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Abstract. We develop a second-order central-upwind scheme for the non-
hydrostatic version of the Saint-Venant system recently proposed in [M.-O.

Bristeau and J. Sainte-Marie, Discrete Contin. Dyn. Syst. Ser. B, 10

(2008), pp. 733–759]. The designed scheme is both well-balanced (capable of
exactly preserving the “lake-at-rest” steady state) and positivity preserving.

We then use the central-upwind scheme to study ability of the non-hydrostatic

Saint-Venant system to model long-time propagation and on-shore arrival of
the tsunami-type waves. We discover that for a certain range of the dispersive

coefficients, both the shape and amplitude of the waves are preserved even

when the computational grid is relatively coarse. We also demonstrate the
importance of the dispersive terms in the description of on-shore arrival.

1. Introduction. Tsunami waves are characterized by having a relatively low am-
plitude, large wavelength, and large characteristic wave speed, see, e.g., [7, 27, 31].
In fact, the amplitude of a tsunami wave can be so small that it may not even be
noticed by a ship traveling through it in deep water. Because of their speed and
wavelength, however, these waves contain a tremendous amount of energy. When
the depth of the water decreases (in the beginning of the on-shore arrival stage of
tsunami wave propagation), tsunamis undergo a process called wave shoaling, in
which the wave slows down and the wavelength decreases. In order to conserve
energy, it is transformed from kinetic to potential energy and the wave amplitude
increases. This potential energy can then be released in disastrous fashion when
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the wave comes to shore. It is therefore very important to have accurate models
and corresponding numerical methods for tsunami waves in order to mitigate any
catastrophe that may result.

One model used for shallow water waves is the classical Saint-Venant system
[12], which is a depth-averaged system that can be derived from the Navier-Stokes
equations (see, e.g., [14]). The Saint-Venant system is a very good simplification
for lakes, rivers, and coastal areas in which the typical time and space scales of
interest are relatively short. Tsunami waves form in deep water and travel very
long distances (thousands of kilometers) before coming to the shore. Over long
time, solutions of the Saint-Venant system break down, dissipate in an unphysical
manner, shock waves develop, and the system fails to capture small, trailing waves
that are seen in nature and laboratory experiments [29]. Thus, it is necessary to
use a more sophisticated model in order to preserve the wave characteristics over
long time simulations.

Non-hydrostatic models (the celebrated Green-Naghdi equation [17] and several
others, see, e.g., [1,3,4] and references therein) work well for long-time propagation
of tsunami-like waves because they allow the wave to travel for long distances with-
out decaying in amplitude. In addition, since these systems are dispersive, they
give rise to trailing waves that are observed to follow tsunamis in nature. However,
it is necessary to achieve some balance between dispersion observed with a non-
hydrostatic model and the dissipation seen in the classical Saint-Venant system.

The non-hydrostatic Saint-Venant system presented in [5, 6] is given by




ht + (hu)x = 0,

(hu)t +Mt +
(
hu2 +

g

2
h2
)
x

+N

= −ghBx + pawx − 4(νux)x − κ(h, hu)u,

(1)

where h(x, t) is the water depth measured vertically from the bottom topography,
described by function B(x, t), u(x, t) is the vertically averaged velocity, hu is the
horizontal momentum or discharge, pa = pa(x, t) is the atmospheric pressure func-
tion, w := h + B is the free surface, ν is the viscosity coefficient, κ is the friction
function, and M and N are defined as

M(h, hu,B) =

(
−1

3
h3ux +

1

2
h2Bxu

)

x

+Bx

(
−1

2
h2ux +Bxhu

)
, (2)

and

N(h, hu,B) =
(
(h2)t(hux −Bxu)

)
x

+ 2Bxht(hux −Bxu)−Bxt
(
−1

2
h2ux +Bxhu

)
.

(3)

Here, M and N are terms that arise when the system is derived from the Euler
equations and include non-hydrostatic pressure terms [6].

