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Abstract
We study shallow water flows in river systems. An accurate description of such flows can
be obtained using the two-dimensional (2-D) shallow water equations, which can be numer-
ically solved by a shock-capturing finite-volume method. This approach can, however, be
inefficient and computationally unaffordable when a large river system with many tributaries
and complex geometry is to be modeled. A popular simplified approach is to model flow in
each uninterrupted section of the river (called a reach) as one-dimensional (1-D) and connect
the reaches at the river junctions. The flow in every reach can then be modeled using the
1-D shallow water equations, whose numerical solution is dramatically less computationally
expensive compared with solving its 2-D counterpart. Even though several point-junction
models are available, most of them prove to be sufficiently accurate only in the case of a
smooth flow though the junction. We propose a new 1-D/2-D river junction model, in which
each reach of the river is modeled by the 1-D shallow water equations, while the confluence
region, where the mixing of flows from the different directions occurs, is modeled by the
2-D ones. We define the confluence region to be a trapezoid with parallel vertical sides.
This allows us to take into account both the average width of each reach and the angle
between the directions of flow of the tributary and the principal river at the confluence. We
choose a trapezoidal confluence region as it is consistent with the 1-D model of the river. We
implement well-balanced positivity preserving second-order semi-discrete central-upwind
schemes developed in Kurganov and Petrova (Commun Math Sci 5:133–160, 2007) for the
1-D shallow water equations and in Shirkhani et al. (Comput Fluids 126: 25–40, 2016) for
the 2-D shallow water equations using quadrilateral grids. For the 2-D junction simulations
in the confluence region we choose a very coarse 2-D mesh as the goal of our model is
not to resolve the fine details of complex 2-D vortices that form around the junction, but
to efficiently compute average water depth and velocity in the connected 1-D reaches. A
special ghost cell technique is developed for coupling the reaches to the confluence region,
which is one of the most important parts of a good 1-D/2-D coupling method. The proposed
approach leads to very significant computational savings compared to numerically solving
the full 2-D problem. We perform several numerical experiments to demonstrate plausibility
of the proposed 1-D/2-D coupling model.

Keywords Shallow water flow in river systems · One-dimensional/two-dimensional
coupling · Quadrilateral confluence region · Well-balanced central-upwind scheme

Extended author information available on the last page of the article

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-019-00985-4&domain=pdf


1298 Journal of Scientific Computing (2019) 81:1297–1328

Mathematics Subject Classification 86A05 · 86-08 · 76M12 · 65M08 · 35L65

1 Introduction

There has been a growing interest in the scientific community in studying problems involving
flows in networks formed by domains joined by junctions. In the context of shallow water
applications, examples of such flows include river systems as well as man-made networks
such as canals. Flow in such a network can be modeled using the two-dimensional (2-D)
Saint-Venant (SV) system of shallow water equations [8]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ht + (hu)x + (hv)y = 0

(hu)t +
(

hu2 + 1

2
gh2

)

x
+ (huv)y = −ghBx ,

(hv)t + (huv)x +
(

hv2 + 1

2
gh2

)

y
= −ghBy,

(1.1)

where h(x, y, t) denotes the water depth, u(x, y, t) and v(x, y, t) are the x- and y-velocities,
respectively, B(x, y) denotes the bottom topography, and g is the gravitational constant.

2-D numerical simulations of flow in network such as river systems typically require very
fine discretization in both space and time to resolve flow behavior through a junction and
consequently may incur prohibitive computational costs. A common way to overcome this
difficulty is to model flow in each uninterrupted section of the river (called a reach) as one-
dimensional (1-D) and connect the reaches at the river junctions. For instance, in the river
junction model shown in Fig. 1, there are three reaches: the upstream reach, the downstream
reach, and the tributary. Suppose, in a given reach, flow in the cross-river direction is negligible
when compared to flow in the downstream direction. In this case, the system (1.1) reduces
to the 1-D SV system of shallow water equations:

⎧
⎪⎨

⎪⎩

ht + (hu)x = 0,

(hu)t +
(

hu2 + 1

2
gh2

)

x
= −ghBx ,

(1.2)

where x denotes the downstreamdirection for a given sectionof river,h = h(x, t),u = u(x, t)
and B = B(x).

We emphasize that numerically solving the 1-D system (1.2) is dramatically less compu-
tationally expensive than solving its 2-D counterpart (1.1). A key point in designing efficient
numerical methods for river networks is to model the flow in each reach by the 1-D SV

Fig. 1 River junction
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Fig. 2 A river junction modeled
as a point. R1 and R3 are the
upstream and downstream
reaches of the principal river and
R2 is the tributary. C is the point
of confluence

R2

R1 R3
C

system and couple all of the 1-D reaches that converge to a certain junction. This should be
done in a way that (i) accurately models flow through the river junction, (ii) is able to handle
all flow regimes (that is, both sub-, super- and transcritical flows); (iii) captures the influence
of junction geometry, and (iv) limits computational cost of numerical simulations.

Two main approaches may be identified in modeling river junctions. The first and most
common approach is to model the river junction as a point; see, e.g. Fig. 2. For subcritical
flows, the connecting boundary conditions are often taken to be continuity of flow,

(hu)(R3)
∣
∣
∣
C

= (hu)(R1)
∣
∣
∣
C

+ (hu)(R2)
∣
∣
∣
C

,

and continuity of either stage (w = h + B),

w(R1)
∣
∣
∣
C

= w(R2)
∣
∣
∣
C

= w(R3)
∣
∣
∣
C

,

or energy (E = w + u2

2g
),

E (R1)
∣
∣
∣
C

= E (R2)
∣
∣
∣
C

= E (R3)
∣
∣
∣
C

.

Most of the time flow through a river junction is smooth, so a number of existing models use
this condition; see, e.g. [1,5,7,10,24,25,30,34,35,38].

Alternatively, somemodels use a momentum balance at the junction point. This allows for
modeling of supercritical flow and includes river width and tributary angle, [4,28]. However,
it may result in nonphysical jumps in energy for subcritical flows, [5]. For this reason,
some models use a combination of energy and momentum conditions to handle sub- and
supercritical flow differently; see, e.g. [5,39].

The main advantage of modeling the junction as a point is simplicity. If the application
is limited to subcritical flow, practice has shown it to work well. Some of the disadvantages
are (i) it does not work in transcritical and supercritical flow regimes; (ii) it does not capture
the influence of junction geometry, when using continuity of flow and stage; (iii) there is
a preferred direction of flow so that shocks traveling one direction are captured but not in
another, when using momentum methods.

The second approach, taken in this paper, is to model the junctions as 2-D regions (see,
e.g. Fig. 3), solve the 2-D SV system there, and then connect the 2-D junctions to the 1-
D reaches using a 1-D/2-D coupling. This approach was considered in [14,15,32] using
a hexagonal region to represent the river junction. In [3], this approach was implemented
for T-shaped regions. One advantage of the 1-D/2-D coupling approach is that the shallow
water assumption is valid everywhere. This improves model consistency throughout the river
junction and allows for more reliable simulations of both sub-, super- and transcritical flows.

In this paper, we propose a new river junction model, in which each reach of the river is
modeled by the 1-D SV system (1.2) and the confluence region, where the mixing of flows
from the different directions occurs, by the 2-D SV system (1.1). We assume that x indicates
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Fig. 3 A river junction modeled
as a region. R1 and R3 are the
upstream and downstream
reaches of the principal river and
R2 is the tributary. D is the
confluence region DR1

R2

φ

R3

the direction of flow of themain river and denote by y the direction orthogonal to x .We define
the confluence region D to be a trapezoid with parallel vertical sides; see Fig. 3. Denote the
domains corresponding to upstream and downstream reaches of the principal river by R1 and
R3, respectively, and denote by φ the angle between the directions of flow of the tributary R2

and the principal river at the confluence. We choose a trapezoidal confluence region as is it
consistent with the 1-D model of the river. We wish to make clear that while the trapezoidal
confluence region is determined by the geometry of the actual junction, it is not a direct
model of the physical river junction, but a 2-D domain on which the mixing that occurs at
the junction is modeled. For this reason, a maximum angle of φ = π/2 is sufficient in all
but extreme cases. If a river junction does not fit these assumptions, a more general region D
must be considered. Note that by reversing the flow, a river diversion may also be modeled
using this set-up.

