model equation using both types of
boundary conditions.

To solve the model problem (1.2.1), (1.2.2), (1.2.3) we use two different difference oper-
ators: fourth-order compact and six-order compact (see Appendixes A and B for details).
Here the order of the difference operator refers to the order of the global accuracy that the
theory of Gustafsson [9], [10] predicts. There it is proved that in our case boundary condi-
tions of at least order m — 1 must be imposed to retain mth-order global accuracy. Therefore
we use a fourth-order difference operator which is of order three at the boundary and order
four in the interior, and a sixth-order difference operator of order five at the boundary and
order six in the interior. The standard fourth-order Runge-Kutta method is used for time
integration in the case of the fourth-order difference operator and a sixth-order Runge-Kutta
method (developed by Butcher [2], [3]) is used in case of the sixth-order difference opera-
tor. The time step is chosen small enough to ensure the local stability of the Runge-Kutta
method. In the case of conventional implementation of boundary conditions we overwrite
the value of the solution at the boundary point with the analytic boundary condition at the
end of each Runge-Kutta stage.

Conventional boundary conditions. Table (1.1) shows a grid convergence study for
both spatial discratizations. The absolute error log,o(L2) at a fixed time ¢ =T and the

convergence rate between two grids are plotted. The convergence rate is computed as

v — o™ ) (hl)
1.2.5 lo 21 /lo ,
( ) £10 (H U — vh2H2 / £10 hg
where u = (u(wg,t),u(xa,1),...,u(zy,t))" is the projection of the exact solution, v" is

the numerical solution with mesh width h, and || u —v"||, is the discrete L, norm of the

absolute error.
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We see in this table that for relative short time integration ( T'= 0.5 ) the convergence
rate of sixth-order scheme is approximately 6. The convergence rate of fourth-order scheme
asymptotes to the theoretical value of 4. For the schemes to be strictly stable no eigenval-
ues with positive real part are allowed to exist. Therefore we investigated numerically if
the schemes are strictly stable by both measuring the error for long time integration and

computing eigenvalues of the ODE system obtained after semi-discretization.

In this case of imposing conventional boundary conditions a system of ODFE’s results

having the form

dv"
(1.2.6) P% = —Qul, j=0,...

Noting that the physical boundary condition ¢(#) will be imposed at the grid point j =0,

the last equation can be rewritten as

~dv” ~
(1.2.7) Pd—t] = —Qui+ Bg(t), j=1,....,N

where ]5,@ are N x N matrices and B; 1is the “j""” term of the vector B =

K th?
J

(¢105 G20, - - -, qno)”  Which gives the dependence of the scheme on the boundary data.

Figures (1.1),(1.2) show the error as a function of time for the fourth-order compact
scheme and the sixth-order compact scheme respectively for different grids. Clearly there
is an exponential growth in time for the sixth-order scheme, but not for the fourth-order
one. Figures (1.4)-(1.3) show the semi-discrete eigenvalues spectrum of the ODE system,
i.e. the eigenvalues of the matrix —]3_1@ defined above. In figure (1.4) we see that for
the fourth-order scheme there are no eigenvalues with positive real part. It will be seen
later that this fortuitous situation fails when one consider the case of a system of equations
rather then the scalar partial differential equation. In figure (1.3) we see that the eigenvalue
spectra of the ODE system for the sixth-order scheme stretches into the right half plane
and since the exponential growth is caused by the eigenvalues having positive real part we
get the unwanted growth. The time divergence seen in the sixth-order scheme is a result of

imposing the conventional boundary conditions.
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Fourth-order Sixth-order

compact compact
Grid || logo(L2) Rate log,o(L2) Rate
21 -2.798 -3.510
31 -3.431 3.60 -4.535 5.82
41 -3.901 3.76 -5.331 6.37
61 -4.580 3.86 -6.408 6.12
81 -5.069 3.91 -7.169 6.09

Table 1.1: Grid convergence of two high-order schemes on u; + u, = 0, using conventional
implementation of boundary conditions. Here w = 27, CFL = 0.1, T = 10 for the
fourth-order scheme and T = 0.5 for the sixth-order scheme.
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Figure 1.1: The Ls-error as a function of time for the fourth-order approximation using
conventional implementation of boundary conditions with CFL = 0.1, w = 27.
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Figure 1.2: The Ly-error as a function of time for the sixth-order approximation using
conventional implementation of boundary conditions with CFL = 0.1, w = 27.
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Figure 1.3: Magnification of semi-discrete eigenvalue spectrum close to imaginary axis for
the sixth-order approximation using conventional implementation of boundary conditions.
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Figure 1.4: Semi-discrete eigenvalue spectrum for the fourth-order approximation using con-

ventional implementation of boundary conditions.
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SAT boundary conditions. We now solve the model problem (1.2.1), (1.2.2), (1.2.3)
using SAT method for treating the boundary conditions.

Tables (1.2), (1.3) show a grid refinement study for the fourth-order and the sixth-order
compact difference operators with different SAT parameters 7. Asin the case of conventional
boundary conditions we plot the absolute error log,,(L2) at the time ¢t =T = 10 (extracted
from computations run to 7' = 100 ) and the convergence rate computed as in (1.2.5). We
see that the SAT procedure for boundary treatment does not destroy the formal accuracy
of spatial discretization. The numerical results agree well with the theory of Gustafsson [9],
[10] and give the predicted accuracy. We can also see that the magnitude of the error is
dependent on the value of the parameter 7.

It was proven in section 1.1 that semi-discrete approximation (1.1.12) and (1.1.13) ob-
tained with the SAT method is strictly stable. From results of Kreiss and Wu [20] and Levi
and Tadmor [23] follow that the fully discrete approximation is stable if a locally stable
Runge-Kutta method is used for time integration. Again, the standard fourth-order Runge-
Kutta method is used for time integration in the case of the fourth-order spatial difference
operator and the sixth-order Runge-Kutta method (developed by Butcher [2], [3]) is used in
case of the sixth-order spatial difference operator. The time step is chosen small enough to
ensure the local stability of the Runge-Kutta method. Figures (1.7) - (1.8) show the error as
a function of time for different SAT parameters 7 , for different grids and CFL numbers. In
all cases the error remained bounded for all grids and CFLs for time as large as 7' = 100 .
No exponential growth was found for the SAT method, indicating time stability. Figures
(1.5)-(1.6) show semi-discrete eigenvalues spectrum for this method, i.e. the eigenvalues of
the matrix —P~'Q defined by (1.1.28), (1.1.29) (see remarks for section 1.1). As we can
see in these figures no eigenvalues with positive real part exist.

We also solved the problem (1.2.1), (1.2.2), (1.2.3) for different values of w. In figure
(1.9), (1.10) we show the approximate solution of the problem computed at the time ¢ =10
using the sixth-order compact scheme with 7 =2, CFL = 0.1, w = 307 and the number

of grid points N =80 .
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Fourth-order Sixth-order

compact compact
Grid || logyo(L2) Rate log,o(L2) Rate
21 -3.480 -4.944
31 -4.132 3.7 -6.050 6.28
41 -4.612 3.84 -6.805 6.04
61 -5.319 4.01 -7.859 5.986
81 -5.841 4.17 -8.608 5.995

Table 1.2: Grid convergence of two high-order schemes on u; + u, = 0, using SAT imple-
mentation of boundary conditions with the SAT parameter 7 =1 . Here w = 27,

(FL =0.1, T = 10.

Fourth-order Sixth-order
compact compact

Grid || logo(L2) Rate log,o(L2) Rate

21 -3.632 -5.012

31 -4.315 3.99 -6.203 6.75

41 -4.816 4.00 -7.044 6.73

61 -5.541 4.12 -8.170 6.39

81 -6.061 4.16 -8.949 6.23

Table 1.3: Grid convergence of two high-order schemes on u; + u, = 0, using SAT imple-
mentation of boundary conditions with the SAT parameter 7 =2 . Here w = 27,

(FL =0.1, T = 10.
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Figure 1.7: The Ly-error as a function of time for the fourth-order approximation using SAT
implementation of boundary conditions with 7 =1, CFL = 0.5, w =27 .
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Figure 1.8: The Lq-error as a function of time for the sixth-order approximation using SAT
implementation of boundary conditions with 7 =2, CFL = 0.1, w =27 .
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Chapter 2

2-D Hyperbolic Equations

2.1 Description of the method and proof of main re-
sults

In this section we show how to use the one-dimensional scheme, whose properties were
described in the previous chapter, for the two-dimensional case. We consider the follow-
ing linear differential equation, with constant coefficients, in a rectangular domain Q with

boundary curve 9f:

Ju Ju Ju
2.1.1 — — +b—=0 Q, t>0
( ) at —I_aax —I_ ay b $7y E bl - bl

with initial condition prescribed at ¢ = 0:
(2.1.2) u(z,y,0) = f(x,y), r,y € Q,
and the boundary condition:
(2.1.3) u(z,y,t)]aq = gs(t), t>0.
Without lost of generality we assume that € is a square
Q:{(x,y)€R2|0§x§1, 0§y§1},
and if, for example, a > 0, b < 0 then we have the following boundary conditions

Wy, 1)

(2.1.4) u(0,y,t) = ¢
@z, 1),  t>0.

g
(2.1.5) u(z,1,1) = ¢

We begin with dividing the continuous domain © into N? uniform intervals of width

h where h=Az=Ay=1/N. Weusefor 1 =0,...,N and j=0,...,N the notation
(216) T = Zhv Y; = ]hv ul](t) = u(xivijt)v
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where w;;(t) is the projection of the exact solution wu(x,y,t) unto the grid. We arrange
the solution projection array in vectors according to rows, starting from the bottom of the

domain 2 and denote

.
T
U(t) = (100, U1y« « s UnOS -+« + 5 UOky ULhs -« oy Uk « v+ 5 UQNy ULy v oy UNN)

(2.1.7) = (ool iiy) .
If we arrange this array by columns (instead of rows) we will have the following structure

e . . . . T
U (t) = (UOo,UOl,...,UON,...,Uko,Ukl,...,UkN,...,uNo,uNl,...,UNN)

—C —C e \T
(2.1.8) = (UgyeenyUpyenny i) .

As one can see, the vector ﬁc(t) is a specific permutation of (j(t) ,
(2.1.9) Ue(t) = RU(1),

where R=R" = R™" isan (N+1)*>x(N+1)? orthogonal matrix whose each row contains

(N + 1)2 — 1 zeros and a single 1 somewhere. If the domain is not a square then R # R" |
but still RRT =1 .

—

The continuous derivative ——r (k=0,...,N) is then replaced with a finite-difference
x
representation
(2.1.10) PO _ Qi+ PT®
dx
: .. 0y :
and the continuous derivative rm (k=0,...,N) is replaced by
Y
pOUL _ Foe | BTW)

where P, P and Q, Q are (N 4+ 1) x (N +1) matrices which have exactly the same
(=)

— —
structure as in one-dimensional case and vectors Ty, T,gy) are the truncation error due

to the numerical differentiation. Recall that the superscript “~* is used when the “inflow”
boundary is on the right side of the one-dimensional domain.

Using (2.1.9), (2.1.10) and (2.1.11) we can write:

)

(a2 + bg) uij(t) = [aDU +bDU® + T 4 T
y

)

(2.1.12) = [aDU +bRDRU + T + RTW]
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where D and D are the following (N +1)* x (N +1)* block-diagonal matrices:

(2.1.13) D

and T@ = (fl(x), cee fj(vx))T and TW = (fl(y)

P7'Q

P7'Q

P7'Q

P

P10

P10

P10

—»(y) T .
STy are truncation errors.

