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Abstract. We study the two-component Camassa-Holm (2CH) equations as a model
for the long time water wave propagation. Compared with the classical Saint-Venant
system, it has the advantage of preserving the waves amplitude and shape for a long
time. We present two different numerical methods—finite volume (FV) and hybrid
finite-volume-particle (FVP) ones. In the FV setup, we rewrite the 2CH equations in a
conservative form and numerically solve it by the central-upwind scheme, while in the
FVP method, we apply the central-upwind scheme to the density equation only while
solving the momentum and velocity equations by a deterministic particle method. Nu-
merical examples are shown to verify the accuracy of both FV and FVP methods. The
obtained results demonstrate that the FVP method outperforms the FV method and
achieves a superior resolution thanks to a low-diffusive nature of a particle approxi-
mation.
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1 Introduction

Due to the potential tragic nature of tsunami waves, there is a need for the scientific
understanding and modeling of this complicated phenomenon in order to reduce un-
wanted destruction and prevent unnecessary deaths from this natural disaster. Tsunami
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waves are caused by the displacement of a large volume of a body of water, typically an
ocean or a large lake; see, e.g., [6,48,49]. They do not resemble other sea waves and are
instead characterized by having relatively low amplitude (wave height) offshore, large
wavelength, and large characteristic wave speed. This characterization is what prevents
tsunami waves from being felt at sea. Tsunami waves grow in height as they reach shal-
lowing water, in what is known as a wave shoaling process. In this process, the wave
slows down, the wavelength decreases, and a very high and powerful wave arrives on
the shore and may cause massive destruction.

There have been many attempts to create accurate models and corresponding numer-
ical methods for simulating tsunami waves. One popular model in the shallow water
wave theory is the classical Saint-Venant (SV) system [27], which approximates the be-
havior of real ocean waves in a reasonable way and is a depth-averaged system that
can be derived from the Navier-Stokes equations; see, e.g., [35,43,50]. The SV system is
widely used to describe flows in lakes, rivers and coastal areas, in which the typical time
and space scales of interest are relatively short. Since the SV system is quite difficult to
solve, it is sometimes simplified in a number of ways, including linearization, in which
the velocity of water particles is taken to be the gradient of a scalar potential. Taking var-
ious asymptotic limits of the inviscid Euler equations results in a host of integrable and
nearly integrable equations such as the Korteweg-de Vries (KdV) equation, Camassa-
Holm (CH) equation, nonlinear Schrédinger equation, and so on; see, e.g., [7,36,53, 56].
Unfortunately, while these equations have exact (integrable) solutions, they also diverge
from the true behavior described by the full equations for any but very short time scales.

Tsunami waves form in deep water and travel very long distances (thousands of kilo-
meters) before coming to shore. Over long time, solutions of the SV system break down,
dissipate in an unphysical manner, develop shock waves, and fails to capture small, trail-
ing waves that are seen in nature and laboratory experiments. Thus, it is necessary to use
a more sophisticated model in order to preserve the wave characteristics over long time
simulations.

Non-hydrostatic models (the celebrated Green-Naghdi (GN) equations [31] and sev-
eral others; see, e.g., [1-3] and references therein) work well for long-time propagation
of tsunami-type waves because they allow the wave to travel for long distances without
changing the shape or decaying in amplitude. In addition, since these systems are dis-
persive, they give rise to trailing waves that are observed to follow tsunamis in nature.
It is, however, necessary to achieve some balance between dispersion observed with a
non-hydrostatic model and dissipation seen in the classical SV system.

One attempt to achieve such a balance was made in [4, 5], where the non-hydrostatic
SV system was rigorously derived from the GN equations. As it has been demonstrated
in [16], the non-hydrostatic SV system is capable of accurately modeling long-time propa-
gation of tsunami-type waves. However, the system is quite complicated and developing
accurate, robust and efficient numerical methods for computing its solutions is a highly
nontrivial task.

Another system that has been derived from the GN equations is a two-component
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generalization of the CH equation, for which the integrability property associated with
the CH equation has been combined with compressibility; see, e.g., [24,32,52]. Com-
pared with the original CH equation, the two-component Camassa-Holm (2CH) system
contains an additional continuity equation for the scalar density p, and the momentum
(velocity) equation contains a pressure term involving density:

pi+(ou)x =0, (1.1a)
mt+umx+2mux:—§(p2)x. (1.1b)

Here, m(x,t) is the momentum related to the fluid velocity u(x,t) through the modified
Helmholtz equation,
Mm=u—a>lyy, (1.10)

the density p(x,t) is related to the total depth of the water column (see Section 3.2), >0
is a length scale, and g >0 is the constant gravitational acceleration.