We implement well-balanced positivity preserving second-order semi-discrete central-
upwind schemes developed in [19] for the 1-D SV system and in [33] for the 2-D SV system
using quadrilateral grids. It should be observed that for the 2-D junction simulations we will
choose a very coarse 2-D mesh. As the goal of this model is not to resolve the fine details
of complex 2-D vortices that form around the junction, but to efficiently compute average
water depth and velocity in the connected 1-D reaches, this coarse 2-D mesh is sufficient.
A special ghost cell technique will be developed for coupling the reaches to the confluence
region, which is one of the most important parts of a good 1-D/2-D coupling method; see,
e.g. [3,9,27,31,34,40]. The proposed approach does not only allow one to easily model the
geometry of the river junction, including relative widths of the reaches, the angle of entry
of the tributary and the bottom topography, but also leads to very significant computational
savings compared to solving the full 2-D problem.

The paper is organized as follows. In Sect. 2, we introduce a specific way of discretizing
both the 1-D river reaches and 2-D confluence region. In Sect. 3, we describe the 1-D and 2-D
second-order semi-discrete central-upwind schemes. Section 4 is devoted to the description
of the 1-D/2-D coupling strategy. A number of numerical examples is presented in Sect. 5.
Finally, in Sect. 6, we discuss possible extensions of the proposed model and directions for
future work.

2 Domain Discretization

In this section, we introduce a specific way of discretizing both the 1-D river reaches and
2-D confluence region outlined in Fig. 3.
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Fig. 4 Discretization of reach R1 as a 1-D domain. Cells centered at x(R1)
0 and x(R1)

N1+1 are ghost cells

2.1 Discretization of River Reaches

In order to discretize a river reach as a 1-D domain, we partition the river into cells which
go all the way across the river as shown in Fig. 4. For reach Ri , i = 1, 2, 3, we indicate
corresponding variables using superscript (Ri ). We denote cell centers by x (Ri )

j , for j =
1, . . . , Ni , numbered in the direction of flow and we define additional cells, called ghost
cells, extending each domain by two cells centered at x (Ri )

0 and x (Ri )
Ni+1. For the simplicity of

presentation, we assume the interior cells are of uniform width �x = x (Ri )
j+ 1

2
− x (Ri )

j− 1
2
within

each reach Ri , but the ghost cells might be of different width. We denote these widths�x (Ri )
0

and �x (Ri )
Ni+1 and will explain how to determine them in Sect. 2.3 below.

2.2 Discretization of Confluence Region

Before describing the specific discretization of the trapezoidal confluence region D, we must
consider the choice of dimensions of D as well as the grid size. In practice, each river junction
model is intended to form a small part in a largermodel representing a river system containing
many reaches and junctions. As a result, computation of solution at the scale of the whole
system may be dominated by computation at river junctions. It is therefore impractical to
attempt to resolve 2-Dwaves appearing in the actual confluence region. Instead, we introduce
an artificial trapezoidal domain D, designed to take into account some geometrical features
of the actual confluence region and discretized using a small number of M × M cells (our
numerical experiments reported in Sect. 5 indicate that M = 4 as in Fig. 5 seems to be
sufficient for accurate results). The size of the 2-D cells depends on the mesh size used in the
1-D reaches. Ideally, the grid size in the confluence region should be comparable to the grid
size in the reaches. In this case the area of D is ∼ M2(�x)2, which can be smaller than the
size of the actual confluence region. However, if the 1-D flow is underresolved (�x is large),
then we take the domain D to be roughly of the same size as the actual confluence region
and then still split D into M2 cells so that the grid size in D will be (much) smaller than the
grid size in the reaches.

To quantify the aforementioned approach, we denote by bi the width of reach Ri , i =
1, 2, 3, at the junction and distinguish between the following two cases.
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Fig. 5 Discretization of the
general confluence region D with
M = 4. Ghost cells are shown
using dotted lines. Ghost cells are
rectangular on each of the sides
corresponding to inflow and
outflow. On the side
corresponding to the river bank,
ghost cells are reflections of the
interior cells across the boundary

z1,1

zNx,Ny

Reach 1 Reach 3

R
ea

ch
 2

Case 1. �x is large compared to the size of the physical junction, that is, �x >
1
4 min(b1, b2, b3). This will likely be the case in very large river system models unless an
adaptive moving mesh or adaptive mesh refinement strategy is used to enhance the resolution
of strong nonsmooth waves. In this case, we define D to have side lengths b1, b2 and b3 on
the sides corresponding to reaches R1, R2 and R3. These three side lengths together with the
angle φ between R1 and R2 uniquely define the trapezoidal confluence domain D. Notice
that in the case where �x is very large, this choice of dimension may limit the size of time
steps.

Case 2. �x is small compared to the size of the physical junction. In this case, we reduce the
size of the confluence region in a way that preserves the ratios of b1, b2 and b3. To this end,
we set the side lengths of the trapezoidal region D to be

b∗
1 = M�xb1

√
2

(b1 + b3)b2 sin φ
, b∗

2 = b2
b1

b∗
1, b∗

3 = b3
b1

b∗
1 .

This results in a confluence region D of area∼ (M�x)2 with relative side lengths that reflect
the geometry of the physical junction.

We now denote the centers of gravity of each 2-D cell C j,k by z j,k = (x j,k, y j,k) with
j, k = 1, . . . , M numbered left to right and bottom to top and the cell corners by z j± 1

2 ,k± 1
2
.

Note that there is no superscript, but the double subscript indicates a point in the 2-D domain.
For the three sides corresponding to reaches, we define rectangular ghost cells extending

our domain in each direction as shown in Fig. 5. These are denoted using the subscripts
j, k = 0, M+1. Specifically, j = 0 corresponds to R1, k = 0 corresponds to R2, j = M+1
corresponds to R3, and all having the width �x . We set a wall boundary condition at the
upper (river bank) side of D. The ghost cells on this fourth side are reflections of the interior
boundary cells across the boundary; see Fig. 5.
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2.3 One-Dimensional Ghost Cells

We are now ready to give details of how to define the ghost cell widths for the 1-D reaches.
Consider the confluence region shown in Fig. 5. Along the boundary corresponding to

reach R1, the cells are of constant width in the x-direction (the direction of R1), so the width
of the ghost cell at the right ends of R1 is given by

�x (R1)
N1+1 = x 3

2 ,k − x 1
2 ,k . (2.1)

Similarly, the width of the ghost cell at the left end of R3 is

�x (R3)
0 = xM+ 1

2 ,k − xM− 1
2 ,k . (2.2)

Note that the quantities in both (2.1) and (2.2) are independent of k.
The direction of R2 is (cosφ, sin φ), so we set the ghost cell width for the right end to be

the average cell width in this direction. One way to calculate this is to set

�x (R2)
N2+1 = sin φ

M + 1

M+1∑

j=1

(
y j− 1

2 , 32
− y j− 1

2 , 12

)
.

The other ghost cells, which are located away from the 2-D confluence region, are all set
to be of width �x , that is, �x (R1)

0 = �x (R2)
N2+1 = �x (R3)

0 = �x .
Equipped with the entire domain discretization, we proceed to a description of both 1-D

and 2-D numerical schemes.

3 Numerical Schemes

The studied 1-D/2-D model of the river and tributary requires the implementation of two
numerical schemes: a 1-D scheme for the river reaches and a 2-D scheme for the confluence
region. In practice, any stable and sufficiently accurate schemes may be used. As an example,
we use the well-balanced positivity preserving second-order semi-discrete central-upwind
schemes described in [19] and [21]. In this section, we briefly describe these schemes as
applied to the river junction model.

3.1 One-Dimensional Scheme

In each of the river reaches Ri , i = 1, 2, 3,we apply the 1-D central-upwind scheme described
in [19]. Since the scheme is independent of reach, we drop the reach indicator superscripts
in this section.