Before proceeding to the semi-discrete problem let us define by analogy to the one-
dimensional case the following (N +1) x (N 4+ 1) matrices Q, Q and S, S and (N+1)

long vectors go, Sy

Tqoo 0
Tqoo
qor + 10 0 do1 + q1o
(2.1.14) Q=Q-S, S = , So = 0 ,
0 :
s 0 0
0
0
0 ; 0
— - . 0 . :
(2.1.15) Q=Q-S, S=1 9 0 —(go1 +qi0) |» Sv= 0
—(go1 + ¢10)
0 0 —Tdqoo —T4qoo
We now define the (N+1)* vectors, V= (Voy vy Uy e ns EN)T and V° = (UG s Upyeen ,ﬁfv)T
where ¢} and @} the numerical approximation to the projection wu; and w5, (k=
0,...,N) respectively and write the semi-discrete problem in the following way:
dv DE| T — o) _ pRAW
(2.1.16) — =—|aD +bRDR|V — aG"") — bRG'Y,

dt
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where

P'Q P'Q
P'Q P'Q
D= , D= ,
P7lQ P'Q
P~ 500 (1) P Seg? (1)
) PS5 | P1Ssgt (1)
(2.1.17) G = , G =
P15V (1) P15, P ()

Since Sty — gog,(:)(t) =0 and also Suj — §Ng,g2)(t) =0 (k=0,...,N), we may write for
the vector U :

d — — — — — —
(2.1.18) d—(tj = [~aD — bRDR| U — aG") — bRGW 4+ T 4 RTW

Subtracting (2.1.16) from (2.1.18) we get:

5

dE ..
(2.1.19) — = |—aD —bRDR| E + T,

where F =0 —V is the two dimensional array of the errors arranged by rows as a vector
and T is proportional to the truncation error.

We recall that in section 1.1 it was proven that if the inequalities (1.1.14) hold then
the real part of each eigenvalue of the matrix P~'Q is positive and the real part of
each eigenvalue of the matrix PQ s negative. Therefore all eigenvalues of D have
a positive real part and all eigenvalues of RDR have a negative real part. To prove

the time stability of the scheme (2.1.16) it is sufficient to show that H (—aD — bRﬁR) +

—~ \1T
[H (—aD — bRDR)] < 0 for any symmetric positive definite matrix H .
To show this, we define now a symmetric positive definite matrix, H = ]31/2(]%]5]%)]31/2

and consider the following scalar product:
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([H (~aD — bRDR) + (—aD — bRDR) " H] E, )
(2.1.20)
= —a ([HD + D"H]E.E) — b ([HRDR + RD"RH| E., )

It can be verified by direct multiplication and using the properties of block-diagonal matrices

and of the permutation matrix R, that any block-diagonal matrix M is commutative with
the matrix of the form RDR , 1.e., for example, MRDR = RDRM . Using this information,
and the fact that RR = I we can write:

HD +D"H = PV*(RPR)PV*P~'Q+ Q" P~' PY*(RPR)P'/?
= (RPR)Q 4+ (RPR)Q" = RPR(Q + Q") ,

(2.1.21)
HRDR+ RD"RH = P'*(RPR)P'?*RP~'QR + RQ"P~'RP*(RPR)P'/?

= PRQR+ PRQ"R=PR(Q+Q") R

Denoting & = (Rﬁl/zR)E and using again the fact that (RPY?R)M = M(RP'?R) we

obtain:

(RPR(Q+Q")E,E) = (RP'*RRP'?R(Q+ Q") E. E)
(2.1.22)
= (RP'?R(Q+ Q") E,RP'RE) = (Q+ Q") .2).

In a similar fashion, denoting 7 = (RPI/Q)E we get

(PR(Q+Q")RE,E) = (P'?R(Q+Q") RE, P'*E)
(2.1.23)
= (R (Q+Q") RP'VPE,P'E) = ((Q+Q7) 7.7)
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Taking into account (2.1.21), (2.1.22), (2.1.23), the fact that « >0, b <0 and

(Q+Q1¢3) >0, ((Q+Q7)77) <0 Wi R
we can conclude that if the one-dimensional inequalities (1.1.14) hold, then

([ (~aD — bRDR) + (~aD — bRDR) H| i}, )

=—a((Q+Q") .4 —b((Q+Q") i) <0

for all E € ROV

Remark. It should be observed that when the scheme (2.1.16) was used in practice,
the one-dimensional algorithm was implemented on each row to compute the numerical
approximation to wu, , and on each column to compute the numerical approximation to wu, .

It means that in practice we solved the following equation:

d

V1= [aD[V] + o[VIDT + aGV(1)ST P~ 4+ 4P S, (é@)(t))T

9

where [V] is (N +1) x (N +1) matrix with the elements v;; and

%yw ggw
é(l)(t) _| % (1) : é’(z)(t) _| % (1) :
g (1) d2()

and the matrices D, D and P, P and the vectors §0, Sy were defined earlier. Note
that in practice P71, P~ are never evaluated. Rather the decompositions P = LU and
P = LU are calculated. L and U ( L and U ) are bidiagonal matrices with one of them
having “ones” along the diagonal. Hence, the inversion of L and U ( L and U ) is very

cheap.
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2.2 Numerical results

Here we consider the problem

Ju Ou  Ou
2.2.1 — 4+ —+=— =0 0<z<1, 0<y<1, t20
( ) at —I_ ax —I_ ay b — T — b — y — 9 — 9
(2.2.2) u(0,y,1) = sinw(y — 2t),
(2.2.3) u(z,0,t) = sinw(x —2t),
(2.2.4) u(z,y,0) = sinw(x 4+ y).

The analytic solution of this problem is:

(2.2.5) u(z,y,t) =sinw(x +y — 2t)

We shall now use the SAT method to solve the problem (2.2.1)-(2.2.4) , as well as us-
ing the conventional implementation of boundary conditions. Two difference operators were
used: fourth-order with third-order boundary closure and sixth-order with fifth-order bound-
ary closure. The temporal discretization was accomplished with the standard fourth-order
Runge-Kutta algorithm in the case of fourth-order difference operator and with a sixth-order
Runge-Kutta algorithm developed by Butcher [2], [3] in the case of sixth-order difference op-
erator. In the case of conventional implementation of boundary conditions the value of the
solution at the boundary point was overridden with the analytic boundary condition at the

end of each Runge-Kutta stage.

Conventional boundary conditions. To check on the order of accuracy, the runs were
repeated for Ax = Ay =1/20, 1/30, 1/40, 1/60 and 1/80 . Doubling the grid at constant
CFL, should decrease the error at time ¢ =T by a factor (§)p where p = 4,6 is order
of the method. The formal accuracy of each scheme was determined in this manner. Table
(2.1) shows the results of this study. The log,, of the Ly error at time ¢ =T and the
convergence rate are the entries. T'= 0.4 in the case of the sixth-order scheme and T = 10
in the case of the fourth-order scheme. As one can see for relative short-time integration the
convergence rate of the sixth-order scheme is approximately 6 and the convergence rate of
the fourth-order scheme asymptotes to the theoretical value of 4.

The error as a function of time for the fourth-order and the sixth-order schemes is shown
in Figures (2.2) and (2.3) respectively for different grids. CFL = 0.5 were chosen for the

fourth-order scheme and CFL = 0.1 were chosen for the sixth-order scheme. As in the one
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dimensional case, the runs are time stable in the case of the fourth-order scheme. The results

obtained by using the sixth-order scheme diverge exponentially from the analytic solution.

SAT boundary conditions. To check on the order of accuracy, the runs were repeated
for Az = Ay =1/20, 1/30, 1/40, 1/60 and 1/80 . Table (2.2) shows a grid convergence

Ly) at a fixed time T =10 and

(

the convergence rate are plotted. As one can see the formal accuracy of the spatial operator

The absolute error log,,

is unaffected by SAT boundary treatment.

study for both spatial operators.

100 for both the fourth- and the
= 1 were chosen for the fourth-order

T
-

The simulations were all run to equivalent times

9

=0.25

CFL
7 = 2 were chosen for the sixth

sixth-order schemes and different grids.

scheme and CFL = 0.1,

order scheme. Figure (2.4), (2.5)

)-(2.2.4) for the fourth-order

and the sixth-order respectively. The log,, of the L, error is plotted as a function of time

show a plot of the error of the solution to the problem (2.2.1
for five grid densities: 21, 31, 41, 61 and 81 points

respectively. It is clear that both schemes

9

indicating time stability of the schemes.

9

Figure (2.1) shows the 3-D plot of the numerical solution at the time T =2 obtained

give good results, no exponential growth exists

60, CFL=0.1, 7=2, w=2r.

using the sixth-order scheme with N

Numerical solution at the time T = 2 obtained with the sixth-order approxi-

Figure 2.1:

60, CFL. = 0.1, 7
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Fourth-order Sixth-order

compact compact
Grid || logo(L2) Rate log,o(L2) Rate
21 -2.786 -3.536
31 -3.461 3.83 -4.619 6.15
41 -3.947 3.89 -5.378 6.07
61 -4.638 3.92 -6.420 5.92
81 -5.131 3.95 -7.143 5.83

Table 2.1: Grid convergence of two high-order schemeson w;+u,+u, = 0, using conventional
implementation of boundary conditions with CFL = 0.1 and T = 0.4 for the sixth-order
scheme, and CFL =0.25 and T =10 for the fourth-order scheme. w = 27 .

Fourth-order Sixth-order
compact compact

Grid || logo(L2) Rate log,o(L2) Rate

21 -3.389 -4.909

31 -4.100 4.04 -5.991 6.14

41 -4.599 4.00 -6.757 6.14

61 -5.310 4.04 -7.835 6.06

81 -5.813 4.03 -8.575 6.00

Table 2.2: Grid convergence of two high-order schemes on w; + v, + v, = 0, using SAT
implementation of boundary conditions with the SAT parameter 7 =2 and CFL = 0.1 for

the sixth-order scheme and the SAT parameter 7 =1 and CFL = 0.25 for the fourth-order
scheme. T =10, w =27 .
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The Hyperbolic System
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Chapter 3

1-D Hyperbolic Systems

3.1 General theory and description of the method

Consider a first order hyperbolic system of partial differential equations

Ju Ju
3.1.1 — 4+ A—=0, 0<z<1, t>0
31 L A PN
where without loss of generality u(z,t) = (u'(z,t),...,u"(2,))T and A is a diagonal matrix
with constant entries:
M
\ A > Ae> o >0,
A= " ,
k+1 A < oo < Nig2 < A <0
Ar

The solution of (3.1.1) is uniquely determined if we prescribe initial values
(3.1.2) u(x,0) = f(x), 0<az<1,

and boundary conditions

u'(0,1) = Lu™(0,1) + ¢'(t)
(3.1.3)
u'(1,1) = Ru'(1,4) + ¢"(t), >0,

where [ and R are fixed matrices of orders k x (r — k) and (r — k) x k, respectively, ¢'(t) a

given k-vector, ¢"'(¢) a given (r — k)-vector, and

(3.1.4) u' = (v, )T, = W )T



is a partition of u into its outflow and inflow components, respectively, corresponding to the
partition of A.

It is well known that (3.1.3) is well posed for any L and R, but in order to assure that the
solution of (3.1.1) is bounded in time (under the condition that ¢'(¢) and ¢"(¢) are bounded

in time), it is sufficient to assume that

(3.1.5) L] - Rl<1
where the non-square matrix norm is defined by

(3.1.6) IL|=p(L7L)?
and p(L"L) is the spectral radius of L™ L.