This paper focuses on the development of numerical methods for the 2CH system.
Several methods have been already developed and are available in the literature. In [23],
a multi-symplectic structure of the 2CH system was established and then used to derive
a multi-symplectic numerical method. Invariant-preserving finite-difference schemes for
both the CH equation and 2CH system were introduced in [46]. Very recently a new fifth-
order spatially accurate upwinding combined compact difference (UCCD5) scheme for
the 2CH system has been presented in [57]. The main idea of this method is to solve the
2CH system in three steps: first, to solve the time-dependent equation for the horizontal
fluid velocity with nonlinear convection, then an inhomogeneous Helmholtz equation,
and finally the density transport equation.

In this paper, we develop two alternative numerical methods for the 2CH system
and numerically demonstrate that the 2CH system may serve as a viable model for the
long time propagation of tsunami-type waves. First, we derive a finite-volume central-
upwind scheme for the system (1.1). Central-upwind schemes have been originally de-
veloped for hyperbolic systems of conservation laws [38,40,42] and then extended and
applied to hyperbolic systems of balance laws arising in modeling shallow water flows;
see, e.g., [10,11,16,37,39,41]. In order to apply the central-upwind scheme to the system
(1.1), we rewrite Egs. (1.1a) and (1.1b) in the following conservative form:

pt+(ou)x=0,
12a2212_ (1.2)
o (4 0 =S+ 550 =0,
and then implement the central-upwind scheme for the system (1.2) in quite a straight-
forward manner as described in Section 2.1.
Even though the designed finite-volume (FV) method is robust and efficient, it suf-
fers from an excessive numerical dissipation the same way the central-upwind scheme
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for the original CH equation did; see [22]. To reduce the amount of the numerical dif-
fusion, we follow the idea presented in [13, 14, 17] and derive a hybrid finite-volume-
particle (FVP) method for the system (1.1). In the hybrid approach, the density equation
(1.1a) is solved using the finite-volume central-upwind scheme, while the momentum
and velocity equations (1.1b) and (1.1c) are solved by a deterministic particle method.
Particle methods were originally introduced for solving linear transport equations (see,
e.g., [26,51]), but in recent years have also been used for approximating solutions of a
variety of time-dependent PDEs, see, e.g., [15,19, 20, 28, 45]. In particular, the particle
method has been successfully applied to the original CH equation in [8,9,12,21,22].

Finally, we perform several numerical experiments to study the effect of the disper-
sive parameter « in (1.1c) and to compare the performance of the central-upwind scheme
and hybrid FVP method. The obtained results demonstrate that for certain choices of
« the amplitude and speed of the wave is preserved for much longer times than in the
non-dispersive case of x =0.

2 Numerical methods for the 2CH system

In this section, we describe the two numerical methods which will be pertinent to our
study of modeling the propagation of tsunami waves.

2.1 Central-upwind scheme

We start by describing a semi-discrete second-order central-upwind scheme applied to
the system (1.2), (1.1c). We first rewrite (1.2) in the vector form as

q:+ f(9)x =0,

with

pu
—_(P _ 2
1=(): f<4>< Lo @08 ) e
mu—+ W TS Uy =+ P14
where u globally depends on m through the modified Helmholtz equation (1.1c).
We divide the computational domain () into the cells C]- = [x]-_%,x]- n %], which are,

for simplicity, assumed to be uniform, that is, x;, 1—x;_1=Ax. We denote by g;(t) :~

< Jo.g(x,t)dx the computed cell averages of g, which are assumed to be available at
]
time t and then evolved in time by solving the following system of ODEs:

d_ _.’F-+%(t)—.7:-

—
|
(ST
—~
~
~—

(2.2)

where F; 1 (t) are numerical fluxes. We use the central-upwind fluxes from [38] (for
convenience, we will omit the dependence of all of the indexed finite-volume quantities
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on t in the rest of this paper):