Let us denote by q := hu the discharge and introduce the vector of unknown quantities
U := (h, q)�. We also denote by

U j (t) ≈ 1

�x

x
j+ 1

2∫

x
j− 1

2

U(x, t) dx,

the cell averages of U , which are assumed to be available at a certain time level t . We note
that all of the computed indexed quantities will depend on t , but from now on we will omit
this dependence for the sake of brevity.
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Piecewise Linear Reconstruction of Equilibrium Variables Equipped with the computed
cell averages, we first approximate the solution using a global (in space) piecewise linear
interpolant. Following [17,19], we reconstruct the equilibrium variables V := (w := h +
B, q)� (those that remain constant at “lake-at-rest” steady states, for which w ≡ Const and
q ≡ 0) as follows:

Ṽ (x) =
∑

j

P j (x)χ [x
j− 1

2
,x

j+ 1
2
](x). (3.1)

Here, χ [x
j− 1

2
,x

j+ 1
2
] is the characteristic function corresponding to the j th cell and P j is a

linear function of the form

P j (x) = V j + (P x ) j (x − x j ), (3.2)

where (P x ) j are the slopes that have to be at least first-order approximations of the
corresponding derivatives V x (x j , t). In order to make the reconstruction (3.1), (3.2) non-
oscillatory, the slopes (P x ) j are to be computed using a nonlinear limiter. A library of such
limiters is available; see, e.g. [11,16,23] and references therein. In the numerical experiments
reported in Sect. 5, we have used the generalized minmod limiter (see, e.g. [29,36,37]):

(P x ) j = minmod

(

κ
V j+1 −V j

�x
,
V j+1 −V j−1

2�x
, κ

V j −V j−1

�x

)

(3.3)

applied in a componentwise manner. Here, V j = (w j , q j )
�, w j := h j + B j , where the

quantity B j is defined below, κ ∈ [1, 2] is a parameter that controls the amount of numerical
diffusion in the overall method—larger values of κ correspond to sharper reconstructions,
but typically lead to (slightly) more oscillatory results, and the minmod function is defined
by

minmod(a1, a2, . . .) =
⎧
⎨

⎩

min(a1, a2, . . .), if ai > 0,∀i
max(a1, a2, . . .), if ai < 0,∀i
0, otherwise.

After reconstructing Ṽ , we compute the left and right point values of V at each cell
interface:

V−
j+ 1

2
= P j (x j+ 1

2
) and V+

j+ 1
2

= P j+1(x j+ 1
2
), (3.4)

and then obtain the one-sided point values of the water depth h±
j+ 1

2
= w±

j+ 1
2
− Bj+ 1

2
, where

Bj+ 1
2

= B(x j+ 1
2
) if B is continuous and Bj+ 1

2
= 1

2

[
limx→x+

j+ 1
2

B(x) + limx→x−
j+ 1

2

B(x)
]

otherwise.

Continuous Piecewise Linear Approximation of the Bottom Topography Following [19],
we replace the given bottom topography function B with its continuous piecewise linear
approximant

B̃(x) = Bj− 1
2

+
(
Bj+ 1

2
− Bj− 1

2

)
·
x − x j− 1

2

�x
, x j− 1

2
≤ x ≤ x j+ 1

2
.

This choice of approximation has several advantages. First, the cell center values for B̃,

Bj :=
Bj+ 1

2
+ Bj− 1

2

2
= B j ,
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are equal to the cell averages of B̃. Also, the approximation is second order accurate so
that the overall accuracy of the method is unchanged. Furthermore, this approximation will
allow one to easily enforce the positivity of the reconstructed water depth after the following
positivity correction procedure is implemented.

Positivity Preserving Correction of w̃ We note that the use of aforementioned nonlinear
limiters cannot prevent appearance of negative point values of h−

j+ 1
2
or h+

j− 1
2
at the cell

interfaces in cells whereh j is very close to Bj . Following [19], we correct the reconstruction
of w̃ in the following conservative way:

1. If w−
j+ 1

2
< Bj+ 1

2
, then set w−

j+ 1
2

= Bj+ 1
2
and w+

j− 1
2

= 2w j − Bj+ 1
2
, and consequently

h−
j+ 1

2
= 0 and h+

j− 1
2

= 2 (w j − B j ).

2. If w+
j− 1

2
< Bj− 1

2
, then set w+

j− 1
2

= Bj− 1
2
and w−

j+ 1
2

= 2w j − Bj− 1
2
, and consequently

h+
j− 1

2
= 0 and h−

j− 1
2

= 2 (w j − B j ).

Time Evolution We use the semi-discrete central-upwind scheme from [19] and evolve the
cell averages of U in time by solving the following system of ODEs:

d

dt
U j = −

H j+ 1
2

− H j− 1
2

�x
+ S j , (3.5)

where

Hj+ 1
2

=
a+
j+ 1

2
F
(

U−
j+ 1

2

)

− a−
j+ 1

2
F
(

U+
j+ 1

2

)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

[

U+
j+ 1

2
− U−

j+ 1
2

]

(3.6)

are central-upwind numerical fluxes and F(U) = (
q,

q2

h + 1
2 gh

2
)� denote the flux.

In (3.5), the source term S j is computed in a well-balanced manner (see [17,19]):

S j =
(

0,−gh j

B j+ 1
2

− Bj− 1
2

�x

)�
.

In (3.6), a±
j+ 1

2
are one-sided local speeds of propagation determined by the eigenvalues

of the flux Jacobian ∂F
∂U ; see [18]. For the SV system (1.2), the eigenvalues of the Jacobian

are u ± √
gh, and therefore

a−
j+ 1

2
= min

{

u−
j+ 1

2
−
√

gh−
j+ 1

2
, u+

j+ 1
2

−
√

gh+
j+ 1

2
, 0

}

,

a+
j+ 1

2
= max

{

u−
j+ 1

2
+
√

gh−
j+ 1

2
, u+

j+ 1
2

+
√

gh+
j+ 1

2
, 0

}

.

We finally note that in order to evaluate the one-sided local speeds of propagation and
numerical fluxes one needs to compute the point values of the velocity u±

j+ 1
2
. In principle,

u = q/h, but this formula should be desingularized to avoid division by zero or by very small
values of h. This can be done in many different ways, for example, by setting

u±
j+ 1

2
=

√
2 h±

j+ 1
2
q±
j+ 1

2√
(h±

j+ 1
2
)4 + max

{
(h±

j+ 1
2
)4, ε

} , (3.7)
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where ε is a very small number; see [19] for discussion on different desingularization strate-
gies. For consistency, after computing u±

j+ 1
2
using (3.7) we need to recompute q±

j+ 1
2

=
h±
j+ 1

2
· u±

j+ 1
2
.

3.2 Two-Dimensional Numerical Scheme

For the confluence region described in Sect. 2.2, we use the well-balanced and positivity
preserving method for structured quadrilateral grids described in [21]; see also [20] for the
derivation of the central-upwind fluxes on quadrilateral grids and [33] for the central-upwind
scheme for unstructured quadrilateral grids.

Let us denote the 2-D velocity vector by u := (u, v)� and the discharge vector by
q := hu = (hu, hv)�. The vector of unknowns in the confluence region is then denoted by
U := (h, q)� and its cell averages over cell C j,k by

U j,k(t) = 1
∣
∣C j,k

∣
∣

∫

C j,k

U(z, t) d z, z := (x, y).

As in the previous section, we will omit writing the dependence on t .
Piecewise Linear Reconstruction of Equilibrium Variables As in the 1-D case, we approxi-
mate the solution using a piecewise linear interpolant by reconstructing equilibrium variables
V := (w := h + B, q)�. We denote this approximation by

Ṽ(z) =
∑

j,k

P j,k(z)χC j,k
,

whereχC j,k
is the characteristic function corresponding to cell C j,k and P j,k(z) is a linear

function of the form

P j,k(z) =V j,k + (P j,k
)

x (x − x j ) + (P j,k
)

y (y − yk).