In order to solve the initial-boundary value problem (3.1.1) by a finite difference approx-

imation, we introduce, as in scalar case, a mesh size h and denote by u' = (uf, ul, ... u’)7,
i =1,...,r, vectors of unknowns corresponding to the grid points zg,...,2x (N = 1/h)

and by v* the numerical approximation to u’. Assuming that we have matrices P, Q, P.Q

as in the scalar case and the vectors Sy, Sy are

Tqoo 0
Go1 t+ q10 :
(3.1.7) So = 0 , Sy = 0
: —(go1 + ¢10)
0 —Tqoo

we approximate the (3.1.1) by the following scheme:

dv' L |
P c;; = —)\Z'QVZ + )‘iSO(Vé _ (LVH ‘I'gl)é), 1< ; < i
(3.1.8)
~dv® - . ' '
P C;; = —NQV' + NSy (vy — (RvI + ¢, E+1<i<r

To prove the convergence of the scheme (3.1.8) we will derive an equation for the error
function & and will show that its discrete norm (to be defined later) is bounded by a
function F(t,h,u), where t, h and u are the time, the mesh size, and the exact solution
respectively.

Since u! — (Lu™ +¢")i =0 for 1<:i< k and ul, — (Ru'+ ¢"),, =0 for k+1<i <r, we

may write for the vectors u’

d 7 ) = . . .
PO = AQu b NSl — (" 4 )+ PT 1<i<h
(3.1.9)
PO~ AQui NS, — (Rt g™+ T ki<
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where T = (T,..., Tk, T&*1 ... T%) is the r long vector of the truncation error due to

numerical differencing.

Denote by ¢ = u* —v' (1 < < r) the solution error vectors and substructing (3.1.8)

from (3.1.9) to get

de’

P— = —XQe' + \iSo(e) — (Le")y) + PT, 1 <i<kh
(3.1.10)

~dst ~ . - . . ~ .

P NG 4 NSulel — (R + T, b4 1<i<r

We define now the scalar product

N
(3.1.11) (ehe)y =Y el el
m=0
and the discrete norms
k r
RI . Ll .
(3.1.12) jer =y Wl oy, ey Ml g
i=1 Ai i=k+1 |Ad]
and
(3.1.13) LEN* =l I+ Nl "I,

where £ is the r x N long error vector whose first k£ x N entries are the entries of " and the

other (r — k) x N entries are the ones of e

Differentiating the scalar products (Pe?, ') and (]Sei, ¢') and using the equation (3.1.10)
yields
d . o . . o ,
E(Pel,el) = —N(Qe", ") + Ni(So,e") (e, — (Le™)s) + (PT '), 1<i<k
(3.1.14)
d - . o DU . o
E(Pez,el) = —X(Qe",e") + Ni(Sy, ) ey — (ReN)y) + (PTYeY), k+1<:<r
We now use the definitions of S, and gN, the properties of Q and Q (from assumption 3 and

remarks from chapter 1) and the fact that the A; are positive for 1 <i < k and are negative

for k+1 <1 <r to get
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d

dt<P€ e) = X(7 — Daoo(e))” — Niqui(€2)® — Airgoo(Le™)iel — Ai(gor + qro)ei(Le™),

-\ [QNN(fi\;)z + (QN—1N + QNN—1)5§V_15§V + QN—1N—1(5§V_1)2] + (PTi7€i)7 1 <<k
(3.1.15)

d - . . . o . .
E(P&@Z) = |Xi|(7 = Dgoo(ely)® = [Nilaa(e_,)* — [Nilmqoo(Re) el — [Xil (qor + qro)ely_, (Re")Y,

- |)\2| [QNN(fé)z + (QN—1N + QNN—1)5é5i + QN—1N—1(51)2] + (ﬁTi,éfi), E+1<:<r

R

We multiply the first equation of (3.1.15) by H)\H and sum up from ¢ = 0 to k and we
L K3

multiply the second one by H|)\ |H and sum up from ¢ = k + 1 to r. Assuming that ¢y_y_,

is positive we can rewrite these equations as follows:

k r
IRl d L]
(P P
> " 55)—|—th1|)\|(55)

=0 i=k+

=~

) [ IR (7 = Daooley)* = | Bl q11(e3)* = | RI| 7q00( L")

=0

Gn-iv T Qv Z

2
5 ey T \/QN—1N—15§\7_1)
\Gn—1n—1

R (dor + o)l (Ei— | R (

2 k
L el [ RS ML

4qN—1N—1

30 [N = Dol = 12l ana(ely- )= I ] raool Rl
i=k+1

dn-iv T dnna o

2\/ N 1N -1 0
2
e e LRk

dn_in_1 i=kt1

2
L (dor + 10)2s (B 1 2] ( ' m—)

762
|A| )

Again we require the expression qyyed + (¢n_in + Gun-1)061 + qune; be positive for all
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€o,&1 € R. Tt implies

(QN—1N + Gun_ )2

(3116) qN—lN—l > 07 qNN - > 0
dn_in_1

We next define a new discrete scalar products:

k .

e = D emem

=1

(3.1.17) " e = > elel
i=k+1

Replacing the sums in the last equation with these vector operations and using the properties

of the matrices P and P we get an estimate for the discrete norm || € |:

cO—HSH < (7= Dgoo | BRIl [ €'l = [[ B qui [, €]y — | Bl 7qo0 [Le™, €]y — BN BI| [€", €]
+(m = Dgoo | LI [e" ey = [ LIl @ [7, €™y = 1 Ll 7qo0 [Re™, €] — B[ L || [e7, €™,
—2 || R quZ LM =20 Ll qor > (") (R
i=k+1
+> (PT, ") + Z &)
i=0 Ai i=k+1 |)‘|
where . ( )2
R 1
Qo1 = 5(901 + q10), B = qun — il 42 Gov > 0.
N—-1N-1
Substituting the estimates
[Le™ ey < LI e llo - 11l
[Re' e < R[Ny e ]
k ' ' k B k B
DN (LeM)y < (D UEDTT DMLl < WL NeEtl - e,
=1 =1 =1
k 7 9 7 -
YEN(LT), < | > [(5“)%_1] - (R < RN Nl - e,
=1 i=k+1 i=k+1
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where

e, = +lehel,,
H{_:HHm = V [5117511]m7 m:()vlvN_lvN

into the last inequality for || €] , and collecting like terms yields

d
COEHEH2 < {(T—l)qoo- IR o= 1 B aull'llF + I7aool |RIN LN g 1™,
+2lqo|- | R LI el — B HLH-Hf:“H?J}
+{(T — Voo | RIFI[€™ 15— 1| BRIl quill€' 5y + I7qcol | BRI LI N1l
(3.1.18) 2|qou|- || RI[- [ LI[-[ €] 1™ |l gy — B HLH-Hf-:IHfV}
"R ;i S L s
+> (PT e+ (PT, &%)
i=0 Ai i=k+1 Al

We require now each curly bracket to be negative. Thus we need

(m = Voo | BRI o= I B I anll "1+ Imaool- | BIFIL Il ™1l

+ 2lqor|- | RIFIZN e 1™ o = BITLIF[e™ 5 <0
and also

2 2
(7= Do | BRI [[x= 11 quallll-y + I7qo0l- RN LA ™ M1y

+2lgon [ | RINL I e ey = BILIIETE <0

for all &', e € R.
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It is possible to show that both inequalities are satisfied (and hence the algorithm is time

stable) if

g > 0, Gy >0, (7 —1)goo <0,

(QN—1N + QNN—1)2

3.1.19 = —
( ) 6 ovw 4qN—1N—1

>0,

1
T anao | BRI LI +(r = Daoo (B — aiy | RIHI L) < 0.

Assuming for the moment that these inequalities hold we can write

L]

JBTi,ei
Al ( )

d FNR . r
(3.1.20) o€ <Y L£] (PT'.e") 4+ >
di i=0 Ai i=k+1

Using (1.1.9) and the definition (3.1.12) of the discrete norms we get

d
(3.1.21) o€ <a [T
and after dividing by || €|
d (8]

1.22 — < 2T
(3,122 Liens Sy
leading to
(3.1.23) e < 2T e

Co

We are ready now to formulate the theorem:

Theorem 3.1.1 Let the method defined by equation (3.1.8) satisfies (3.1.19), for the dis-
cretization of the hyperbolic system (3.1.1) with initial and boundary conditions (3.1.2),(3.1.3).

Then it is stable and leads to an error whose norm is growing linearly in time.

Remark.
We recall that in order to solve the hyperbolic system numerically we use the same ma-

~ A~ — —
trices P, @), P,() and the same vectors Sp, Sy as in the scalar case, i.e.

B 2 _1>0 _1
Goo = 3’ Q11—6 ; 0101—37
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(QN—1N + Gun_ )2
4qN—1N—1

1
6:qNN_ :6>0

With this choice of the matrix @ the inequalities (3.1.19) hold if

L= | RIHI L] VD
2| R L]

L= | RIHI L] +v'D
2| R L]

<7<

(3.1.24)

where

D= (= [RINEIDO@=5TRITLID-

We can choose 7 , which satisfies (3.1.24), if D > 0 . This happens if | R|-||L||<1/5 .
But this is only a sufficient condition, because numerical experiments (see discussion in the
next section) show that the numerical solution converges to the analytical solution for all
t<oo evenif 1/5<||R|LIST.

Similarly, in the case of the fourth-order scheme,

B 5 B 1 50 B 1
qoo = 3’ Q11—8 ) 0101—47
(QN—1N + QNN—1)2 1

6 oow 4qN—1N—1 4 ~

leading to
4=2||R|II L] =2v'D 4=2||R|I L] +2v'D

(3.1.25) <7<

SR SIRIIL]
where

D= [RINEIDE=6IRINLID.

We can find 7 , which satisfies (3.1.25), if || R||-|| L ||< 1/3 . Numerical experiments
performed in the next section show that the fourth-order scheme is time stable even if

3 <RI L]<1.

30



3.2 Numerical experiments

Consider the hyperbolic system

ou ou
2.1 L A— = <zr<l1, t>
(3.2.1) 8t+ - 0, 0<a<1, t>0

where

(3.2.2) A:((l) _01) u:(Z)

with initial data

(3.2.3) u(x,0) = sin 27, v(x,0) = —sin 27, 0<az<1,
and boundary conditions

(3.2.4) u(0,1) = v(0,1), o(1,1) = u(l,1), t>0.

The exact solution is

u(x,t) = sin2x(x — t),
(3.2.5)
v(x,t) = —sin2x(x + 1), 0<z<1, t>0.

Note that due to (3.2.4), || R|||L||=1 and thus we test the most severe reflection case.

As in the scalar case we solved the problem (3.2.1) - (3.2.4) numerically using two different
schemes: fourth-order compact with third-order boundary closure and sixth-order compact
with fifth-order boundary closure. And again we compare two methods for implementation
of the boundary conditions: (i) conventional - which implies the overwriting of the value of
the solution at the boundary point with the analytic boundary condition after each Runge-
Kutta stage and (ii) the SAT method described in the previous section. In all cases, the
standard fourth-order Runge-Kutta method is used for time integration, with a suitable At
such that the desired overall accuracy is maintained.

Conventional boundary conditions. In Chapter 1 (Part I) it was shown that for the
scalar case the fourth-order scheme is time-stable while the sixth-order scheme is not when
using conventional implementation of boundary conditions. Using these schemes for solving
the test problem (3.2.1) - (3.2.4) we found that both scheme failed to be time-stable when
applied to system of equations. Figure (3.1), (3.2) show Ls-error as function of time for
the fourth-order compact scheme and sixth-order compact scheme respectively for different

grids. As one can see results diverge exponentially from the analytic solution.
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On the other hand, we shall show that SAT procedure ensures time-stability (only a sub-
linear temporal growth) for the hyperbolic system, for both the fourth- and the sixth-order
schemes.