+ - - + -
“-+1f(‘7-+1)_”-+1f(‘7-+1) 9.1749,1
F T3 JT2 JT3 JT2 + - JT2 JT72 d 23
= il TS (A S B 1)
JT2 a",—a. jtz 0t la —a 2
st A Itz 3

where qji+1 are the right/left point values of the conservative variable g at the cell in-
2

terfaces, a]fr , are the right-/left-sided local speeds of propagation, and d; 41isa built-in

2
“anti-diffusion” term given by

+ * -
9,191 9,19
. w1 Ty +1
d., 1 =minmod | 22 T2 T2 vz ) (2.4)
Itz at  —a  , at -
Jt3z itz gtz gt
where
+ ot g _{ Y £ }
a ,q’ a: .q. ) ‘
N f(qﬁ%) f(qﬁ%) )
qj+l_ + : ( -5)

We compute the point values q]fr , in (2.3) using a second-order piecewise linear ap-
proximation, ’

ﬁ(x):ﬁj+(qx)j(x—xj), xeC, (2.6)

where x;:= (xjf 1+ )/2. A non-oscillatory nature of g is enforced by computing the

slopes (gx); using a nonlinear limiter. In the numerical experiments reported in §3, we
have used the generalized minmod limiter (see, e.g., [44,47,54,55]):

) ﬁj_ﬁjfl ﬁjﬂ_‘_qu ‘7j+1_§j
= 0 2.7
(qx)] minmod < A JAx ,0 Az , (2.7)

where 6 € [1,2] is the parameter that helps to control the amount of numerical diffusion
(larger values of 6 correspond to less diffusive, but more oscillatory reconstruction), and
the minmod function,

min{z;}, ifz;>0Vj,

minmod (z1,2z2,---):=4 max{z;}, ifz;<0Vj,
)

0, otherwise,

is applied to the vector quantities in a component-wise manner.
Given the piecewise polynomial reconstruction (2.6), we obtain the point values of g
at each cell interface:

I Ax _ _  Ax

91 =T1— 5 @)jsn 4=+ (42)). (2.8)
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In the non-dispersive case, that is, when & =0 and thus u =m, the right- and left-
sided local speeds of propagation can be easily estimated using the largest and smallest

eigenvalues of the Jacobian
of _(m p\_(u p
dq \gp 3m) \gp Bu)’
that is, we have

+ - - )2 - \2 5+ + 32 + )2
oy =max{ 2yl sty )%t () sty )0

2
Cy=ming 2u; , —y/(u; )2+g(p_ )2 2u’ , — ) (u}, )z—kg(pJr )20
+ jt3 j+3 j+37 Ty j+3 i+’

In the dispersive case, that is, when « # 0, there is a global dependence of u on m
and formula (2.9) is not true any more. We still, however, use (2.9) to estimate the one-
sided local speeds as the presence of dispersive terms leads to the appearance of smooth
dispersive waves and smears shock waves (present in a non-dispersive case) without
affecting the speed of shock-like and solitary waves, as demonstrated in the numerical
examples reported in Section 3.2; see Example 4. In order to use formula (2.9), the values
of the velocities at cell interfaces, u]fr 1, are obtained as follows. We first use the second-

(2.9)

order finite-difference central schemé to solve the modified Helmholtz equation (1.1c)

and recover the cell interface point values {u]- N %} from {m]- ! }, where M= (m]tr% +

m].;l)/ 2 and the cell interface values mji+1 are computed by (2.8). Then, thanks to the
2

2
continuity of 1, we have cell interface values u]frl =Uj 1
2
It should be observed that one needs not only to compute the velocity point values

£ | at cell interfaces but also its derivatives, which are required for computing the nu-

U
me;ical fluxes, see formula (2.1) and (2.3). The latter can be done by first computing the
values (uy); = (4;,1-%;_1)/Ax and then using the reconstruction procedure according to
formulae (2.7)-(2.8).

Finally, we remark that the resulting semi-discrete central-upwind scheme (2.2), (2.3)
is a system of time dependent ODEs, which has to be solved using an appropriate ODE
solver. In our numerical experiments, we have used the three-stage third-order strong
stability preserving (SSP) Runge-Kutta method (see, e.g., [29,30]) with an adaptive time

step computed at every time level using the CFL number 1/2:

Ax
AV = —, amax:zrnax{bﬁr
2amax ] I+

%,—a];%}. (2.10)

2.2 Hybrid Finite-Volume-Particle (FVP) method

In this section, we present a hybrid FVP method, which utilizes the strengths of both
finite-volume and particle methods: the continuity equation (1.1a) is numerically solved
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using the central-upwind scheme described in Section 2.1, while the momentum and
velocity equations, (1.1b) and (1.1c), are numerically solved by a deterministic particle
method.