Here,V j,k = (w j,k, q j,k)
�, w j,k = h j,k + Bj,k , where Bj,k is defined below, and

(P j,k
)

x
and

(P j,k
)

y are approximations of Vx
(
z j,k

)
and Vy

(
z j,k

)
, respectively. Since the compu-

tational cells are non-rectangular, estimating these derivatives is nontrivial. There are several
ways to do this. We estimate them in a two-step process following [33]. First, for each cell,
we construct four linear interpolants on the triangles shown in Fig. 6 and compute the x- and
y-derivatives of these interpolants. Next, we use these derivatives together with a minmod
slope limiter to estimate the slopes for each cell in a way that avoids numerical oscillations
and preserves cell averages.

For the first step, let (V j,k)
+,+
x and (V j,k)

+,+
y denote the x- and y-derivatives of the

component-wise linear interpolant Ṽ through the points z j,k , z j+1,k and z j,k+1. Similarly,
let (V j,k)

+,−
x and (V j,k)

+,−
y denote the x- and y-derivatives of the interpolant through the

points z j,k , z j+1,k and z j,k−1; let (V j,k)
−,−
x and (V j,k)

−,−
y denote the x- and y-derivatives

of the interpolant through the points z j,k , z j−1,k and z j,k−1; and let (V j,k)
−,+
x and (V j,k)

−,+
y

denote the x- and y-derivatives interpolant through the points z j,k , z j−1,k and z j,k+1.
We now set

(P j,k
)

x = minmod
(
κ
(V j,k

)+,+
x , κ

(V j,k
)+,−
x , κ

(V j,k
)−,−
x , κ

(V j,k
)−,+
x ,

1

4

[(V j,k
)+,+
x + (V j,k

)+,−
x + (V j,k

)−,−
x + (V j,k

)−,+
x

] )
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Fig. 6 Linear reconstruction for
2-D structured grid

zj,k

zj,k+1

zj,k−1

zj−1,k zj+1,k

and

(P j,k
)

y = minmod
(
κ
(V j,k

)+,+
y , κ

(V j,k
)+,−
y , κ

(V j,k
)−,−
y , κ

(V j,k
)−,+
y ,

1

4

[(V j,k
)+,+
y + (V j,k

)+,−
y + (V j,k

)−,−
y + (V j,k

)−,+
y

] )
,

where 1 ≤ κ ≤ 2 is a minmod parameter with higher values giving sharper but possibly
more oscillatory solutions.

Lastly, we define approximate cell edge values

VE
j,k := P j,k(z j+1,k), VW

j,k := P j,k(z j−1,k),

VN
j,k := P j,k(z j,k+1), VS

j,k := P j,k(z j,k−1),

where z j± 1
2 ,k and z j,k± 1

2
are cell edge midpoints as shown in Fig. 7.

Continuous Piecewise Linear Approximation of the Bottom Topography As in the 1-D case,
we approximate the bottom topographywith a continuous piecewise linear approximation.We
follow the method proposed in [33], according to which the bottom interpolant B̃(z) in each
quadrilateral cellC j,k consists of four continuously connected linear pieces constructed over
the following four triangles shown in Fig. 8: TW

j,k (the triangle with vertices z j,k , z j− 1
2 ,k− 1

2

and z j− 1
2 ,k+ 1

2
), T E

j,k (the triangle with vertices z j,k , z j+ 1
2 ,k− 1

2
and z j+ 1

2 ,k+ 1
2
), T S

j,k (the

triangle with vertices z j,k , z j− 1
2 ,k− 1

2
and z j+ 1

2 ,k− 1
2
) and TN

j,k (the triangle with vertices z j,k ,
z j− 1

2 ,k+ 1
2
and z j+ 1

2 ,k+ 1
2
).
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zj,k

zj,k+1

zj,k−1

zj−1,k zj+1,k

−nj− 1
2 ,k

nj,k+ 1
2

nj+ 1
2 ,k

−nj,k− 1
2

zj− 1
2 ,k zj+ 1

2 ,k

zj,k+ 1
2

zj,k− 1
2

zj− 1
2 ,k+

1
2

zj− 1
2 ,k− 1

2

zj+ 1
2 ,k+

1
2

zj+ 1
2 ,k− 1

2

Fig. 7 Notation for 2-D grid

Fig. 8 Cell Ci, j with
sub-triangles used in the linear
approximation of the bottom
topography

zj,k
TW
j,k

TE
j,k

TN
j,k

TS
j,kzj− 1

2 ,k− 1
2

zj− 1
2 ,k+ 1

2

zj+ 1
2 ,k− 1

2

zj+ 1
2 ,k+ 1

2

zj− 1
2 ,k

zj,k+ 1
2

zj+ 1
2 ,k

zj,k+ 1
2

In order to complete the construction of B̃, we need to specify the point values of B̃ at each
of the aforementioned triangle vertices: z j,k , z j− 1

2 ,k− 1
2
, z j+ 1

2 ,k− 1
2
, z j− 1

2 ,k+ 1
2
and z j+ 1

2 ,k+ 1
2
.

This can be done as follows. First, we set the values of B̃ at the corners of C j,k :

Bj± 1
2 ,k± 1

2
:= B̃

(
z j± 1

2 ,k± 1
2

) = B
(
z j± 1

2 ,k± 1
2

)
and

Bj± 1
2 ,k∓ 1

2
:= B̃

(
z j± 1

2 ,k∓ 1
2

) = B
(
z j± 1

2 ,k∓ 1
2

)
.

Second, we obtain the values of B̃ at the cell edge centers:

Bj± 1
2 ,k := B̃

(
z j± 1

2 ,k

) =
B
(
z j± 1

2 ,k+ 1
2

) + B
(
z j± 1

2 ,k− 1
2

)

2
,

Bj,k± 1
2

:= B̃
(
z j,k± 1

2

) =
B
(
z j+ 1

2 ,k± 1
2

) + B
(
z j− 1

2 ,k± 1
2

)

2
,
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which are then averaged with appropriate weights to give the following cell center value:

Bj,k := B̃(z j,k)= 1
∣
∣C j,k

∣
∣

(∣
∣
∣TW

j,k

∣
∣
∣ Bj− 1

2 ,k+
∣
∣
∣T E

j,k

∣
∣
∣ Bj+ 1

2 ,k+
∣
∣
∣T S

j,k

∣
∣
∣ Bj,k− 1

2
+
∣
∣
∣TN

j,k

∣
∣
∣ Bj,k+ 1

2

)
.

Positivity Preserving Correction At this point, we can recover cell edge center values for
the water depth hEj,k = wE

j,k − Bj+ 1
2 ,k , h

W
j,k = wW

j,k − Bj− 1
2 ,k , h

N
j,k = wN

j,k − Bj,k+ 1
2
and

hSj,k = wS
j,k − Bj,k− 1

2
. This reconstruction, however, does not guarantee that h will remain

non-negative; so following [17] we reconstruct h instead of w in dry or near dry cells. We
consider a cell to be near dry if

min
{
w j,k, w j±1,k, w j,k±1

}
< max

{
Bj,k, Bj±1,k, Bj,k±1

}

or h j,k = w j,k − Bj,k < τ for some tolerance 0 < τ << 1.

Time Evolution We evolve the cell averages of U using the semi-discrete central-upwind
scheme:

d

dt
U j,k(t) = − 1

∣
∣C j,k

∣
∣

(
H j+ 1

2 ,k − H j− 1
2 ,k + H j,k+ 1

2
− H j,k− 1

2

)
+ S j,k, (3.8)

where the numerical fluxes are defined by

H j+ 1
2 ,k =


 j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

(

cos
(
θ j+ 1

2 ,k

)
[

a+
j+ 1

2 ,k
F
(
UE

j,k

)
− a−

j+ 1
2 ,k

F
(
UW

j+1,k

)]

+ sin
(
θ j+ 1

2 ,k

)
[

a+
j+ 1

2 ,k
G
(
UE

j,k

)
− a−

j+ 1
2 ,k

G
(
UW

j+1,k

)]

+a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

(
UW

j+1,k − UE
j,k

))

H j,k+ 1
2

=

 j,k+ 1

2

b+
j,k+ 1

2
− b−

j,k+ 1
2

(

cos
(
θ j,k+ 1

2

)
[

b+
j,k+ 1

2
F
(
UN

j,k

)
− b−

j,k+ 1
2
F
(
US

j,k+1

)]

+ sin
(
θ j,k+ 1

2

)
[

b+
j,k+ 1

2
G
(
UN

j,k

)
− b−

j,k+ 1
2
G
(
US

j,k+1

)]

+b+
j,k+ 1

2
b−
j,k+ 1

2

(
US

j+1,k − UN
j,k

))

.