SAT boundary conditions. First of all we verify that SAT implementation of boundary
conditions retains the formal accuracy of the spatial operator. Results of the grid convergence
study of the spatial operators with SAT parameter 7 = 2 for both orders of accuracy are
presented in table (3.1). The absolute error log,,(L2) at a fixed time ¢ = T and the

convergence rate are the entries.. The convergence rate is computed as

_ 1M h
(3-2-6) logy, (M) /10g10 (h_l) )
2

| u—utz|],

b is the numerical

where u = (u(wo,t),u(xa,1),...,u(zy,t))” is the exact solution, u
solution with mesh width h, and || u —u”||, is the discrete L, norm of the absolute error.
The data in this table indicate that the convergence rate asymptotically approaches to the
theoretical value of 4 for the fourth-order operator and to 6 for the sixth-order operator.
Figure (3.3), (3.4) show the error as a function of time for long time integration using the
fourth-order and the sixth-order difference operators respectively for different grids. No
exponential growth exists and both schemes are found to be strictly stable. In figure (3.5),

(3.6) the eigenvalue spectrum for both schemes for different grids are shown. One can see

that there are no eigenvalues with positive real part.

Fourth-order Sixth-order
compact compact

Grid || logo(L2) Rate log,o(L2) Rate

21 -2.657 -4.371

31 -3.332 3.83 -5.462 6.19

41 -3.817 3.89 -6.231 6.15

61 -4.506 3.91 -7.299 6.07

81 -4.998 3.94 -8.041 5.97

Table 3.1: Grid convergence of two high-order schemes for wu; + Au, = 0, using SAT
implementation of boundary conditions with the SAT parameter 7 =2 and CFL = 0.5
for the fourth-order scheme, CFL = 0.1 for the sixth-order scheme. T = 10.
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Figure 3.1: The Ls-error as a function of time for the fourth-order approximation using
conventional implementation of boundary conditions with CFL = 0.5 .
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Figure 3.2: The Ls-error as a function of time for the sixth-order approximation using
conventional implementation of boundary conditions with CFL = 0.1 .
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Figure 3.3: The Ly-error as a function of time for the fourth-order approximation using SAT
method for implementation of boundary conditions with 7 =2, CFL. = 0.5 .
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Figure 3.4: The Lq-error as a function of time for the sixth-order approximation using SAT
method for implementation of boundary conditions with 7 =2, CFL = 0.1 .
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Figure 3.5: Semi-discrete eigenvalue spectrum for the fourth-order approximation using SAT
method for implementation of boundary conditions with 7 =2 .
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Figure 3.6: Magnification of semi-discrete eigenvalue spectrum close to imaginary axis for
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Chapter 4

2-D Hyperbolic Systems

4.1 Application to Maxwell’s equations

As an application where high-order accurate approximation are needed we consider Maxwell’s

equations. In free space they are given by:

B
a—N +VxE = 0, (Faraday’s law)

ot
D
(4.1.1) a@tN —VxH = -], (Ampere’s law)
B = uH,
D = ¢k,
coupled with Gauss’s law
V-B = 0,
(4.1.2) VD =0

If we assume perfectly conducting conditions at the outer edge of the domain then the

boundary conditions are:

(4.1.3) ixE =
- H

where 7 is a normal vector to the surface of the domain.
To simplify the notation we shall consider the two dimensional case with ¢, p con-

stants and J = 0. We nondimensionalize the variables: t = ¢tf/L, = = /L, y =
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y/L, E =F, H= fH , where ¢ and p are the permittivity and permeability co-
i

efficients, in free space, respectively, ¢ is the speed of light and [ is a length of the
domain. The 2-D version of system (4.1.1), (4.1.2) decouples into two independent sets of
equations. We shall consider the TM (Transverse magnetic) system in a square domain
Q={(z,y) e R |0<2<1, 0<y<1}. The TM equations then become:

E. H H,
0 = od, 9 (x,y)€Q, t>0

ot Jx dy
oH, O0E,
(4.1.4) = o
o,  0F.
o Ox

with the boundary conditions

E.(0,y,t) = FE.(1,y,t) =
(4.1.5) FE.(x,0,t) = F.(x,1,1) =

We take as initial conditions,

Ez(x,y,()) = sin(wlx) Siﬂ(w2y)7 (l’,y) € Qv
(4.1.6) H.(x,y,0) = 0,
Hy(l’,y,O) = 07

where wy =7n and wy=mm (n,m==+1,+£2,+3,...).

The exact solution is

E.(x,y,t) = sin(wiz)sin(way) cos(wt),
(4.1.7) Hy(z,y,t) = 2 sin(wy ) cos(way) sin(wt),
w
! . .
Hy(z,y,t) = —cos(wix)sin(way)sin(wt),
w

where w = \/wi + w3 .
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Matrix form of the equations (4.1.4) is:

E 00 1 E 0 -1 0 E
0 : 0 : 0 :
Gl M| = 000t Hof+]| =1 0 0] H
H, 100)/)%\ H, o o0 o)\ H,
E E
0 : 0 :
“\ H, Y\ H,
where
001 0 —1 0
Ai=loo0oo0]|, A=[-1 0 0
100 0 0 0

The SAT method for implementation of boundary conditions is used for diagonalized systems
in one dimension. We encounter a problem when dealing with the two dimensional problem,
because it is impossible to diagonalize the two matrices A; and A, simultaneously. To
overcome this problem we consider the two dimensional Maxwell’s equations (4.1.4) in each
space dimension independently. We decompose (4.1.8) into the following one dimensional

Maxwell’s equations!:

()= )2 ()

(110 gl )= 0)aln)

with £, =0 at the boundaries (see (4.1.5)), and we denote

(1)

We shall limit our detailed discussion only to equation (4.1.9). The treatment of the
equation (4.1.10) is similar.

We diagonalize the matrix A and change the variables. Let M be a diagonalizing
matrix of A and A a diagonal matrix having the eigenvalues of A |, i.e.

(4.1.11) M*MM:A:(Blg)

TThis decomposition is not, of course, equivalent to the original system (4.1.8). Tt is done for lack of a
2-D characteristic theory. This practice follows what has been done previously in the context of 2-D gas
dynamics, see [11].
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and
(-1 1 o =11
e (1) ()

(4.1.9) is transformed to

(4.1.13) %(5):(_01(1))%(5)

where

The boundary conditions can be written as

(4.1.14) u(0,y,1) =v(0,y,1), v(l,y,t) =u(l,y,t)

This is equivalent to the requirement of FE, =0 on the boundaries. Note also that (4.1.14)
is in the form (3.1.3) with ¢'(¢) =¢"({) =0 and R=1L =1.
We add to the system (4.1.13) an artificial zero term which is similar to the SAT term

for one dimensional hyperbolic system and rewrite it as follows:

0 ( u -1 0\ 90 [ u au(0,y,t) —v(0,y,1)]
411 - = R R P .
A9) m(”) ( 0 1)91‘(U)Jr(ﬂ[v(l,y,t)—U(l,y,t)]

where a and [ are some constants.

When we return to the original variables, i.e F,, H, , we get:

sl ) = Aa ) Gt 2ot )

_ g EZ —oz[u((),y,t)—v((),y,t)]—I—ﬂ[v(l,y,t)—u(l,y,t)]
(L116) = Ag ( H, ) ; ( o [u(0, . ) — v(0, 5, 1)] + Blo(1, . 1) — u(l, g, )] )

E.\ v\ [ —u+v
(i) =e)= ()
we replace the boundary terms u(0,y,1) —v(0,y,t), v(1,y,t) —u(l,y,t) in (4.1.16) by the
original variables F.(0,y,t), F.(1,y,1) .

Using the fact that

60



Thus (4.1.16) becomes
(4.1.17) O (EN_(0 130 (B [ alyl)+5E(y.1)
at HZ/ 1 0 6:1; HZ/ _OéEZ(Ovyvt)—l_ﬂEZ(l?yvt)

We now call the attention to the fact that the systems (4.1.9) and (4.1.17) are equivalent
(see (4.1.5)).

In a similar fashion we get for F,, H, a system which is equivalent to (4.1.10):
(4.1.18) 9 (E \_ (01)3d/[E 4 +aF.(x,0,t)+ BFE.(x,1,1)
o o\ Hy, | 10 )oy\ H, aF.(z,0,1) — BE.(x,1,1)

When we approximate the non-diagonalized equations (4.1.17) and (4.1.18) numerically by
using the SAT method for implementation of boundary conditions we shall add a SAT
boundary terms for both directions which resemble the artificial zero terms which appear
in the equations (4.1.17), (4.1.18). Let Az and Ay be mesh widths in the ax— and
y—directions, and divide the axes into sub-intervals of length Az and Ay respectively.

For ¢ =0,...,N;y and 57 =0,..., Ny we use the notation:
EZU (t) = EZ(xivijt)v Hl’z‘g (t) = Hl’(xivijt)v Hyi] (t) = Hy(xivijt)v
v = 1Az, y; = jAy,

NlAl' = 1, NgAy = 1,

where FE. (1), H, (t) and H, (1) are vector grid functions. We denote by e. ., hs,
and hy, the numerical approximations to the projections F. (t), H,, (t) and H, (t)
respectively. Without lost of generality we take N = Ny = N,, i.e. Az = Ay .

Before proceeding to the semi discrete problem let us define:
(4.1.19) D,=P7'Q, D,=P7Q,

where (N 4+ 1) x (N 4+ 1) matrices P,Q and P,Q are the same matrices were used
for solving hyperbolic system in one dimensional case and described in detail in Chapter 1
(Part T) and in Appendixes A and B. We note that in practice P~' and P! are never
evaluated. Rather the decomposition P = LU and P = LU is calculated once for each
matrix. L and U ( L and U ) are bidiagonal matrices with one of them having “ones”
along the diagonal. Hence, the inverseof L and U ( Land U ) is very cheap (two additions
and three multiples per point).
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Let [e:], [h2] and [h,] bethe (N +1)x (N +1) matrices with the elements e, ha,,

and hy, respectively and denote by [e.]%, [ho])F and [h,]F the ;™ row of each of these

matrices and by [e.]¢, [ho]¢ and [h,]¢ the " column of each of these matrices.

We now write the semi-discrete approximation to (4.1.17) as:

d ~ — —

E[GZ];% = Dx[hy]f - P_l (SOGZOJ + SNGZN]) 5
(4.1.20)

d ~ — —

E[hy]? = Dl’[ez];{ - P! (_50620J + SNeZNJ) ;

and the semi-discrete approximation to (4.1.18) as:

d o o

Glelf = —[hTD] + P (Soen + Sies)
(4.1.21)

d " "

Glhlf = —ledfD] + P (Soesg — Svea)

where the (N + 1) long vectors §N and §0 are exactly the same vectors like in one-

dimensional case, i.e.