Let us assume that at some time level ¢t the computed solution is available. As in §2.1,
the density p is realized in terms its cell averages, {p j}' and the corresponding piecewise
linear reconstruction

ﬁ(x):ﬁj (px)j(x—xj), x€Cj, (211)

where the slopes (p,); are computed using the minmod limiter as in the first component
of (2.7). On the other hand, the particle approximation of the momentum m at the time
level t is given in the form of a linear combination of Dirac é-functions,

=Y wi(3(x— (1), 2.12)
i=1

where x (t) and w;(t) represent the location and weight of the i-th particle, respectively,
and N denotes the total number of particles in the computational domain Q).
Using (1.1c), one can directly compute the velocity u from the particle distribution
of the momentum (2.12) (see [12]): u can be obtained by taking the convolution product
= G#*m, where

G(lx—y|) =5 e v

is the Green’s function associated with the Helmholtz operator in (1.1c). Thus, we have
the following approximation of u at the time level #:

uN(x,t):(G*m > Zw e~ X (B)l/a (2.13)

The solution is then evolved in time according to the following algorithm. First, the

cell averages {p j} are evolved using the semi-discrete central-upwind scheme described
in §2.1:

ds_ Timi—fin o1t
de' Ax ’ )
where
+ o N -
a —a . u _
Fo = ( ]+%p]+% ]+%p]+%> j+3 vat oo PH_% p]-i—% e
Jt+3 El% —a. , % ]+% afr —a j+1
J*3 J*+3 jts3 j+3
+ . ) . L
Here, pj | are the right/left point values of p reconstructed using (2.11), U1 =u ( X, %)

is the velocity obtained from (2.13), and the one-sided local speeds aji+1 are estimated
2

using (2.9) with u] L=l The built-in “anti-diffusion” 4, 1 is obtained using the first
2

component of (2.4), (2.5).

j+3
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Next, following [12,21,22], we substitute (2.12) into a weak formulation of (1.1b) and
obtain the following system of ODEs for x¥ and w;:

df(t)
—t= = (xf

dajTit(t)_f_uxN(xf(t),t) wi(t) = Bi(t).

(2.15)

Here, u,(x} (t),t) should be computed using the velocity given by (2.13). One may follow

the approach in [12,21,22] and simply differentiate (2.13), which results in

1 & P (D
u (x0) = (Gesm™) (x,6) = =5 Ywi(Bsgn(x— (e T @16)
j=1

Next, we consider B;(t), which is the contribution associated with the term —%(pz)x,
namely,

Bi(t)=— / %(pz)xdx. (2.17)

Here, ();(t) is a domain that includes the i-th particle and satisfies the following proper-
ties:
wi(t) = / m(xtdy, ()@ BOn() =0 (2.18)
Q;(t)
In general, ();(t) is not known (see, e.g., [15]), but it can be approximated by
P () +aP, (F)
Q)= [x7 ()7, (0], ()="—"F"—=, (2.19)

and thus the integration in (2.17) results in
g
Bt ==8 {2, (1) =0 (7, (1)

where p(xf:rl (1) =p (xzrl (t)) are obtained using the piecewise linear reconstruction
2 2
(2.11). To this end, one needs to find out which cell the point xf+1 (t) is located in. This
2

can be efficiently done since by a time step restriction associated with the particle method,
every particle can either remain in the same cell or move to the neighboring cell within
one time step.

The ODE system (2.14), (2.15) is to be integrated by an appropriate ODE solver. In
our numerical experiments, we have used the three-stage third-order SSP Runge-Kutta
method. The initial positions of particles, xf(O), and their initial weights, w;(0), are cho-
sen so that

N
N (50) = Y 0)0(x— (0)
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represents a high-order approximation of the initial data m(x,0) at time t =0. One
way of obtaining such an approximation is to use (2.18), (2.19) at t =0. For exam-
ple, a second-order midpoint quadrature applied to the integral in (2.18) will lead to
0;(0) =102 (0)] m(xF (0),0).