Here, F(U) = (
hu, hu2 + 1

2 gh
2, huv

)� and G(U) = (
hv, huv, hv2 + 1

2 gh
2
)� are the

shallow water fluxes; 
 j+ 1
2 ,k := |z j+ 1

2 ,k+ 1
2

− z j+ 1
2 ,k− 1

2
| and 
 j,k+ 1

2
:= |z j+ 1

2 ,k+ 1
2

−
z j− 1

2 ,k+ 1
2
| are cell edge lengths and n j+ 1

2 ,k = (
cos(θ j+ 1

2 ,k), sin(θ j+ 1
2 ,k)

)� and n j,k+ 1
2

=
(
cos(θ j,k+ 1

2
), sin(θ j,k+ 1

2
)
)� are unit outward normal vectors as shown in Fig. 7.

The one-sided local speeds of propagation, a± and b±, are estimated by the maximum
positive and minimum negative eigenvalues of the Jacobian of the corresponding directional
flux:

123

Author's personal copy



1310 Journal of Scientific Computing (2019) 81:1297–1328

a+
j+ 1

2 ,k
= max

{
uEj,k · n j+ 1

2 ,k +
√

ghEj,k, u
W
j+1,k · n j+ 1

2 ,k +
√

ghWj+1,k, 0
}
,

a−
j+ 1

2 ,k
= min

{
uEj,k · n j+ 1

2 ,k −
√

ghEj,k, u
W
j+1,k · n j+ 1

2 ,k −
√

ghWj+1,k, 0
}
,

b+
j,k+ 1

2
= max

{
uNj,k · n j,k+ 1

2
+
√

ghNj,k, u
S
j,k+1 · n j,k+ 1

2
+
√

ghSj,k+1, 0
}
,

b−
j,k+ 1

2
= min

{
uNj,k · n j,k+ 1

2
−
√

ghNj,k, u
S
j,k+1 · n j,k+ 1

2
−
√

ghSj,k+1, 0
}
.

As in the 1-D case, we desingularize the velocities u and v by setting

u =
√
2h2u

√
h4 + max{h4, ε} and v =

√
2h2v

√
h4 + max{h4, ε}

at the centers of cell edges. As before, ε is a very small number. Following this, we recompute
the corresponding point values of the discharges by setting q = h · u.

Finally, the source term should be discretized in such a way which will result in a well-
balanced central-upwind scheme. We use the quadrature developed in [22]; see also [2,6,33].
The first component of the source term is trivial and S(1)

j,k = 0. The second component of the
discrete source term is

S(2)
j,k = g

∣
∣C j,k

∣
∣

[
I (2)
j,k − I I (2)

j,k

]
,

where

I (2)
j,k =


 j+ 1
2 ,k

2
cos

(
θ j+ 1

2 ,k

) (
wE

j,k − Bj+ 1
2 ,k

)2 −

 j− 1

2 ,k

2
cos

(
θ j− 1

2 ,k

) (
wW

j,k − Bj− 1
2 ,k

)2

+

 j,k+ 1

2

2
cos

(
θ j,k+ 1

2

) (
wN

j,k − Bj,k+ 1
2

)2 −

 j,k− 1

2

2
cos

(
θ j,k− 1

2

) (
wS

j,k − Bj,k− 1
2

)2

and

I I (2)
j,k = (

w j,k − Bj,k
) [

wE
j,k
 j+ 1

2 ,k cos
(
θ j+ 1

2 ,k

) + wW
j,k
 j− 1

2 ,k cos
(
θ j− 1

2 ,k

)

+ wN
j,k
 j,k+ 1

2
cos

(
θ j,k+ 1

2

) + wS
j,k
 j,k− 1

2
cos

(
θ j,k− 1

2

)]
.

Similarly, the third component of the discrete source term is

S(3)
j,k = g

∣
∣C j,k

∣
∣

[
I (3)
j,k − I I (3)

j,k

]
,

where

I (3)
j,k =


 j+ 1
2 ,k

2
sin

(
θ j+ 1

2 ,k

) (
wE

j,k − Bj+ 1
2 ,k

)2 −

 j− 1

2 ,k

2
sin

(
θ j− 1

2 ,k

) (
wW

j,k − Bj− 1
2 ,k

)2

+

 j,k+ 1

2

2
sin

(
θ j,k+ 1

2

) (
wN

j,k − Bj,k+ 1
2

)2 −

 j,k− 1

2

2
sin

(
θ j,k− 1

2

) (
wS

j,k − Bj,k− 1
2

)2

and

I I (3)
j,k = (

w j,k − Bj,k
) [

wE
j,k
 j+ 1

2 ,k sin
(
θ j+ 1

2 ,k

) + wW
j,k
 j− 1

2 ,k sin
(
θ j− 1

2 ,k

)

+ wN
j,k
 j,k+ 1

2
sin

(
θ j,k+ 1

2

) + wS
j,k
 j,k− 1

2
sin

(
θ j,k− 1

2

)]
.
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4 One-Dimensional/Two-Dimensional Coupling

Correctly coupling the reaches to the confluence region is perhaps the crucial part of the
proposedmethod.We follow the ideas from [34,40]. Recall our notation: A superscript (·)(Ri )
indicates a value corresponds to the i th reach; no superscript indicates a value corresponds
to the confluence region D.

The boundary condition for reach Ri at the end connecting to the confluence region is
given by

U (Ri )
∣
∣
∣
∂D

= 1
∣
∣∂DRi

∣
∣

∫

∂DRi

U ds, (4.1)

where ∂D denotes the boundary of the confluence region D and ∂DRi denotes the edge that
corresponds to the side on which reach Ri enters the river junction. The boundary condition
for the confluence region on that side is

U |∂DRi
= U (Ri )

∣
∣
∣
∂D

. (4.2)

We stress that (4.1) implies that U (Ri ) at the end that connects to the confluence region takes
the average value of U along the edge on the side of Ri , while (4.2) sets the value of U all
along the edge of D corresponding to Ri to be the end value of U (Ri ).

In addition, along the edge of D that does not correspond to a reach, a solid wall boundary
condition is enforced of u · n = 0.

In the remaining part of this section, we provide details on implementing these connecting
boundary conditions. The description consists of the following three stages: assignment of
ghost cell averages, reconstruction of boundary cells and assignment of ghost cell edge values.

4.1 Ghost Cell Averages

For the ghost cells on three sides of D, we assign the cell average values corresponding to
the values found at the end of the corresponding reach connected to D as shown in Fig. 5.
To this end, one has to be careful about matching the direction of flow in the ghost cells with
the direction of the reach relative to D. Furthermore, the integral in (4.1) will be computed
using the midpoint rule, so it becomes an area-weighted average.

The ghost cell averages for the reaches are then assigned as follows.

1. At the downstream end of R1, we set

U
(R1)

N1+1 =
(∑M

k=1 |C1,k |h1,k
∑M

k=1 |C1,k |
,

∑M
k=1 |C1,k |(hu)1,k
∑M

k=1 |C1,k |

)�
.

2. At the downstream end of R2, we set

U
(R2)

N2+1 =
(∑M

j=1 |C j,1|h j,1
∑M

j=1 |C j,1|
,

∑M
j=1 |C j,1|(hu) j,1
∑M

j=1 |C j,1|
cosφ

+
∑M

j=1 |C j,1|(hv) j,1
∑M

j=1 |C j,1|
sin φ

)�
.
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Fig. 9 Assignment of ghost cells
between a reach and the
confluence region

ū(R1)
N1 ū(R1)

N1+1

ū0,2 ū1,2

ū0,1 ū1,1

ū0,3 ū1,3

3. At the upstream end of R3, we set

U
(R3)

0 =
(∑M

k=1 |CM,k |hM,k
∑M

k=1 |CM,k |
,

∑M
k=1 |CM,k |(hu)M,k
∑M

k=1 |CM,k |

)�
.