Tqoo 0
(go1 + q10) :
(4.1.22) So = 0 7 S, = 0
: —(go1 + ¢10)
0 —Tqoo

We now compose the two one dimensional systems into the two dimensional set and

approximate the equations (4.1.8) in the following way:

Gl = Db - (15 + [1557) B
—[ha] D] + P7* (Sole-lg + Sule.]?)
(4.1.23)
d T -1/(a R o R
Slha] = —le] Dy + P (Soleas — Sxle:])
L) = Diled - (~le o5+ [ed58T) P
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4.2 Maxwell’s equations: Numerical simulations

The problem (4.1.4), (4.1.5), (4.1.7) was solved using both the fourth-order scheme and
the sixth-order scheme. The boundary conditions are imposed using the SAT algorithm
described above. In all cases, the temporal advance is via the standard fourth-order Runge-
Kutta method. The time step is chosen small enough to ensure the local stability of the
Runge-Kutta method and retain the desired overall accuracy. The simulations were all run
to equivalent times T = 100 for both the fourth- and the sixth-order schemes and different
grids (N = Ny = Ny = 20,40,80). We choose CFL = 1/10, 7 = 2 for the fourth-order
scheme, and CFL = 1/15, 7 = 2 for the sixth-order scheme. In figures (4.1)-(4.3) the
logio of the Ly error is computed for both schemes and different grids. As one can see the
error grows linearly in time; no exponential growth exists, indicating temporal stability of
the schemes. Figure (4.5) shows the e, component of the numerical solution at time 7' = 2
obtained by using the sixth-order scheme with N = 80, 7 = 2.

Unlike previous chapters, where we compared two procedures for imposing of boundary
conditions (the conventional procedure and the SAT procedure), in this section we shall
compare our results with the results obtained by E. Turkel and A. Yefet, see [35], [36]. They
solved the same problem by using the Ty(2,4) scheme, which is a fourth-order compact
implicit difference scheme on staggered meshes. For time integration they used the stag-
gered leap-frog method. The Ty(2,4) algorithm was run for: N = 20, CFL = 1/18; N =
40,80, CFL = 1/44. The logio of the Ly error, obtained by using the Ty(2,4) fourth-order
scheme, is plotted in figure (4.4). Note that the “Ty” algorithm was run with a time step,
At, almost twice smaller for N = 20 and almost four and a half times smaller for N = 40,80
than one used for the fourth-order “SAT” scheme. It should be also observed that the results
obtained by using the “SAT” schemes and presented in figures (4.1)-(4.3) are printed every
At step while the results obtained by using the Ty(2,4) scheme and presented in figure (4.4)
are printed every 1/(10At) steps (i.e. only a 1000 points are printed, in contrast to about
20,000-80,000 points for our printout graphs).

In order to check on the order of accuracy, the runs were repeated for (N = Ny = Ny =
20,40,80). Table (4.1) shows a grid refinement study for all three spatial operators. The
absolute error logo(L2) at a fixed time ¢ =T and the convergence rate between two grids
are plotted. The results in this table agree very well with the predicted ones for fourth-
and sixth-order. We note that the error obtained by using the Ty(2,4) fourth-order scheme
is smaller that the error in “SAT” fourth-order scheme, but the “SAT” sixth-order scheme

outperforms both.
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Figure 4.1: The Ls-error as a function of time for the “SAT” fourth-order approximation

with CFL =0.1,7 = 2, w; =37, wy = 47w, w = 5r. N = 20, 80.

)
41 points ——

-3

4

Log10(L2-error)

5 ]

0 20 40 60 80 100 120
time

Figure 4.2: The Ls-error as a function of time for the “SAT” fourth-order approximation
with CFL =0.1, 7 =2, wy =37, wy =47, w = 57. N =40.

64



-2

-3

s

r |

6

Log10(L2-error)

21 points ——
41 points
81 points

8 F 4
9 + 4
-10 1 1 1 1 1
0 20 40 60 80 100
time

Figure 4.3: The Ly-error as a function of time for the

CFL =1/15, 7 =2, wy =37, wy = 47, w = 5m. N = 20,40, 80.
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Figure 4.4: The Ly-error as a function of time for the Ty(2,4) fourth-order approximation

for N =20:CFL =1/18; for N =40,80:
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Appendix A

Construction of the Sixth-Order
Compact Scheme

Here we derive an implicit scheme for (1.1.1) which is formally sixth-order accurate. We

begin with approximation of the first derivative g—;{ at inner points in the form
dv 1 [ aypud + agud®
A.0.1 — ] =- ;
(4.0-1) (8:1;)], h [1+5152+5254 K
where
v + v,
51)]‘ = Vj1/2 — Vj1/2, v = +1/2 ; J 1/2;
or in the equivalent form
019 0viiq 0v; 0vi_q 0vi_g
by 2 4 (by — 4by) — 4 (1 — 2by + 6by) =2 + (by — 4by) —2— + by =
2 o + (by 2) Oy + ( 1+ 2)8:1;+(1 2) 8:1;+28:1;
(A.0.2)
1

— [ GQU]‘_|_2 —|— (Cll — 2@2) U]‘_|_1 — (Cll — 2@2)1)]‘_1 — GQU]‘_Q ]

2h
The relations between the coefficients ay, as, by, by are derived by matching the Taylor series
coefficients of various orders. The first unmatched coefficient determines the formal trunca-
tion error of the approximation (A.0.1). In order to generate a sixth-order scheme we require
that
ar =1
(A.0.3) by = éal — as

1 _ 1 1
551 + by = 2001 + 702

(A.0.3) will in general yield a pentadiagonal left-hand side. However the choice of by = 0
gives a more convenient tridiagonal operator. In this case

1 1 1
5, a9 = 61:—

(A04) 62 =0 = a1 = @7 5
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It follows from this and (A.0.1) that we have a sixth-order compact scheme in interior points

defined implicitly as

lavﬂ_l i % lav]‘_l 1

(A05) 3 8;1; 8;1; 3 8;1; = 36—h [ —Vj—2 — 281)]‘_1 + 281)]‘_1 + Vjit1 ]

Using this results we will write the approximation for the first derivative in the form
v 1

A.0.6 P—) =— : 1 =0,...,N

(A06) (P5e) =q@m. =0

where P and @ are (N 4+ 1) x (N + 1) matrices with boundary closures of arbitrary size n
such that (we denote [ = N —n):

Goo Gon—1 Gon
1
dn—10 -+ 4n—in—1 Yn—1in 36
7 1
Qno e Qn—ln an 9 36
1 7 7 1
0 T 36 T 9 0 9 36
1 7 7 1
_% _5 0 5 % e 0
1 7
—3 9 Yu qi+1 .- din
1
—3¢ 4qi+1l qi+ii+1 .-+ Qi+in
qni gnI+1 ... d4nn
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Pon

W=

W=

W=

W=

W=

pu

Pl

Pin

P

Denote by ]31, ]32, @1, @2 the corners of the matrices P and () respectively, i.e.

Poo
P =
Pro
oo
Q1=
Gno

Pon

p?’LTL

an

pu

Pni

qu

qni

Pin

P

qin

NN

Recall that we are looking for a matrix P which is symmetric positive definite and for a
matrix ¢ which satisfies the Assumption 3 in Chapter 1 (Part I). Note that the matrix P

is automatically symmetric in interior area (without the corners) and the matrix @ is auto-

matically skew-symmetric in interior area (without the corners). For P to be symmetric

we must have, therefore

(A.0.7)



We will show separately that the matrix P 1is positive definite. For () to satisfy the

Assumption 3, it must satisfy:

1
qo0 5(901 + ¢10) 0
v . 1 .
(A.0.8) QT+ @ _ | glantao) |
2
0 0 0
N N 0 0 0
QY + Q-
(A.0.9) 2T _ 1
. 0 gn_1N—1 5((]1\71\7—1 —|— qN—lN)
1
0 §(qNN—1 -I' qN_lN) gyn

In addition to these properties the matrices P and () must satisfy the order properties of
the boundary. To retain the formal six-order accuracy of the interior scheme, boundary
closure must be accomplished to at least fifth-order accuracy (see [9], [10]). The demand
that the boundary closure be fifth-order accurate is equivalent to its ability to annihilate a
fifth-order polynomial in = exactly. Our problem is linear, which means that it is sufficient to
check the basis elements v; = 37 (r =0,...,5). The derivatives of the basis functions are
rj’=" (r=0,...,5). Substituting the test functions and their derivatives into the matrices

]31, @1 respectively yields the expression
= p—1 r r—1
ry ped T+ §5kn(n‘|‘ =
J=0

. 1 7 1
qujf + %&m_l(n + 1) + §5kn(n + 1) + %&m(n +2), k=0,...,n

0 ifn#k
5kn: .
1 ifn=%k
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Substituting into the matrices ]52, @2 yields the expression (we recall that [ = N —n)

N T
szk]‘jT_l + §5kl(l — 1)T_1 =
i=

7

N 1 1
A1 T (= 1) — 81— 1) — —6u(1—2). k=TN
( ) ]Z_:lqw 2 ki (I — 1) 5 r(l—1) 26 r(l—2)

9

The block size n of the boundary matrices ]31, P, and @1, @2 could been any value and so
far it has not been specified. As it has been mentioned above, we demand that the boundary
closure be at least fifth-order accurate, therefore n > 5. For n = 5, equation (A.0.10) can

be written concisely in matrix notation as

01 0 0 0 0 100 0 0 0
01 2 3 4 5 11 1 1 1 1
p 01 4 12 32 80 _@12481632
101 6 27 108 405 %'l 1 3 9 27 81 243
0 1 8 48 256 1280 1 4 16 64 256 1024
0 1 10 75 500 3125 1 5 25 125 625 3125
0 0 0 0 0 0
0 0 0 0 0 0
11 o o0 0 0 0 0
(A-0.12) Tl o 0o o o0 0 0
1 6 36 216 1296 7776
29 163 913 5095 28321 156775

and equation (A.0.11) can be written as

0 1 2(N—5) 3(N—=5)?2 4N —5)* 5N —5)

0 1 2(N—4) 3(N—4)* 4N —4)> 5(N —4)*
5|01 2AN=3) 3(N=3) 4N -3 5N -3)!
210 1 2(N—-2) 3(N—-2)? 4N —2)* 5N —2)

0 1 2(N—1) 3(N—1)% 4N —1)> 5N —1)*

01 2N 3N? 4N3 5N*

1 N—=5 (N=5? (N=5?2 (N=5* (N=5)
1 N—4 (N—4)2 (N—=4)® (N—4)* (N—4)
A1 N3 (N=3)? (N=3)® (N-3)' (N-3)°
(A013) = @ | Ny (N_9p (N—2 (N—2) (N—2)
I N—1 (N—=1)2 (N=1® (N—=1)* (N—=1)
1 N N? N3 N* N°
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where

(&%)

Bo

0
0
0
0

a1 Oy Q3 04 Op

P By f3 Ba P
0 0 0 0 0

o 0 0 0 0
o 0 0 0 0
o 0 0 0 0

29,
—163 4+ 29N,

913 — 326N + 29N?,

—5095 — 2739N — 489N? + 29N?,
(N —=7)" 4+ 48(N —6)* + 28(N — 6)*,
(N —=7)° +60(N —6)* +28(N —6)°,
1

9

N —6,

Using Mathematica to solve these equations for the matrices @1, @2 results in the expressions

(A.0.14)

—137/60
“1/5
1/20
—1/30
1/20
“1/5

5 =5 10/3 —5/4  1/5
—13/12 2 -1  1/3 —=1/20
~1/2 —=1/3 1 —1/4  1/30
1/4 =1 1/3 1/2 =1/20
~1/3 1 =2 13/12 1/
5/4 —10/3 5 =5 137/60

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0o |’
—1/36  1/6 —5/12 5/9  —5/12 1/6

—11/60 41/36 =3  157/36 —139/36 47/20
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—137/60 5 =5 10/3 —5/4  1/5

—1/5 —13/12 2 -1 1/3 —1/20
0, - P /20 —1/2  —1/3 1 —1/4  1/30
S —1/30 1/4 —1 1/3  1/2 —1/20
/20  —1/3 1 -2 13/12 1/5
—1/5 5/4 —10/3 5 =5 137/60