We note that the time step given by (2.10) may now need to be reduced, since we do
not allow the particle trajectories to intersect in the (x,t)-plane as such an intersection is
unphysical. This is achieved by imposing a more severe restriction on At, namely, we
take

AP =min(AFY, A1), (2.20)

where AtV is given by (2.10) and

P P
xi+1(t)_xi (t) . p p
= iful (f) > u; (1),
AtF = ”?(t) _”?+1(t) l o

AtFV, otherwise.

(2.21)

Particle merger. We would like to point out that the proposed FVP method may suffer

from one obvious drawback: If the distance between any two particles, xfﬂ(t) —xP (),

1
becomes too small, then the time step At*V" given by (2.20) and (2.21) may also become
very small, which would make the FVP method extremely inefficient.

In order to avoid this problem, we use the same particle merger technique which was
used in [18]. Namely, if at some time level 7 ; (t) —x¥ (t) becomes smaller than a critical
threshold value, which we take tobe d.,-L/N,, where L is the length of the computational
domain, N is the initial number of particles and d., <1 is a prescribed number, the ith
and (i+1)"" particles are merged into a new one. The new particle is located at the center
of mass of the replaced particles, that is,

wh (£)xP (8)+wh (1), ()

=
wh () +wb, ()

7

its weight is
D=w] (t)+wf4 (1),
and the cell occupied by the new particle is then set to be the union of Q;(t) and Q;.1(t),
so that R
Q=] (8)[+]Qisa (B)]-

After the merger, the particles are renumbered and their total number is reduced by one.

3 Numerical examples

In this section, we present several numerical experiments to demonstrate the perfor-
mance of the proposed finite-volume (FV) and hybrid FVP methods. In all of the ex-
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periments, we take the minmod parameter 6 =1.3, prescribed number d., =0.1 and con-
sider the periodic boundary conditions. Notice that due to the periodicity, we replace
|x—xP(t)] with min{|x—x(t)|,L—[x—x} ()|} in (2.13) and (2.16) as well as in (3.1) and
(3.2). In all of the figures, “FV(Ny)” stands for the FV method with N, FV cells, while
”FVP(Nx,Np,N;;)” stands for the FVP method with N, FV cells, N, initial particles and
Nj particles at the final time.

3.1 Accuracy tests

We first test the accuracy of studied FV and FVP methods on three numerical examples.
Since the solutions in all of them are nonsmooth, we either compute the Ll-errors or
verify the conservation of the discretized Hamiltonians. In these three examples, we set
x=1and g=1.

Example 1 — Dam break problem

In the first example taken from [46], we numerically solve the dam break problem. The
initial data are

p(x,0)=1+tanh(x+4)—tanh(x—4), u(x,0)=0,

and the computational domain is [—127t,127].

In this case, no exact solution of the 2CH system is available and we therefore test
the convergence of the FV and FVP methods towards the reference solution, which is
obtained using the proposed FV method with 25000 mesh cells. In Fig. 1, we show the
densities and velocities computed at the final time t =2 using Ny = N, =100. As one can
observe, both FV and FVP methods achieve high resolution though the results computed
by the FVP method seem to be a bit sharper. We then perform a mesh refinement study
and report the L!-errors and experimental rates of convergence in Tables 1 and 2. As
one can see, while both the FV and FVP methods achieve the expected second order of
accuracy, the FVP errors are almost twice smaller than the FV ones.

Table 1: Example 1: Ll-errors in density.

N:=N, | [lo™—p™ |l | Rate | [[p™'—p"VF||; | Rate

100 0.9521 — 0.6024 —

200 0.4067 1.23 0.2474 1.28
400 0.1348 1.59 0.0684 1.85
800 0.0365 1.89 0.0177 1.95

1600 0.0085 2.10 0.0037 2.25
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X,2 X,2
- ‘ p( : ) 4 ‘ p( : )
* FV(100) * FVP(100,100,100)
221 reference | 20t reference
2r 2
1.8r ] 1.8F
1.6 ] 1.6
14r 1 1.4
1.2r ] 1.2 ¢
1 . 1 I
-12m -61r 0 61 12m -12m -6 0 611 12m
u(x,2 u(x,2
15 : (x.2) 15 ‘ (x,2)
* FV(100) * FVP(100,100,100)
1t reference ] 16 reference
05 0.5
0 0f
051 -0.5
1t -1r
15 \ \ \ 15 . . .
-12m -61r 0 61 12m -12m -6 0 611 12m

Figure 1: Example 1: Densities (top row) and velocities (bottom row) computed by the FV (left column) and
FVP (right column) methods.