One of the goals of the current work is to numerically study the effects of the
dispersion terms present in the non-hydrostatic model (1)–(3). To this end, we
introduce the new scaling parameters αM and αN as coefficients to M and N in (1).
For the purpose of this work we will neglect fluid viscosity and friction by setting
ν and κ(h, hu) to be identically zero and also assume that the bottom topography
function is independent of time, i.e., B = B(x). In addition, we follow the approach
in [20, 24] and rewrite our system in terms of the equilibrium variables w = h + B
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and q := hu:




wt + qx = 0,

qt + αMMt +

(
q2

w −B +
g

2
(w −B)2

)

x

+ αNN = −g(w −B)Bx + pawx.
(4)

When αM = αN = pa ≡ 0, (4) reduces to the classical Saint-Venant system, and as
we increase these parameters, the amount of dispersion in our model increases and
the effects of the lack of the hydrostatic pressure assumption should be apparent.

To study the non-hydrostatic effects, we design a highly accurate and robust nu-
merical method for (4). A good scheme for this model should be well-balanced (it
should exactly preserve “lake-at-rest” steady-state solutions at the discrete level), it
should preserve positivity of h, and it should be able to properly handle discontinu-
ous/nonsmooth solutions. The system (4) presents challenges in the approximation
and treatment of the higher-order mixed derivatives in the non-hydrostatic terms
whose semi-discretization leads to stiff terms that require an efficient numerical
solver for the resulting system of ODEs. In this paper, we develop a central-upwind
scheme for (4) which possesses all of the aforementioned features and use it to ex-
amine the effects of the non-hydrostatic pressure terms on the propagation of waves
over long times and on their on-shore arrival.

Central-upwind schemes (first introduced in [26] and further developed in [21,23])
are Godunov-type finite volume methods. They belong to the class of Riemann-
problem-solver-free central schemes and thus can be applied to a variety of hyper-
bolic systems of conservation laws as a “black-box” solver. When central-upwind
schemes are applied to systems of balance laws, a special treatment of the source
terms appearing in the system at hand must be developed. This was done for single-
and two-layer shallow water models in [2, 9–11,19,20, 24,25]. In order to apply the
central-upwind scheme to (4), one needs to specify the way the terms on the right-
hand side (RHS) of (4) are discretized. As it was mentioned above, this should
be done in such a way that physically relevant steady-state solutions are exactly
preserved and h is guaranteed to be nonnegative.

The physically relevant steady-state solution for (4) is the “lake-at-rest” solution,
corresponding to the water surface being perfectly flat and stationary:

w = h+B ≡ Const, hu ≡ 0. (5)

Preserving this particular steady state would guarantee that no artificial surface
waves are generated, and also ensure that small perturbations of the water surface
will not lead to a “numerical storm”. This is achieved by using a special discretiza-
tion of the geometric source term on the RHS of (4) which is presented in Section
2.1.3.

Preserving positivity of h is essential since solutions containing negative h would
not only be unphysical, but will cause the numerical computations to fail. To ensure
positivity of h, we follow the idea from [24]. We first replace the bottom topography
with its continuous piecewise linear approximation and then adjust the piecewise
linear reconstruction of the water heights, ensuring that through each computational
cell the depth of each layer is nonnegative. This is presented in Section 2.1.1.

With the numerical method in place, we examine the effect of the non-hydrostatic
pressure terms in Section 3, where we try to strike a balance between dissipation
and dispersion inherent in the system.
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2. Numerical Method.

2.1. Central-Upwind Scheme. We develop a new well-balanced positivity pre-
serving scheme for (4), which is based on the semi-discrete central-upwind scheme
from [23] (see also [24, 25]). For simplicity, we introduce a uniform grid xj = j∆x
where ∆x is a small spatial scale, and denote the computational cells centered at
xj by Ij := [xj− 1

2
, xj+ 1

2
].

We rewrite the system (4) in the following form:

Ut +M(U, B)t + F(U, B)x +N (U, B) = S(U, B), U := (w, q)> (6)

where

F(U, B) =
(
q,

q2

w −B +
g

2
(w −B)2

)T
, S(U, B) = (0,−g(w −B)Bx + pawx)>,

M(U, B) = (0, αMM(U, B))T , N (U, B) = (0, αNN(U, B))T .