A7/20 —139/36 157/36  —3  41/36 —11/60
1/6  —5/12  5/9 —5/12 1/6 —1/36
(A.0.15) | o 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

o OO

which relate the matrix @1 to the matrix ]51 and the matrix @2 to the matrix ]32 through
fiftth-order accuracy constraints. Solving for @1 and ]51 such that such that PT = ]31 and
equation (A.0.8) is satisfied yields :

63410865331 491453 163111 163111 163111

Poo = 045536000 21200 T2 63600 ' 10600 PP T 3975 P4
39314269 8064 896 3I6 1601

Pot = 7580600 265 PP 265 P T o P T Togn P4
| GS6267T20 6336 04 4489 11264

Poz = 51600 T 265 P T 265 P 9es 0T Togs B
548278393 3959 1408 216 22528

Po3 = TUe1R19200 265 PP 795 PR Togn P Tqgn P
| 2B2IS5T 43R 625145 625

Pot = 65040480 T 848 I8 T gqg P Typy P35 T gy Pas
_ISSZSITT 4353 83T 9511 2023

Pos = 19128000 5300 P 5300 P T 2650 PP T 1325 P
69122837699 553237 189359 180359 179819

P = 7989107200 1210 P27 o720 PP To1ap P Ty P4
_ 19692160 | 3456 43T 2304 6144

P12 = 1121280 53 P2s 53 P34 —53 P3s —53 P45,

1479095389 40521 5209 15097 15536
Pz = — — P25 P35 + ——— Pas,

82425600 1060 T 1060 T T30 265

73



723727793 16159 2033 8213 8207

Pa = orores00 T 1060 P2 T 3180 P T 530 P T g P4
179173199 10491 459 39T 450

P15 = 7899702400~ 4240 PP q240 P 2120 P T 965 P
220036553 29653 6357 BT 20218

P22 = 70158400 1060 P2 1060 T 330 P T Togs P
_ 120185699 1191 415 133 2472

P = o600 106 T2 T 106 P T 53 P07 a3 P
17198251 5961 1369 BT 116

P2 = 0195600 ~ 1060 25T 1060 P T B30 PP T 965 P

P25 = P25,
| 219T35691 1067 8831 7069 2578

P33 = 07976800 1060 25T 3180 P T B3 P T Tros P45

P34 = P34,

P3s = P35,
2086442821 277 5039 5039 4501

P4t = 7000107200 4240 PP T 127120 P2 T 2120 PP T g5 P

Pas =  Pas,
_ 580095101 67 L 213 L T2 243

Pss = 519504000 21200 P T 21200 P T To600 P T 1325 P4
_ 388630 3210 360 2160 5760

Joo = 11448 53 P2s 53 P34 —gg—'p35 -—55—-p4&
18524686181 429809 144683 435100 142828

1= T T399702400 1240 PP 7 ot20 P Te360 P57 795 P
_ 380730983 20633 3481 30481 20038

2= 793910720 121 PP T Toq P Taag P T Typg P45
2049530987 44823 5687 15471 21158

Goz = P2s 1666-p34 '—556—'p35 265 P45,

82425600 1060
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o4

qos

qd10

q11

q12

q13

q14

qd1s

q22

q23

24

q25

433

434

435

32307251 6383 2693 7231 4538

3663360 | 421 P T 17 Pt Tgzq P T g Pas
1111336813 10259 1611 15559 2078
089107200 4240 ¥ 1240 P 7 6360 P T 795 P4

ISUATS5881 | 420809 | LMGS3 435100 142828
329702400 1240 BT qom20 P Te3e0 P T Tr95 P
304363 3240 360 2160 5760
11448 53 P2s 53 P34 —53 P3s —53 P45,
2679152503 18239 9321 33563 111938
61819200 265 P27 opn P T Tron PO T Togs P

SETITESI6O | SION AMAT 52261 8713

164851200 2120 % 7 6360 P T 3180 PP T 795 P4
1614530453 50817 12713 9519 11918
329702400 4240 77 4210 7T 9120 PP o5 P

20020389 | 815 209 1663 826

10782144 424 P2 T qoq P31 T g3 PP T 159 P4

0
3086574227 6899 1589 31279 39848

517276800 T 1060 P25 T 1060 P T 1500 PP T Trg5 P4

1561833307 14059 | 3149 43739 93134
194553600 2120 U2 T o120 P37 3180 T Tqo5 P
CGI61203 1257 567 111678

0158400 ' 1060 72 7 1060 7' 530 %5 T 265 P17
0

61484501 | 961 563 ASIT 0538

20606400 265 72 T 795 P34 T Trgn P35 T Trgn P45
5319631 319 153 529 10
08910720 424 D% T g P34 T g3 P35 T 59 P4
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a4

qa5

qs5

1024301777 271

989107200

441

5029

332

1240 P2 7 440 P2 T 6360 P20 795 PO

Solving for @2 and P, such that ]32T = P, and equation (A.0.9) is satisfied yields :

PN~

Pn,nv—1

PN, nv—2

Pn,nv—3

Prn,nv—4

Pn,nv—5

Pn—-1,nv-1

| 63410865331 491453 163111 163111
1945536000 21200 VTN T 63600 PVTPYTYT 10600
163111
39314269 8064 896 5376
2989600 265 [NTINTS T 9g5 PN3N-4 T Tpen PN =S
14601

265 Pn—4,N—5,

68626721 6336 , 0 | 4189 1

5151600 @ 265 [VT2NTS T 565 PNodN—d T hasn Pdin-s
548278393 3959 1408 9816
61819200 265 PN"BNTS T Trgn Prosia-4 T HeeT PNodN=5
99598

705 Pn—4,N—5,
9243243557 4353 L6 | 151
65910480 | 848 INTENS T gug PNodN-d T D5 T P3N -S
188258177 4353 837 92511
412128000 5300 PNTENT5 T g0 PNoN—A T 950 P8-S
2023

1325 PN-tn=5

69122837699 553237 189359 189359
989107200 1240 P25 T Torog P-4 T o100

179819

795

Pn—4,n—5,

76

265

Pyv—3,n—5 T

1264

PNn—4,n—5,

625

33

Pn—4,n—5,

Pn-3,N-5



149692169 3456 437 2304 6144

Pyv-1,ny—2 = 1121230 + 53 Pn—2,n-5 +'?i;'pN—&N;4'+'—5§— Pn-3,8—5 — 3 DPn—4,N—5,
B 1479095389 40521 5209 15097 n
Pn—1,v—3 = 32495600 1060 Pn—2,N—5 iﬁéﬁ'pN—&N—4 _gii_pN—&N—S
15536
—265 Pn—4,N—5,

TATATT03 16159 , 033 , 8213
Pr—tn=4 = 507976800 T 1060 PNTENTS T 39gp PNmtN—a T Tpgn PNodiN=s

3207
705 PNn—4,n—5,
B __179173199 __10491 _ 459 _ 3497
Protw=s = 7399702400 4240 DVTRNT T gog0 PNt T Gpgq Prodas
|15
265 Pn—4,N—5,
B 229036553 29653 6357 3171
Pn—2,N—2 = 9153100 1060 Pn-2,N—5 iﬁéﬁ'pN—&N—4 i;ij'pN—&N—S
22248
265 Pn—4,N—5,
B 120185699 1191 +415 133 2472
Pn-2,n-3 = 3242560 106 Pn—2,N-5 106 Pn-3,n—4 53 Pn-3,n-5 53 Pn—4,n—5,
B 17198251 5961 1369 3577 +_EZ§
Pn—2,N—4 = 32495600 1060 Pn—2,N—5 iﬁéﬁ'pN—&N—4 iiij'pN—&N—S 265 PN—4,N—5,
Pn-2,n—5 = DPnN-2,N-5,
B 2197435691 +1067 8831 7069
Pr=sw=s = TOUT976800 | 1060 PVTRNT0 T 3180 DY Rt T Tzg Prmtas
25784
705 Pn—4,N—5,
Pn-3,N—4 = PnN-3,N—4>
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Pn-3,n-5

Pn—4,n—4

Pn—4,n—5

Pn—5,nN—5

qn,N

dn,N—1

qdn,N—2

dn,N-3

qn,N—4

dn,N—5

Pn-3,N—5,

2086442821 277 5039 5039
089107200 4240 PN=2N=5 T 19790 PY3N-4 T 5190

Pn-3,N-5

4501
_'?@g_pN—&N—&

Pn—4,n—5,

580995101 67 243 729

519501000 | 21200 PV T 3190 Yt T gggg PRt

243
_'igég'pN—&N—&

388639 3240 360 2160 5760

a8 g Prorves Ty Preaaea ST Pty — g

Pn—4,N—5,

18524686181 429809 144683 435109
329702400 4240 PNm2NS5 T Torog PNt =4 T Taagg

Pn-3,N-5

142828
705 Pn—4,n—5,

3897830983 | 20633 3481 30481
98910720 A2q PNoEN=S T TG Pesi—a T Taas

Pn-3,N-5

20038
159 Pn—4,n—5,

2049530987 44823 5687 15471

82425600 1060 VTNT5 T Tp60 PYRYYT Th30

Pn-3,N—5

21158
jﬂi;‘pN—&N—&

32307251 | 6353 2693 7931
3663360 | 424 [VTRNTS T qoqg PNodN—d4 T Teag

Pn-3,n-5

__4538
—159 Pn—4,n—5,

1111336813 10259 1611 15559

TORO10T200 4240 NS T Gggp PNt T Tgggg Pyt
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gdn—1,N

gdn—1,N-1

dn—1,N—-2

gdn—1,N-3

dn—1,N—4

dn—1,N—5

dN—2,N—2

dn—2,N—3

dN—2,N—4

2978

+ o5 Py—a,n—5,
18414785381 429809
329702400 4240 Pr-2v-s
142828
705 PN—4,n—5,
394363 3240 360
11448 53 Pv=2wv=57 g
2679152503 18239
61819200 265 PN-2N-S
111938
705 Pn—4,n—5,
S6TITC8169 | 81941 .
164851200 ' 2120 PN-2N-S
87134
705 Pn—4,n—5,
4614530453 50817 -
329702400 4240 PN72N-S
11918
W Pn—4,N—5,
29920580 . 815 L 219
10782144 | 424 PN=2N=5 T o)
0
3086574227 6899
247276300 | 1060 PNTBNTO
39848
705 Pn—4,N—5,
1561833307 14059
194553600 2120 PNBNSO

79

144683 435109
12720 PN-3N—4 T Tageg PNodi-s
2160 5760
Pn-3,n—4 53 Pn-3,n-5 53 Pn—4,n—5,
92391 33563
265 Pn—-3,N—4 705 Pn-3,N—5
41447 , 52261
6360 PN T Tgygg Prdws
12713 9519
4240 PNt T 5p9g Prod-s
| 1663 826
Pn-3,n—4 636 Pn-3,n-5 159 Pn—4,N—5,
1589 31279
—1060 Pn—3,nN—4 —1590 Pn-3,N—5
3149 43739
9120 PN=3m=1 7 Tg1gp Prosiw-s



dn—2,N—5

gdn—3,N—3

gdN—3,N—4

dnN—3,N—5

dN—4,N—4

dnN—4,N—5

gdn—5,N—5

23134

W PN—4,N—5,
6161203 1257 567 11 L 678
- 9158400 1060 Py—2,n-5 1060 Pn-3,n—4 530 Pn-3,n-5 265 Prn—4a,n—5,
-0
61484501 961 563 4837 0538
~ 720606400 | 265 TVTHNT T qgp PNTINTE T Tqgs Prmeas T g P
5319631 319 L1 L 70
T 08910720 424 PNTRNTO T gy Pt T g Prmsas T sg Pras,
-0
1024301777 | 271 o 5029 532
© OR9107200 | 4240 PYTRNT T dpag YN T g6 MY T g Pt
- 0.