Table 2: Example 1: Ll-errors in velocity.

Ne=N, | [uf—ufV|; | Rate | [|uf—uFVP||; | Rate
100 0.4867 - 0.3729 -
200 0.2136 1.19 0.1036 1.85
400 0.0688 1.63 0.0261 1.96
800 0.0177 1.96 0.0060 2.17

1600 0.0044 2.02 0.0016 1.94

Example 2 — Single peakon

In the second example, we numerically solve a single peakon problem with the following
initial conditions (see [23,46,57]):

0(x,0)=05, u(x,0)=e 10,
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e px2) Y p(x.3)
1' a4l FVP(801,401,401) ' FVP(801 401,400)
1+ FV(801) 127, FV(801)
1.2 —Fv(38801) 11—Fv(38801)
1 L
0.8
0.6}
0.4
0.2+
O L L L L L L
0 5 10 15 20 0 5 10 15 20
x 4 x 5
1.4 plxd) 1.4 pIX.3)
1ol - FVP(801,401,400) | 12! FVP(801 401,400)
21+ FV(801) |t Fv(801)
1| —FVv(38801) 1 17 —Fv(38801)
0.8 1 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 ‘ | | 0 ‘ | |
0 5 10 15 20 0 5 10 15 20

Figure 2: Example 2: Densities computed by the FV and FVP methods at four different times.

prescribed in the computational domain [0,20]. We use the FV method with N, =801 and
the FVP method with the same N, =801, but twice smaller N, =401. The solutions (o and
u) computed at times t=2, 3, 4 and 5 are plotted in Figs. 2 and 3. Comparing the obtained
results with those reported in [57] and the reference solution obtained by the FV method
with N, =38801, one can conclude that the FVP method produces slightly more accurate
results even though the number of particles is relatively small.

In order to further study the performance of the FV and FVP methods, we notice that
the exact solutions of the 2CH system preserve the Hamiltonians, which for « =1 and
g=1 are defined by

2/u—|—u+p 2/mu+p)d

and

’H,Z:%/(u +uu? —|—up 2/ (u —uz) u uxx—Htp )d
Q

see [46,57]. We now check how well the FV and FVP methods preserve the corresponding
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Figure 3: Example 3: Velocities computed by the FV and FVP methods at four different times.

discrete Hamiltonians. For the FV method, they are defined by

Ax s o — Ax N o —
’HEVZTZ;{mjuj—kpjz} and HgVZTZ;{mj(u]Z—(uj),%) —(u]‘>32((uj)xx+ujp]-2},
]= ]=

where Ax =20/ N, is the size of the FV cells and the quantities u;, (1;)x and (u;) are
computed as follows. We use the second-order finite-difference central scheme to solve
the modified Helmholtz equation (1.1c) and recover the point values {u;} from the cell
averages {m;} and then calculate (u;), := (Mj+% —ujf%)/Ax and (#j)xy = (Uj41—2u;+
u]-_l) /Ax?. For the FVP method, both H; and H, have a well-defined reduction for all
N-peakon solutions (2.12), (2.13) and (2.16). Moreover, by differencing (2.16) with x =1,
we obtain

N
W (xt) =Y wj(t)e 0 (% —5(x—x;°(t))> :
j=1
Therefore, the discrete Hamiltonians can be defined by

N, N.
1 & PP Ax & _
Zlijg_l{Wiwje i xfl}—F?j_lP]‘z (3.1)

FVP _
Hi7 =
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Figure 4. Example 2: The discrete Hamiltonians HFV and 'HFVP (left) and H5Y and HEVT (right) as functions
of t.

and
1NN N N
L PP PP, DX
My = ZZZ{WJW ol 2 Zu (x;,t)
z 1j=1k=1
1N

_ﬂ; {((ux> ) u; +(( )z+1) 1+1+4((Mx)1+1)2uf+%}(xirl—xf), (3.2)

where uf := uMNr (2P (t),1), uP

P =P (8),8), (w)f =y (P (1),1) and (u)f, ) =

i+3
X (1)

Nl—=

TG (x?+1 /»(t),t) are computed using (2.13) and (2.16), respectively, and xﬁ,p (1)
by periodicity.