Using the above notations, a semi-discrete central-upwind scheme for (6) takes
the form of the following system of time-dependent ODEs:

d

dt

(
Uj(t) +Mj(t)

)
= −

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+ Sj(t)−N j(t), (7)

where (·)j(t) is used to denote the approximated cell averages over the corresponding
cells:

Uj(t) ≈
1

∆x

∫

Ij

U(x, t) dx, Sj(t) ≈
1

∆x

∫

Ij

S(U(x, t), B(x)) dx,

M j(t) ≈
1

∆x

∫

Ij

M(U(x, t), B(x)) dx, N j(t) ≈
1

∆x

∫

Ij

N(U(x, t), B(x)) dx,

and Hj+ 1
2
(t) are the central-upwind numerical fluxes Hj+ 1

2
proposed in [24] (see

also [21,23]):

Hj+ 1
2
(t) =

a+
j+ 1

2

F
(
U−
j+ 1

2

, Bj+ 1
2

)
− a−

j+ 1
2

F
(
U+
j+ 1

2

, Bj+ 1
2

)

a+
j+ 1

2

− a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

− a−
j+ 1

2

[
U+
j+ 1

2

−U−
j+ 1

2

]
.

(8)

Here, the values U±
j+ 1

2

are the right/left point values at x = xj+ 1
2

of the conservative

piecewise linear reconstruction Ũ,

Ũ(x) := Uj + (Ux)j (x− xj) , xj− 1
2
< x < xj+ 1

2
, (9)

which is used to approximate U at time t, that is,

U±
j+ 1

2

:= Ũ
(
xj+ 1

2
± 0
)

= Uj+ 1
2± 1

2
∓ ∆x

2
(Ux)j+ 1

2± 1
2
. (10)

The numerical derivatives (Ux)j are at least first-order accurate component-wise

approximations of Ux(xj , t), computed using a nonlinear limiter needed to ensure
the non-oscillatory nature of the reconstruction (9). The right- and left-sided local
speeds a±

j+ 1
2

in (8) are obtained from the smallest and largest eigenvalues of the
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Jacobian ∂F
∂U (see Section 2.1.1 for details). Notice that the terms U±

j+ 1
2

, Uj , a
±
j+ 1

2

,

Ũ(x) and (Ux)j all depend on t, but we suppress this dependence for simplicity.

We also follow the work of [24, 25] and replace B(x) in (8) with its continuous
piecewise linear approximation by defining

Bj+ 1
2

:= B(xj+ 1
2
) and Bj :=

1

2
(Bj+ 1

2
+Bj− 1

2
). (11)

This will help to ensure the positivity preserving nature of the proposed scheme, as
we show below.

2.1.1. Positivity-Preserving Reconstruction. The use of a piecewise linear recon-
struction (9) requires the computation of slopes (Ux)j to obtain the right/left point
values defined in (10). It is well-known that in order to ensure the non-oscillatory
nature of the reconstruction, the use of a nonlinear limiter is required. We choose
to use the generalized minmod limiter:

(Ux)j = minmod

(
θ
Uj −Uj−1

∆x
,
Uj+1 −Uj−1

2∆x
, θ

Uj+1 −Uj

∆x

)
, (12)

where θ ∈ [1, 2] and the minmod function defined as

minmod(z1, z2, . . . ) :=





min
j
{zj}, if zj > 0 ∀j,

max
j
{zj}, if zj < 0 ∀j,

0, otherwise,

is applied in a componentwise manner. The parameter θ can be used the control the
amount of numerical viscosity present in the resulting scheme (see, e.g., [28, 30, 33]
for more details concerning the generalized minmod and other nonlinear limiters).