The ghost cell averages for the confluence region corresponding to inflow or outflow bound-
aries are assigned as follows.

1. At the left edge of D (corresponding to R1), we set

U0,k = (
h

(R1)

N1
, q (R1)

N1
, 0
)�

, k = 1, . . . , M .

2. At the lower edge of D (corresponding to R2), we set

U j,0 = (
h

(R2)

N2
, q (R2)

N2
cosφ, q (R2)

N2
sin φ

)�
, j = 1, . . . , M .

3. At the right edge of D (corresponding to R3), we set

UM+1,k = (
h

(R3)

1 , q (R3)
1 , 0

)�
, k = 1, . . . , M .

An example of the assignment of ghost cell averages on the left side of D is shown in Fig. 9.
For the fourth (upper) edge of D, we enforce a reflecting (solid wall) condition, which

results in the following formulae:

h j,M+1 = h j,M , q j,M+1 = q j,M − 2(q j,M · n)n, (4.3)

where n is the unit outward normal vector in the direction of the ghost cell. In the coordinate
form, formula (4.3) reads as

U j,M+1 =
⎛

⎜
⎝

h j,M

−(hu) j,M cos(2φ) + (hv) j,M sin(2φ)

(hu) j,M sin(2θ j,m+ 1
2
) + (hv) j,M cos(2θ j,m+ 1

2
)

⎞

⎟
⎠ , j = 1, . . . , M .

4.2 Boundary Point Values

Equipped with the ghost cell averages obtained in Sect. 4.1, we now compute the boundary
point values required to evolve the solution on both sides of ∂D.
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To this end, we need to complete the piecewise linear reconstruction in the cells adjusted
to ∂D both in the 1-D reached and inside the confluence domain D. We begin with the
boundary cells of the 1-D reaches. It should be observed that the 1-D grid is not uniform
there since the size of the ghost cells is not necessarily equal to �x . Therefore, one cannot
directly apply the reconstructed procedure (3.1)–(3.4) as the computation of the slopes in
(3.3) must be modified. This is done in three different reaches as follows.

1. At the downstream end of R1, we set

(P x )
(R1)
N1

= minmod

⎛

⎝κ
2
(
V

(R1)

N1+1 −V
(R1)

N1

)

�x + �x (R1)
N1+1

,
2
(
V

(R1)

N1+1 −V
(R1)

N1−1

)

3�x + �x (R1)
N1+1

,

κ
V

(R1)

N1
−V

(R1)

N1−1

�x

⎞

⎠ . (4.4)

2. At the downstream end of R2, we set

(P x )
(R2)
N2

= minmod

⎛

⎝κ
2
(
V

(R2)

N2+1 −V
(R2)

N2

)

�x + �x (R2)
N2+1

,
2
(
V

(R2)

N2+1 −V
(R2)

N2−1

)

3�x + �x (R2)
N2+1

,

κ
V

(R2)

N2
−V

(R2)

N2−1

�x

⎞

⎠ . (4.5)

3. At the upstream end of R3, we set

(P x )
(R3)
1 = minmod

(

κ
V

(R3)

2 −V
(R3)

1

�x
,
2
(
V

(R3)

2 −V
(R3)

0

)

3�x + �x (R3)
0

,

κ
2
(
V

(R3)

1 −V
(R3)

0

)

�x + �x (R3)
0

)

. (4.6)

We then calculate the boundary point values
(
V−

N1+ 1
2

)(R1),
(
V−

N2+ 1
2

)(R2) and
(
V+

1
2

)(R3) by

substituting (4.4), (4.5) and (4.6), respectively, into (3.1), (3.2) and (3.4), and obtain the

corresponding values of
(
U−

N1+ 1
2

)(R1),
(
U−

N2+ 1
2

)(R2) and
(
U+

1
2

)(R3) by using the relation

h = w − B.
Next, we obtain point values at the boundary cells of the confluence region, namely, we

computeUW
1,k ,UE

M,k for k = 1, . . . , M andUS
j,1,UN

j,M for j = 1, . . . , M , using the piecewise
linear reconstructions in the 2-D cells along ∂D, which are obtained precisely as explained
in Sect. 3.2.

In order to compute the remaining point values, we would need to perform the data
exchange between the 1-D and 2-D settings (similarly to what has been done to compute the
ghost cell averages in Sect. 4.1).

The boundary point values for the 1-D reaches are assigned as follows (note that here
instead of using area-weighted averages as was done in Sect. 4.1, we use side-lengthweighted
averages).

123

Author's personal copy



1314 Journal of Scientific Computing (2019) 81:1297–1328

1. At the downstream end of R1, we set

(
U+

N1+ 1
2

)(R1) =
⎛

⎝

∑M
k=1 
 1

2 ,kh
W
1,k

∑M
k=1 
 1

2 ,k

,

∑M
k=1 
 1

2 ,k (hu)W1,k
∑M

k=1 
 1
2 ,k

⎞

⎠

�
.

2. At the downstream end of R2, we set

(
U+

N2+ 1
2

)(R2) =
⎛

⎝

∑M
j=1 
 j, 12

hSj,1
∑M

j=1 
 j, 12

,

∑M
j=1 
 j, 12

(hu)Sj,1
∑M

j=1 
 j, 12

cosφ

+
∑M

j=1 
 j, 12
(hv)Sj,1

∑M
j=1 
 j, 12

sin φ

⎞

⎠

�
.

3. At the upstream end of R3, we set

(
U−

1
2

)(R3) =
⎛

⎝

∑M
k=1 
M+ 1

2 ,kh
E
M,k

∑M
k=1 
M+ 1

2 ,k

,

∑M
k=1 
M+ 1

2 ,k (hu)EM,k
∑M

k=1 
M+ 1
2 ,k

⎞

⎠

�
.

The point values at the inflow or outflow boundaries of the confluence region are assigned
as follows.

1. At the left edge of D (corresponding to R1), we set

UE
0,k =

(
(
h−
N1+ 1

2

)(R1),
(
q−
N1+ 1

2

)(R1), 0

)�
, k = 1, . . . , M .

2. At the lower edge of D (corresponding to R2), we set

UN
j,0 =

(
(
h−
N2+ 1

2

)(R2),
(
q−
N2+ 1

2

)(R2) cosφ,
(
q−
N2+ 1

2

)(R2) sin φ

)�
, j = 1, . . . , M .

3. At the right edge of D (corresponding to R3), we set

UW
M+1,k =

(
(
h+

1
2

)(R3),
(
q+

1
2

)(R3), 0

)�
, k = 1, . . . , M .

Finally, at the fourth (upper) edge of D, corresponding to a reflecting (solid wall) boundary
condition, we set

US
j,M+1 =

⎛

⎜
⎝

hNj,M
− (hu)Nj,M cos(2φ) + (hv)Nj,M sin(2φ)

(hu)Nj,M sin(2θ j,m+ 1
2
) + (hv)Nj,M cos(2θ j,m+ 1

2
)

⎞

⎟
⎠ , j = 1, . . . , M .

5 Numerical Examples

In this section, we test the developed 1-D/2-D coupling approach on a number of numerical
examples in which the semi-discrete systems (3.5) and (3.8) are integrated in time using
the three-stage third-order strong-stability preserving (SSP) Runge–Kutta solver; see, e.g.
[12,13]. In the following tests, we take the parameters:

g = 1, κ = 1.5, ε = (�x)4
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Fig. 10 Example 1: Initial (left) and simulated (right) water surface w

unless specified otherwise. The results obtained using the 1-D/2-D coupling model are com-
pared with reference solutions computed by a fully 2-D numerical method from [26] over
triangular meshes.