Since the FV method is less accurate, we use N, = 1201 for the FV method and
N, =801,N, =401 for the FVP method. The obtained results are presented in Fig. 4,
where we plot the discrete Hamiltonians as functions of time. As one can see, the FVP
method preserves the Hamiltonians much better than its FV counterpart. Moreover, for
the FVP method, we can use less grid cells and particles to well preserve the discrete
Hamiltonians.

Example 3 — Peakon anti-peakon interaction

In the third example, we numerically study the peakon anti-peakon interaction cases,
which were considered previously in [23,46,57]. We take a zero total momentum initial
data

0(x,0)=05, u(x,0)=e ¥+ =51

and the computational domain is [—20,20]. We solve the underlying problem by both
the FV and FVP methods using N, =804 and N, =404. We also compute a reference
solution using the FV method on a finer mesh with N, =38804. In Figs. 5 and 6, we
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Figure 5: Example 3: Densities at different times computed by the FV and FVP methods.

plot the obtained solutions (p and u) at times t =1, 3, 6 and 8. We observe an elastic
collision among the peakon solutions for a sufficiently large ¢, same as the numerical
experiments in [46], the dynamics of the solutions are numerically caught well. Moreover,
if we compare the solutions obtained by FV and FVP methods using the same FV cells,
we can find that, the FVP method with less particles will achieve more accurate results.

3.2 Solitary wave propagation

In this section, we study the relationship between the studied 2CH and classical SV sys-
tems and compare the performance of each one of these systems in the context of solitary
wave propagation. To this end, we first consider a motion of a shallow water over a
flat bottom; see Fig. 7 and assume that the motion is in the x-direction and the phys-
ical variables do not depend on the second spatial variable y. In addition, we denote
by H the mean level of water and by a and A typical amplitude and wavelength of the
wave, respectively. Our goal is to demonstrate that the studied 2CH system can serve as
an asymptotic model of the classical shallow water equations and the physical validity of
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Figure 6: Example 3: Velocities at different times computed by the FV and FVP methods.
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Figure 7: Water waves: general setting and notation.

the model depends on the characteristics of the flow under consideration. More precisely,
this depends on particular assumptions made on the dimensionless parameters e=a/H
and 6 = H/A. The shallow water (or long wave) regime is characterized by the presump-
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tion of small depth or long wavelength, and in order to incorporate stronger nonlinearity
so that the model can capture observed interesting phenomena in nature such as waves
of greatest height, the two parameters should satisfy the so-called CH scaling: 6 <1 and
e=0(0).

We now consider the classical SV system of shallow water equations,

I’lt + (hv)x = O,

1 (3.3)
2 — 2 =
(hv)ﬁ—(hv +2gh )x 0,
and rewrite it the following nonconservative form:
hi+(hv), =0,
1 (ko) (3.4)

v+ 00, +ghy =0.

which is equivalent to (3.3) for smooth solutions.
We then take into account the magnitude of the physical quantities (for details, see
[25,32-34]), introduce the following dimensionless quantities:

vV &H

x/:f/ tlzit, v — 4 / h/zk,

A A v/gH H

and rewrite the system (3.4) in terms of the dimensionless variables x',t',1’,v/,
;/ +€(l’l/vl)x/ = 0,

vl + (h/—F%EZ(U/)Z)

o (3.5)

x/

Next, we introduce 77:= % (h'—1), which describes the deviation of the water surface from
the average level H. Substituting i’ =1+e¢y into (3.5) yields

M+ [(1+€f7)v’] =0
(3.6)

v+ [17+%s(v’)2}x/ ~0.