We have now to choose free parameters pas, pss, Pas, Pas, Py—2,8—5, PN—3,8—4s PN—3.N—5, PN—4,N—5

such that the matrix P will be positive definite and the expression qNNuJQV + (gyoan +

Gnn—1)UnUy_y + qN_lN_lquv_l will be positive for all uy,uy_, € R. The last requirement

Q+Q7

is needed in order to insure the positive definiteness of the low right hand corner of 7

There are many possibilities to choose parameters which satisfy all the above stated criteria.

Choosing the specific values of those parameters:

we get

Tl B

P25 = 699840 P34 =

e B
Pr—2,N—5 = 139968 Pn-3,N—4 =

1

- —0
37 P3s )

Pn-3,n-5 =

gv

80

Pas = ga

0 1
’ 3

Pn—a,n—5 =



LYY

81

6965509 30563 —281 51007 —19075 19273
27993600 77760 1296 349920 373248 2332800
30563 10875041  —4159 171491  —209207 45253
77760 5598720 15552 466560 1399680 1866240
—281 —4159 1786169 10219 27791 —7471
1296 15552 1399680 46656 466560 699840

51007 171491 10219 1382789 1 0
349920 466560 46656 1399680 3
—19075  —209207 27791 1 5603021 1
373248 1399680 466560 3 5598720 3
19273 45253 —7471 0 1 27992569
2332800 1866240 699840 3 27993600
139965257 1 0 —731 100373 44129
139968000 3 139968 9331200 11664000
1 28005133 1 67423  —464311 —43139
3 27993600 3 1332800 6998400 1866240
0 1 6952357 65387 371203 112511
3 6998400 233280 2332800 1749600
—731 67423 65387 7863337 6853 —2801
139968 1332800 233280 6998400 77760 32400
100373 —464311 371203 6853 34458673 88303
9331200 6998400 2332800 77760 27993600 388800
44129 —43139 112511  —2801 88303 17135237
11664000 1866240 1749600 32400 388800 139968000
-2 554577  —1708109 38413 —418787 27143
3 5598720 2799360 93312 2799360 1119744
—7412017 1 246851  —999373 230747 —11383
5598720 6 174960 2799360 1866240 559872
1708109  —246851 0 1009613 252707 —5071
2799360 174960 1399680 2799360 466560
—38413 999373  —1009613 0 129581 98947
93312 2799360 1399680 174960 2799360
418787  —230747  —252707  —129581 0 4351153
2799360 1866240 2799360 174960 5598720
—27143 11383 5071 —98947  —4351153 0
1119744 559872 466560 2799360 5598720




0 21765521 87463 —10271 —5515 309251

27993600 2799360 2332800 550872 27993600
—21765521 0 665203 757411 543931  —188999
27993600 874800 13996800 9331200 2799360
—87463  —665203 0 5206429  —2046989 422449
. 2799360 874800 6998400 13996800 2332800
10271 —T5T411  —5296429 0 905953  —641321
2332800 13996800 6998400 874800 2799360
5515 —543931 2046989  —905953 1 21586961
559872 9331200 13996800 874800 6 27993600
—309251 188999  —422449 641321  —12255761 1
27993600 2799360 2332800 2799360 27993600 3
This results in
—% —é 0000 000000
—é é 0000 000000
A AT A AT
(A.0.20) Q1 +0Q7 0 00000 Q:+C; 000000
2 0 00000} 2 000000
0 00000 0000 é é
0 00000 0000 é %
It means that matrix () is such that
2 1
-2 —2 0 000
11
-z 3 0 000
0 0 0 ... 000
T
Q@+
(A.0.21) _— =
2
0 0 0 ... 000
0 0 0 0 é é
0 0 0 0 é %

The next task is to show that P is positive definite. We write the symmetric matrix P

as a sum of three symmetric matrices:
(A.0.22) P=P+P"4+ P
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The matrix P is given by

1
50 (1)
0 (1)
0 3 (1)
0 4 (1)
0 o5 0
1ol 0
Yre,
IR
5 13
M .
(A.0.23) PY = ..
1 1
R
5 1 3
0 11
3 2 (1)
0 3
0
and the matrices P*, P* are given by
6405637 30563 —281 51007 —19075 19273
27993600 77760 1206 349920 373248 2332800
30563 53815333  —4159 171491  —209207 45253
77760 27993600 15552 466560 1399680 1866240
—281 —4159 8790877 10219 27791 —7471
1296 15552 6998400 46656 466560 699840
51007 171491 10219 1347797 1 0
349920 466560 46656 1399680 3
—19075  —209207 27791 1 1064617 1
(A.024) P = 373248 1399680 466560 3 1119744 3
19273 45253 —7471 0 1 13995769
2332800 1866240 699840 3 27993600
0 0 0 0 0 0
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P =

(A.0.25)

0 0 0 0 0 0 0
0 69981257 1 0 —731 100373 44129
139968000 3 139968 9331200 11664000
0 1 26605453 1 67423 —464311 —43139
3 27993600 3 1332800 6998400 1866240
0 0 1 6777397 65387 371203 112511
3 6998400 233280 2332800 1749600
0 —731 67423 65387 7723369 6853 —2801
139968 1332800 233280 6998400 77760 32400
0 100373 —464311 371203 6853 33898801 88303
9331200 6998400 2332800 77760 27993600 388800
0 44129 —43139 112511 —2801 88303 14335877
11664000 1866240 1749600 32400 388800 139968000

We shall show that P is positive definite and P*, P* are non-negative definite. The

matrices P* and P™ are N x N matrices with zero entries except 6 x 6 upper-left (lower-

right) symmetric blocks and it is sufficient to show that these blocks are positive definite.

According to Silvester’s criteria a symmetric matrix is positive definite if all the principle

minors of this matrix are positive. Using this we denote by M; the minor of order 7 of a

matrix. For the matrix P* we have:

M
M,
Ms

(A.0.26)
M,y

6405637

27993600

22366252104972

783641640960000

1630773022037561105317
5484237660094464000000

20946061802034677109110129

94767626766432337920000000
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35610117388048877607629921
213227160224472760320000000

M5 -

178538343436422569834526621199
3070471107232407748608000000000

and for the matrix P® the principle minors of the lower-right block are:

69981257
139968000
A 1426526576794421
> 7 3918208204800000
V. BL4ATOT301100014982137
T 27421188300472320000000
(A.0.27)
v THT6TT52065080558078668217
t T 2369190669160308448000000000
. 1488181488223238077730788075321
T 1264543204489455206400000000000
Y 20817291436007440318120164509893
6 =

1919044442020254842830000000000000

Consequently, the matrices P* and P*® are non-negative definite.

The matrix PY is a symmetric diagonally dominant matrix with all entries on the main
diagonal positive. Therefore PY is a positive definite matrix (see [14], theorem 6.1.10).
Using this information and also the fact that the matrices P* and P" are non-negative

definite, we infer that the symmetric matrix
P =P+ P4 P"

is positive definite.
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Appendix B

Construction of the Fourth-Order
Compact Scheme

Here we derive an implicit scheme for (1.1.1) which is formally fourth-order accurate. We

begin with approximation of the first derivative g—;{ at inner points in the form
dv 1| aipéd
B.0.1 ) == :
(B.0.1) (8:1;)], h [1+bl521”
where
ov; = Vit1/2 — Vj-1/2, HU5 = RRLTL ; vj_l/Z;
or in the equivalent form
v, v, v, _ a
(B.0.2) by a]; + (1= 2b) ==+ by ajxl - i [ 041 —vj_1 ]

The relations between the coefficients aq, b; are derived by matching the Taylor series coef-
ficients of various orders. The first unmatched coefficient determines the formal truncation
error of the approximation (B.0.1). In order to generate a fourth-order scheme we require
that

1

(BO?)) a1 = 1, bl = 8

It follows from this and (B.0.1) that we have a fourth-order compact scheme in interior points
defined implicitly as
1 6vj+1 av]' 1 8vj_1 3

4 Ox Jdr 4 Oz _E[ =1 = Vi ]

(B.0.4)

Using this results we will write the approximation for the first derivative in the form

ov
(B.0.5) (Pa_x),:%@”)f’ j=0,...,N
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where P and @ are (N 4+ 1) x (N + 1) matrices with boundary closures of arbitrary size n
such that (we denote [ = N —n):

Goo --- Yon
Gno -+ Gun 5

3 3
0 —2 g 2

3 3

-3 03
—% qu ... Qv
qni ... 4yn

Poo -+ Pon
Pro Pon 3
1 1
0 R
P =
1 1
i o1
i pu ... Pin
Pnl -+« PN
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Denote by ]31, ]32, @1, @2 the corners of the matrices P and () respectively, i.e.

Poo Pon bu Pin
P = Py =

Pro Prn Pwi Pnw

oo Gon qn qin
Q1= Q2=

Ano Ann qni v

Recall that we are looking for a matrix P which is symmetric positive definite and for a
matrix @) which satisfies the Assumption 3 in Chapter 1 (Part I). Note that the matrix
P is automatically symmetric in interior area (without the corners) and the matrix @ is
automatically skew-symmetric in interior area (without the corners). For P to be symmetric

we must have, therefore

~

(B.0.6) (P =P, (P)' =P

We will show separately that the matrix P 1is positive definite. For () to satisfy the

Assumption 3, it must satisfy:

1
qoo 5(%1 +q10) O
100 | 2o+ a0 0
~{qo1 T G10 q11
(B.0.7) w: 2 ,
0 0 0
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(B.O.S) —_— = 1
2 0 _
NN gN-_1N-1 5 (QNN—1 + QN—1N)

1
0 5((]1\71\7—1 + QN—1N) gnnN

In addition to these properties the matrices P and () must satisfy the order properties of

the boundary. To retain the formal fourth-order accuracy of the interior scheme, boundary

closure must be accomplished to at least third-order accuracy (see [9], [10]). The demand

that the boundary closure be third-order accurate is equivalent to its ability to annihilate a

third-order polynomial in x exactly. Our problem is linear, which means that it is sufficient

to check the basis elementsv; = j7 (r =0,...,3). The derivatives of the basis functions are
p—

ry (r=0,...,3). Substituting the test functions and their derivatives into the matrices

Pl, @1 respectively yields the expression

(B.0.9) szk]jTl—l- 5;mn—|—1 qu]j + 5;mn—|—1) k=0,....n
] =0 :
ifn#k
5kn: .
1 ifn=%k

Substituting into the matrices ]52, @2 yields the expression (we recall that [ = N —n)

N
3
(BOlO) szk]‘j + 5kl(l — 1 qu]j — _5kl(l — 1) k= Z,N
=l

7=l

The block size n of the boundary matrices ]31, P, and @1, @2 could been any value and so
far it has not been specified. As it has been mentioned above, we demand that the boundary
closure be at least fifth-order accurate, therefore n > 3. For n = 3, equation (B.0.9) can be

written concisely in matrix notation as

010 0 100 0 00 0 0
o123 A1 10 1| 1o 0 o
BOI Py g o | =9 120 s [TT{o 0 0 o
01 6 27 139 21 3 11 40 144
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and equation (B.0.10) can be written as

0 1 2(N—=3) 3(N-3)? 1 N—=3 (N-3)? (N-3)°
A0 1 2AN=2) 3(N-2? | _ 0 1 N—2 (N-2)? (N-2)°
To1 20v=1) 3(N=1)2 | — “| 1 N=1 (N—=1)? (N—1)
01 2N 3N? 1 N N? N3
Qg G Qg Q3
Ifo 0 0 0
(B.0.12) -7l o o o o
0 0 0 0
where

ag = 3,

ar = 3N —11,

ay = 3N?—22N 440,
az = 3(N —=3)(N —4)>.