Example 1—Shock wave through T-shaped junction
In this example, we consider the case where the tributary perpendicularly (φ = π/2)

enters the principal river with constant width. The confluence region is thus rectangular. The
width of upstream (R1) and downstream (R3) reaches are b1 = b3 = 0.2, while the width of
the tributary (R2) is b2 = 0.1. The nonflat bottom topography is defined by

B (x, y) =

⎧
⎪⎨

⎪⎩

0.099 − 0.02(x + 5), if x < −0.05 in R1,

0.1e−1.2(x−2.5)2 , if x > 0.05 in R3,

0, otherwise.

(5.1)

The initial conditions corresponding to a dam-break flow are given by

w (x, y, 0) =
{
1.0, if x < −0.5 in R1,

0.5, otherwise,
u(x, y, 0) = v(x, y, 0) = 0. (5.2)

We set outflow boundary conditions at every reach end not connected to the river junction.
The computational domain, the initial water level w(x, y, t = 0) as well as the water level
w(x, y, t = 4) computed by the fully 2-D scheme over a fine triangular mesh with 58818
cells are shown in Fig. 10.

Using the proposed numerical model, each reach is discretized by 1-D cells with the mesh
size �x = 0.1 and the confluence region is discretized using M × M cells. In Figs. 11 and
12, we compare the water surface w and discharge hu computed at t = 4 in all three reaches
using the proposed 1-D/2-D coupling approach (with M = 4 and 16) with the corresponding
horizontal cross-section averaged quantities estimated using the 2-D model. One can see that
despite the discrepancy near the conjunction area, the 1-D/2-D results are in a good agreement
with the fully 2-D results in all three reaches in terms of water levels and front positions of
the waves. One can also clearly observe that using the finer mesh in the confluence region
(M = 16) in the 1-D/2-D coupling model will lead to a better agreement with the 2-D
results. In addition, one may observe larger differences between the presented results in the
confluence region. In order to further investigate this, we show Fig. 13 in which we plot the
water surface contours and velocity vectors computed using the fully 2-D scheme. One can
clearly see that when the dam-break flow enters the confluence region, strong 2-D features
are generated there. Moreover, a vortex is clearly formed in the tributary R2 so that the 2-D
features in reach R2 are stronger than in the main river (reaches R1 and R3).
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Fig. 11 Example 1: Comparison of the water surface w in reaches R1, R2 and R3 computed at t = 4 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations
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Fig. 12 Example 1: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed at t = 4
using the proposed 1-D/2-D coupling model with the corresponding averaged flow discharges from the 2-D
computations

Example 2—Shock wave through junction with φ = π/3 tributary angle
In the second example, we consider a different geometrical setting, in which the tributary

enters the principal river at angle φ = π/3 and the side lengths are b1 = 0.2, b2 = 0.1/ sin φ,
and b3 = 0.2(1 + cot φ). The bottom topography function and initial data are still given by
(5.1) and (5.2), respectively. As in Example 1, we set outflow boundary conditions at every
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Fig. 13 Example 1: Velocity vectors and contour lines of w computed at times t = 0.8 (left) and 4 (right) by
the fully 2-D scheme—zoom at the confluence region
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Fig. 14 Example 2: Initial (left) and simulated (right) water surface w

reach end not connected to the river junction. In Fig. 14, we plot the computational domain,
the initial water level w(x, y, t = 0) and the water level w(x, y, t = 4) computed by the
fully 2-D scheme over a fine triangular mesh with 91,729 cells.

Once again, each reach is discretized by 1-D cells with the mesh size �x = 0.1 and the
confluence region is discretized using M × M cells. In Figs. 15 and 16, we compare the
water surface w and discharge hu computed at t = 4 in all three reaches using the proposed
1-D/2-D coupling approach (with M = 4, 16 and 32) with the corresponding horizontal
cross-section averaged quantities estimated using the 2-D model. As one can see, the use of a
finer mesh in the confluence region leads to a better agreement between the 1-D/2-D results
and the fully 2-D results in all three reaches in terms of water levels and front positions of the
waves. As before, one may observe larger differences between the presented results in the
confluence region due to strong 2-D features and vortices are generated when the dam-break
flow enters there; see Fig. 17, where we plot the water surface contours and velocity vectors
computed using the fully 2-D scheme.

Example 3—Steady flow through junction with φ = π/3 tributary angle
In this test, we consider steady flows in the same computational domain as in Example 2.

The nonflat bottom topography is defined by

B (x, y) =

⎧
⎪⎪⎨

⎪⎪⎩

0.04e−2(x+2.5)2 , if x < −0.05 in R1,

0.05e−2(x−2.5)2 , if x > 0.05 in R3,

0, otherwise,
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Fig. 15 Example 2: Comparison of the water surface w in reaches R1, R2 and R3 computed at t = 4 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations
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Fig. 16 Example 2: Comparison of the flow discharge hu in reachesR1, R2 and R3 computed at t = 4
using the proposed 1-D/2-D coupling model with the corresponding averaged flow discharges from the 2-D
computations

and the initial data are

w(x, y, 0) ≡ 0.5, u(x, y, 0) = v(x, y, 0) ≡ 0.
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Fig. 17 Example 2: Velocity vectors and contour lines of w computed at times t = 0.8 (left) and 4 (right) by
the fully 2-D scheme—zoom at the confluence region

The inflow boundary condition is given by hu = 0.2 for the R1 reach, hu = 0.1 for the R2

reach (tributary), and the outflow boundary condition is set to be w = 0.48 for the R3 reach.
The gravitational acceleration g = 9.81 is used in this experiment.

We run both the 1-D/2-D and fully 2-D simulations until the final time t = 800 when the
flow reaches the steady state. The 1-D/2-D results are obtained using a uniform mesh with
�x = 0.1 in each reach and M × M cells in the confluence region (with M = 4, 16 and 32).
The fully 2-D simulations are performed on a triangular mesh with 11983 cells. The obtained
results are compared in Figs. 18 and 19 demonstrating that both models approach similar
steady states as expected. In Fig. 18, one can clearly observe that the steady state solutions
in R1 and R2 are affected by the 2-D flow structures in the confluence region and a higher
resolution within the confluence region (larger M) leads to a better agreement with the fully
2-D model.

Example 4—Accuracy test
In this example,we investigate the experimental convergence order of the proposed numer-

ical method.We use the following settings. The width of upstream (R1) and downstream (R3)
reaches are b1 = 0.2 and b3 = 0.3, while the width of the tributary (R2) is b2 = 0.1 and the
tributary angle is φ = π/3. Each reach has a length of 5. A flat bottom B(x, y) ≡ 0 is used
over the entire domain and the smooth initial water surface and velocities are given by

w(x, 0) =
⎧
⎨

⎩

1 + 0.01
[
1 − cos

(
10π(x + 0.4)

)]
, if − 0.4 < x < −0.2 in R1,

1, otherwise,

u(x, y, 0) = v(x, y, 0) ≡ 0.

Each reach is discretized using N1 = N2 = N3 = N grid cells and the confluence region is
discretized byM×M cells. The area of the confluence region scales dependingon�x = 5/N .
We set outflow boundary conditions at every reach end not connected to the river junction
and compute the solution until the final time t = 0.7.