We note that if ¢ is sufficiently small, then (3.6) implies that 17 ~ —v/, and v}, = —#,.
On the other hand, let us define a new variable

1 1, 1
pi=14 e — e () = celrp, (3.7)
for which one can easily obtain the following equalities:

1 1
pr =€y — 1820/02/ 821717t/
1

1, 1, 1,
RS — 780 (=) = gt (=0 =2 S+ € (1),
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and
E / _E /1 1_12/3_122/
z(pv)x/—z(er eno s(v) snv)x,
1 e \3 2.7
Esv,ﬂ— (') — 16 ((v) +7 v)x/. (3.8)
Neglecting the > terms in (3.8), we obtain a conservation of mass type equation for p:
€ €
pt’+§(pvl)x’%§<77t’+v;’+8(770,)x’) =0. (3.9)
Furthermore, using (3.7) results in
1 1 1 1
2 2,2 202 2,2 2(./\2
=1 _ — = —_ el ——
o e+ ety e (v) £t ten— ¢ (v")7,

and then using the second equation in (3.5), we derive the following equation for the
velocity v'":

ol (S22 +07) ooyt (1hey+38@)7) =elop+ [+ e )] }=0.

(3.10)
Rescaling the independent variables one more time:
1! / 1 /\ / /! 1 / 1!
xX'=Ax, t :\/——Ht/ (4 :E\/gHEU/ Y Z\/ﬁp,
8

renaming 1 :=v" and dropping the double prime notation for x”,t" and p”, equations

(3.9) and (3.10) are reduced to the dispersionless (a« =0) version of the 2CH system (1.1),
which can be written as

pt+(ou)x=0,

ut+<2u +§p2) =0.

Finally, based on the previous derivations, we can obtain the following relation be-
tween p, 1, v and h in the dimensional units:

o= \/_<1+ (£-1)- é(%_l)z_sz_;> and u="2.
Example 4

We now consider a numerical example (taken from [4]), in which we take ¢=9.81, [0,200]
computational domain and the following initial data that correspond to a solitary wave:

h(x,0)= 1+%sech2(\/%(x—70)), v(x,0)= %sechz(\/%(x—m)).
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Figure 8: Example 4, a=0: Time evolution of the water depth (left) and velocity (right).
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Figure 9: Example 4, a=1: Time evolution of the water depth (left) and velocity (right).

In our numerical experiments below, we show how the speed and magnitude of the
solitary wave is affected by the choice of &, which are taken to be « =0, 0.6 and 1. At
it was mentioned in [4], the classical Saint-Venant system fails to model the long time
propagation of the solitary wave since its magnitude decreases and shape is destroyed
over time. The same is true for the nondispersive (x =0) 2CH system, as it can be clearly
seen in Fig. 8, where we plot the numerical solution computed using the FV method
with N, =1600. Next, we consider the dispersive case by choosing a #0. One, however,
must be careful not to introduce too much dispersion, as in this case the wave magnitude
decays and solitary wave profile is getting destroyed. The latter can be illustrated by
taking « =1 and computing the solution of the 2CH system using the FVP method with
N, =N, =1600. The time evolution of the computed solution is shown in Fig. 9, where
one can observe both the wave dissipate and development of the growing tail of the wave
train. We thus take a smaller dispersion by setting &« = 0.6 and compute the numerical
solution using exactly the same numerical setting (the FVP method with N, =N, =1600).
The obtained results are presented in Fig. 10, where one can see that the shape of the
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Figure 10: Example 4, «=0.6: Time evolution of the water depth (left) and velocity (right).

traveling solitary wave is substantially better preserved while the dispersive wave train
is much smaller than in the case of « =1.

Our results suggest that the 2CH system (1.1) may be a good model for long time
solitary wave propagation and that the hybrid FVP method may serve as a robust and
accurate tool for studying the underlying system.

4 Conclusion

In this paper, we have introduced two numerical methods for solving the 2CH system
(1.1), which was derived in the context of shallow water wave theory. From Example
4 in Section 3.2, one can conclude that for certain values of the dispersion parameter a
the 2CH system represents a viable model for the long time propagation of tsunami-type
waves. Using the developed numerical methods, we have illustrated that for these val-
ues of &, the amplitude and speed of the waves were preserved for longer times than
those generated by the non-dispersive system, which is, in fact, equivalent to the clas-
sical Saint-Venant system. We have also been able to explicitly showcase some of the
advantages that a hybrid FVP method holds over the FV central-upwind scheme. We
would like to emphasize that in this paper, we have only provided an initial study of
numerically solving (1.1) from the viewpoint of a model for the propagation of tsunami
waves. Further studies will be conducted to better understand the effects of changing the
length scale « on the solutions generated from solving the 2CH system.
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