Using Mathematica to solve these equations for the matrices @1, @2 results in the expressions

—11/60 3 —3/2 1/3
- N ~1/3 —1/1 1 —1/6

1/6 -1 1/2 1/3
~1/3  3/2 =3 11/6

0 0 0 0

0 0 0 0

(B.0.13) +H 0 0 0 :
7/24 —5/4 17/8 —23/12

—11/60 3 —3/2 1/3
- N ~1/3 —1/1 1 —1/6
Q: = P ot /

1/6 -1 1/2 1/3
~1/3  3/2 =3 11/6

7/24 —5/4 17/8 —23/12

0 0 0 0
(B.0.14) -1 0 0 0
0 0 0 0

which relate the matrix @1 to the matrix ]51 and the matrix @2 to the matrix ]32 through
fiftth-order accuracy constraints. Solving for @1 and ]51 such that such that PT = ]31 and
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equation (B.0.7) is satisfied yields :

66527
Poo = W — 3ZQQ3 — 64p23 - 191}7337
2086
Po1 = T — 3QQQ3 — 63}723 - 192}7337
25915
Po2 = ———— -I— 12q23 -I_ 24}723 —I_ 75p337
288
75
Poz = Z — QQQg — 5p23 - 16}7337
12845
P11 = T — 96QQ3 — 200}723 - 591}7337
5183
P12 = —W —I— 18q23 -I_ 43}723 —I_ 120p337

P13 = 26 — 4923 - 8}?23 - 21}?33,

P2 = % — 8p2s — 15pss,

P23 = P23,

P33 = P33,

G0 = —522 + Tlgas + 144pas + 432pas,

o1 = % — 95¢23 — 192py3 — HT6p33,

Go2 = —% + 28¢23 + 60p23 4+ 180ps3,
171

fos = — 523 — 12pa3 — 36ps3,

dio = —% + 9523 + 192pa3 + 576pa3,
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1043

g1 = 5 7293 — 144pe3 — 432pa3,
G12 = % — 27q93 — 60p23 — 180ps3,
Gz = —42+ 4¢3 + 12py3 + 36p33,

g2 = 0,

G423 = (23,

g3 = 0.

Solving for @2 and P, such that ]32T = P, and equation (B.0.8) is satisfied yields :

66527
PN = W - 32(]1\7—2,1\7—3 - 64}71\7—2,1\7—3 - 191}71\7—3,1\7—37
2086
PNt = T - 32(]1\7—2,1\7—3 - 63}71\7—2,1\7—3 - 192}71\7—3,1\7—37
25915
PN = _W + 12(]1\7—2,1\7—3 + 24}71\7—2,1\7—3 + 75PN_3,N_37
75
PnNn_z = Z - 26]1\7—2,1\7—3 - 5PN_2,N_3 - 16PN_3,N_37
12845
Pnv_ino1 = T - 96(]1\7—2,1\7—3 - 200pN—2,N—3 - 591]91\7—3,1\7—37
5183
PN_in—2 = _W + 18(]1\7—2,1\7—3 + 43}71\7—2,1\7—3 + 120}71\7—3,1\7—37
PN_in—a = 26 — 4(]N—z,N—z - 8pN—2,N—3 - 21}71\7—3,1\7—37
5183
PN_2n_—2 = ﬁ - 8pN—2,N—3 - 15PN_3,N_37
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PN_2 N3 = Pn_2onN_3,

PN_anN—3 = Pn_3nN-_3,
N = —522 + 71(]1\7—2,1\7—3 + 144}71\7—2,1\7—3 + 432}71\7—3,1\7—37
16685
N1 = T - 95(]1\7—2,1\7—3 - 192}71\7—2,1\7—3 - 576]91\7—3,1\7—37
5183
gnN_2 = _T + 28(]1\7—2,1\7—3 + 60}71\7—2,1\7—3 + 180}71\7—3,1\7—37
171
gnN_z = T - 5QN—2,N—3 - 12}?N—2,N_3 - 36}71\7—3,1\7—37
16691
g N = _T + 95(]1\7—2,1\7—3 + 192}71\7—2,1\7—3 + 576]91\7—3,1\7—37
1043
g1 N1 = T - 72(]1\7—2,1\7—3 - 144}71\7—2,1\7—3 - 432}71\7—3,1\7—37
5183
gn_1,N—2 = T - 27(]1\7—2,1\7—3 - 60}71\7—2,1\7—3 - 180}71\7—3,1\7—37
gn_1,N—z3 = —42 + 4QN—2,N—3 + 12}71\7—2,1\7—3 + 36}71\7—3,1\7—37
gn_oN_2 = 07
gn_oN—3 = {n_2nN_3,
gn_aN_z = 0.

We have now to choose free parameters ¢q3, p2s, Pss, ¢n—2,8-3, Pn—2,5-3, Pn—3n—3, such
that the matrix P will be positive definite and the expression qyyu%+(qy_1n+quy—1 )Untiy_+

Gr-1y_1u>_, will be positive for all uy,uy_, € R. The last requirement is needed in order

Q+ Q"

possibilities to choose parameters which satisfy all the above stated criteria. Choosing the

to insure the positive definiteness of the low right hand corner of . There are many

specific values of those parameters:
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we get

(B.0.15)

(B.0.16)

427 1
pa3 = —, p33=1,

This results in

(B.0.17)

423 = =
576 4
143 1 |
dn—-2,N—-3 = T~y Pn-2,N-3= 7y Pn-3n5-3—1,
' 192 ' 4 '
79 11 =325 5 1 1 1 1
288 36 288 288 4 48 96
1 3 35 5 1 287 53 13
~ 36 9 288 144 ~ 4 288 288 288
P1: 5 P2: )
—25 35 287 1 1 53 10 e
288 288 288 4 48 288 9 36
5 5 1 1 1 =13 7 47
288 144 4 96 288 36 288
=5 451 —29 25 0 143 -1 5
8 576 144 576 192 48 192
—595 1 181 =5 —143 0 163 =5
~ 576 8 192 144 ~ 192 192 48
le 9 QQZ
29 —181 0 427 1 —163 1 45
144 192 576 48 192 8 64
—25 5 427 —5 5 -2 3
576 144 576 192 48 64 8
3 1 g9 0000
—L T 0000
A AT A AT
Q1+ Q _ 0 0 0 0 Q2+ Q5 {00 00
2 0 00 01" 2 00 0 0
0 00 0 00 L1
1 3
0 000 00 L 2
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It means that matrix () is such that

3 Ll 00 0

-1 1y 00 0

0 0 0 ...00 0
(B.0.18) el J; O _

0 0 0 ...00 0

0 0 0 011

0 0 0 0L 2

The next task is to show that P is positive definite. We write the symmetric matrix P as a

sum of three symmetric matrices:

(B.0.19) P =P+ P"4+ P

The matrix P is given by

b
0 5 0
0 L 0
0oLt 0
R A
R
(B.0.20) .
ol
i L3
0 L1
0 L 0
0 L o0
0

and the matrices P*, P* are given by
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1440 36 288 288

Hm%ioo

36 00 288 144

—25 35 1363 1
288 288 1440 4

N,

(B.0.21) P =| 3 14

(B.0.22) PF

Il
o
| =

]
A=
S
e ]
O
2]

1 1363 53 —13
4 1440 288 288

48 288 90 36

96 288 36 1440

We shall show that P is positive definite and P*, P* are non-negative definite. The
matrices P* and P™ are N x N matrices with zero entries except 4 x 4 upper-left (lower-
right) symmetric blocks and it is sufficient to show that these blocks are positive definite.
According to Silvester’s criteria a symmetric matrix is positive definite if all the principle
minors of this matrix are positive. Using this we denote by M; the minor of order 7 of a

matrix. For the matrix P* we have:

359

My o= 2
1440

96



33493

M2 -

129600
(B.0.23)

My — 668420969
2985984000
27250240067

M4 - PPN
286654464000

and for the matrix P® the principle minors of the lower-right block are:

M, - 199
1440
4801
M, - 80
43200
(B.0.24)
31546961
M, = 7
? 331776000
1287837683
M, = — 22
31850496000

Consequently, the matrices P* and P*® are non-negative definite.

The matrix P is a symmetric diagonally dominant matrix with all entries on the main
diagonal positive. Therefore P is a positive definite matrix (see [14] theorem 6.1.10).
Using this information and also the fact that the matrices P* and P" are non-negative

definite, we infer that the symmetric matrix
P =P+ pP" 4 pP"

is positive definite.
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Concluding Remarks

In this work a methodology for constructing compact implicit high-order finite-difference
schemes, for hyperbolic initial boundary value problems was presented. The SAT procedure
for imposing the analytical boundary conditions proposed by Carpenter, Gottlieb and Abar-
banel in [5] was generalized in such a way that (I) it essentially simplified the construction
of the approximation of the desirable accuracy from the technical point of view, (II) allowed
to apply this technique to the solution of two-dimensional problems. Temporal stability in
one space dimension was achieved by constructing such approximations that all eigenvalues
of the coefficient matrix of the corresponding system of ordinary differential equations had
a negative real part. On the other hand, convergence of the scheme was proved directly by
deriving an equation for the error and bounding the error norm. It was shown that [,

norm of the solution error might at most grow linearly in time with the time coefficient being
proportional to h™ where h is the mesh size and m the spatial order of accuracy. In order
to solve two-dimensional scalar problems d/dx+ /0y was approximated by the sum of two
differentiation matrices D, + D, where both D, and D, had eigenvalues with a negative
real part. Since the sum matrix D, + D, does not necessarily preserves this property, strict
stability of the scheme was proved by showing that Re (u, (D, + Dy)u), <0 VYu € RN in
some norm H. Numerical studies on hyperbolic scalar IBVPs in one and two space dimen-
sions have been performed using fourth- and sixth-order compact implicit difference schemes.
Boundary conditions were imposed using SAT boundary procedure. Numerical results that
support the theoretical analysis have been obtained. It have been shown that the actual
numerical solution had a temporal error bounded by a constant rather by a linear growth.

These theoretical and numerical results were presented in Chapters 1 and 2 (Part I).

In Chapter 3 (Part II) the methodology presented in Chapter 1 was used to solve one-
dimensional hyperbolic systems. Analytical proof of time stability for hyperbolic systems
was obtained for a restricted class of problems, namely when || L] - || R||< 1/5 for the
sixth-order accurate scheme and || L|| - || R||< 1/3 for the fourth-order scheme. However,
it has been numerically verified, by both measuring the error for long time integrations

and determining the eigenvalue spectrum of the semi-discrete system, that the method was
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effective and provided time stability even when a theoretical foundation was missing, e.g.
even for || L] -|| R|=1.

The numerical experiments were concluded by solving in Chapter 4 (Part IT) the two-
dimensional Maxwell’s equations in free space. The SAT method used for solving diagonal-
ized systems in 1-D was adopted to solve the two-dimensional system, which could not be
diagonalized simultaneously. Numerical results obtained by using both fourth- and sixth-
order "SAT” schemes were compared with the results obtained by using the fourth-order
Ty(2,4) scheme derived by E. Turkel and A. Yefet in [35], [36].

Construction of the sixth- and fourth-order compact implicit difference schemes used

throughout this work was discussed in detail in Appendix A and B respectively.
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