Tables 1 and 2 show the L1-errors and experimental convergence rates of water surface w

computed by the proposed numerical model with M = 4 and M = 8, respectively. The result
computed with N = 12,800 and M = 8 is used as a reference solution. One can observe
that the proposed numerical method achieves the desired second order of accuracy in each
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Fig. 18 Example 3: Comparison of the water surface w in reaches R1, R2 and R3 computed at t = 800 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations
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Fig. 19 Example 3: Comparison of the flow discharge hu in reachesR1, R2 and R3 computed at t = 800
using the proposed 1-D/2-D coupling model with the corresponding averaged flow discharges from the 2-D
computations
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Table 1 Example 4: L1-errors and convergence rates for water surface w with M = 4

lN R1 R2 R3 Entire domain

lL1-error lRate lL1-error lRate lL1-error lRate lL1-error lRate

200 2.63e−04 – 7.09e−05 – 1.84e−04 – 5.18e−04 –

400 6.33e−05 2.05 2.22e−05 1.68 5.91e−05 1.64 1.45e−04 1.84

800 1.23e−05 2.36 4.80e−06 2.21 1.36e−05 2.12 3.07e−05 2.24

1600 3.21e−06 1.94 1.22e−06 1.98 3.37e−06 2.02 7.80e−06 2.11

3200 5.32e−07 2.59 2.71e−07 2.17 7.51e−07 2.16 1.56e−06 2.32

Table 2 Example 4: L1-errors and convergence rates for water surface w with M = 8

Number of cells R1 R2 R3 Entire domain

L1-error Rate L1-error Rate L1-error Rate L1-error Rate

200 2.72e−04 – 1.07e−04 – 2.55e−04 – 6.34e−04 –

400 6.63e−05 2.04 4.05e−05 1.40 1.01e−04 1.34 2.08e−04 1.61

800 1.48e−05 2.16 1.25e−05 1.70 2.93e−05 1.79 5.66e−05 1.88

1600 3.50e−06 2.09 3.31e−06 1.92 7.29e−06 2.01 1.41e−05 2.01

3200 7.03e−07 2.31 7.27e−07 2.19 1.64e−06 2.15 3.07e−06 2.20

reach as well as in the entire domain. In Fig. 20, we illustrate the computed wave in each of
the reaches for different values of N . One can clearly observe the self-convergence of the
computed solution as the mesh is refined.

Example 5—Supercritical shock wave through T-shaped junction
In this last example, we consider the case where the tributary perpendicularly (φ = π/2)

enters the principal river with constant width. The confluence region is thus rectangular. The
width of upstream (R1) and downstream (R3) reaches are b1 = b3 = 0.1, while the width
of the tributary (R2) is b2 = 0.2. The flat bottom B(x, y) ≡ 0 is used in this test and the
initial conditions, which correspond to an isolated supercritical shock wave with the Froude
number 1.135 initially propagating in the y-direction (u(x, y, 0) ≡ 0) in the tributary (R2),
are given by

w(x, y, 0) =
{
0.377, if y < −1.5 in R2,

0.1, otherwise,
v(x, y, 0) =

{
2.184, if y < −1.5 in R2,

0, otherwise.

We set an inflow boundary conditions with h = 0.377 and v = 2.184 in reach R2 at y = −5
and outflow boundary conditions at the ends of reaches R1 and R3 not connected to the river
junction. The gravitational acceleration g = 9.81 is used in this test. The computational
domain, the initial water level w(x, y, t = 0) as well as the water level w(x, y, t = 2)
computed by the fully 2-D scheme over a fine triangular mesh with 41,818 cells are shown
in Fig. 21.

Using the proposed numerical model, each reach is discretized by 1-D cells with the mesh
size �x = 0.1 and the confluence region is discretized using M × M cells. In Figs. 22 and
23, we compare the water surface w and discharge hu computed at t = 2 in reach R3 using
the proposed 1-D/2-D coupling approach (with M = 16 and 64) with the corresponding
horizontal cross-section averaged quantities estimated using the 2-D model (we do not show
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Fig. 20 Example 4: Water surfacew computed using the proposed model in each reach with M = 4 computed
at t = 0.7
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Fig. 21 Example 5: Initial (left) and simulated (right) water surface w

the solutions in reaches R1 and R2 as the former one is symmetric to the solution in R3 and
the latter one is flat). Once again, despite quite large discrepancy near the conjunction area,
the 1-D/2-D results are in a reasonably good agreement with the fully 2-D results in terms
of water levels and front positions of the waves.

Example 6—Dam-break wave transportation over steady flow through junction with
φ = π/3 tributary angle

In this test, we consider a large scale of the computational domainwith aφ = π/3 tributary
angle. The nonflat bottom topography is defined by
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Fig. 22 Example 5: Comparison of the water surface w in reach R3 computed at t = 2 using the proposed
1-D/2-D coupling model with the averaged water levels from the 2-D computations
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Fig. 23 Example 5: Comparison of the flow discharge hu in reach R3 computed at t = 2 using the proposed
1-D/2-D coupling model with the averaged flow discharge from the 2-D computations

B (x, y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.002(x + 1.299), if x < −1.299 in R1,

0.01(y + 4), if y < −4 in R2,

0.004(x − 1.299), if x > 1.299 in R3,

0, otherwise,

and the initial data are

w(x, y, 0) ≡ 4, u(x, y, 0) = v(x, y, 0) ≡ 0.

The inflow boundary conditions are given by hu = −0.1 for the R3 reach and w = 4 for the
R2 reach (tributary), and the outflow boundary condition is set to be w = 4 for the R1 reach.
The gravitational acceleration g = 9.81 is used in this experiment.

The width of upstream (R3) and downstream (R1) reaches are b3 = 8 and b1 = 5,
respectively, while the width of the tributary (R2) is b2 = 3. We run both the 1-D/2-D and
fully 2-D simulations until the final time t = 5000, by which the flow converges to the steady
state. The 1-D/2-D results are obtained using a uniform mesh with �x = 2.5 in each reach
and M × M cells in the confluence region with M = 12. The fully 2-D simulations are
performed on a triangular mesh with 38,080 cells.

The obtained steady state solutions are shown in Figs. 24 and 25 demonstrating that both
models approach similar steady states as expected.

Once the steady state results are obtained at t = 5000, we introduce a dam-break wave
from the inflow boundary of the R3 reach by setting hu = −0.5, and then simulate the wave
transport until t = 5023. The results plotted in Figs. 26 and 27 clearly indicate that the wave
location computed by proposed numerical scheme agree well with those obtained by the full
2-D simulations. However, due to the strong 2-D flow structure in the conjunction area, some
discrepancy of water height and discharge are observed in the tributary after the dam break
wave passes the area.
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Fig. 24 Example 6: Comparison of the water surfacew in reaches R1, R2 and R3 computed at t = 5000 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations
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Fig. 25 Example 6: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed at t = 5000
using the proposed 1-D/2-D coupling model with the averaged flow discharge from the 2-D computations

123

Author's personal copy



Journal of Scientific Computing (2019) 81:1297–1328 1325

-100 -80 -60 -40 -20

4

4.05

2-D
1

1-D/2-D, M=12R

-50 -40 -30 -20 -10

4

4.05

4.1
2R

20 40 60 80 100
4

4.1

3R

Fig. 26 Example 6: Comparison of the water surfacew in reaches R1, R2 and R3 computed at t = 5023 using
the proposed 1-D/2-D coupling model with the averaged water levels from the 2-D computations

-100 -80 -60 -40 -20

-0.6

-0.4

-0.2

0

2-D1 1-D/2-D, M=12
R

-50 -40 -30 -20 -10
-0.6

-0.4

-0.2

0

2R

20 40 60 80 100
-0.8

-0.6

-0.4

-0.2
3R

Fig. 27 Example 6: Comparison of the flow discharge hu in reaches R1, R2 and R3 computed at t = 5023
using the proposed 1-D/2-D coupling model with the averaged flow discharge from the 2-D computations
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6 Conclusion

In this paper, we have proposed a new 1-D/2-D coupling approach formodeling river systems.
In the developedmodel, the flow in each reach of the river is governed by the 1-DSaint-Venant
system of shallowwater equations, while the full 2-D system is used in the confluence region,
which is represented by a trapezoidal domain,whose dimensions are determined by thewidths
of the corresponding reaches, which are assumed to be constant for each reach. Both 1-D
and 2-D systems are numerically solved by the well-balanced positivity preserving central-
upwind schemes. The efficiency of the presented approach hinges upon the ability of using
very coarse meshes inside the 2-D confluence region. A number of numerical experiments
have been conducted to illustrate the robustness of the proposed modeling strategy.

Considering reaches of constant widths is somehow unrealistic and imposes certain lim-
itations to the applicability of our model to the large scale river system computations. In
the future, we plan to extend our 1-D/2-D coupling approach to more realistic situations, in
which the cross-sectional area variation is taken into account in the 1-D shallowwater system
used to model the flow in each of the reaches.
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