Even when all of the cell averages hj are nonnegative, the reconstructed right/left
point values at the cell interface h±

j+ 1
2

may be negative. To guarantee positivity of

h throughout the entire computational domain, we follow the procedure from [24]
and amend the reconstruction (9), (10), (12) in the following conservative way:

if w−
j+ 1

2

< Bj+ 1
2
, then take (wx)j := − wj

∆x/2

=⇒ w−
j+ 1

2

= Bj+ 1
2
, w+

j− 1
2

= 2wj ,

if w+
j− 1

2

< Bj− 1
2
, then take (wx)j :=

wj
∆x/2

=⇒ w−
j+ 1

2

= 2wj , w
+
j− 1

2

= Bj− 1
2
.

(13)

It is necessary to compute the nonconservative quantity u = q/h for the compu-
tation of numerical fluxes and local propagation speeds. We follow the desingular-
ization procedure outlined in [24, 25] to avoid possible division by small values of
h:

u :=

√
2(w −B) · q√

(w −B)4 + max ((w −B)4, ε)
, (14)

where ε is a small desingularization parameter (in our numerical experiments, we
have taken ε = min((∆x)3, 10−4)). Notice that this procedure will only affect the
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velocity computations when h4 < ε. It is also important to recalculate the values
of q at the points where the velocity was desingularized by setting

q := h · u.

Since the flux term F in (6) is equivalent to that of the classical Saint-Venant
system, the local propagation speeds a±

j+ 1
2

are computed the same way using the

eigenvalues of ∂F
∂U :

a+
j+ 1

2

:= max
{
u+
j+ 1

2

+
√
gh+

j+ 1
2

, u−
j+ 1

2

+
√
gh−

j+ 1
2

, 0
}
,

a−
j+ 1

2

:= min
{
u+
j+ 1

2

−
√
gh+

j+ 1
2

, u−
j+ 1

2

−
√
gh−

j+ 1
2

, 0
}
.

Remark 1. Proof of the positivity preserving property of this reconstruction is
available in [20,24].

2.1.2. Discretization of the Non-hydrostatic Pressure Terms. The dispersive terms
M j and N j are computed using the second-order midpoint rule. We first follow [5]
and discretize the terms of M at xj in the following ways:

(
1

3
h3ux

)

x

(xj) ≈
1

3∆x

[
uj+1 − uj

∆x

(
hj+ 1

2

)3 − uj − uj−1
∆x

(
hj− 1

2

)3
]

=
1

3(∆x)2



(
hj+ 1

2

)3

hj+1

qj+1 −
(
hj+ 1

2

)3
+
(
hj− 1

2

)3

hj
qj +

(
hj− 1

2

)3

hj−1
qj−1


 ,

(15)

(
1

2
h2Bxu

)

x

(xj) =

(
1

2
hBxq

)

x

(xj)

≈ 1

2∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+ 1

2
− hj− 1

2
(Bx)j− 1

2
qj− 1

2

]

=
1

4∆x

[
hj+ 1

2
(Bx)j+ 1

2
qj+1

+
(
hj+ 1

2
(Bx)j+ 1

2
− hj− 1

2
(Bx)j− 1

2

)
qj − hj− 1

2
(Bx)j− 1

2
qj−1

]
,

(16)

(
1

2
Bxh

2ux

)
(xj) ≈

1

2
(Bx)jh

2

j (ux)j ≈
1

2
(Bx)jh

2

j

[
1

hj
(qx)j −

(hx)j

h
2

j

qj

]

=
1

4∆x
(Bx)j

[
hjqj+1 − 2∆x(hx)jqj − hjqj−1

]
(17)

(B2
xhu)(xj) ≈ (Bx)2jqj , (18)

where uj := qj/hj and

uj+ 1
2

:=
1

2
(uj+1 + uj), hj+ 1

2
:=

1

2
(hj+1 + hj), qj+ 1

2
:=

1

2
(qj+1 + qj),

(Bx)j :=
Bj+ 1

2
−Bj− 1

2

∆x
, (Bx)j+ 1

2
:=

1

2
((Bx)j+1 + (Bx)j),

(qx)j :=
qj+1 − qj−1

2∆x
.

(19)
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We then replace the time derivatives ht by its space equivalent −qx and use (19) to
obtain the following discretization of N :

Nj =− 2

∆x

[
hj+ 1

2
· qj+1 − qj

∆x

(
hj+ 1

2

uj+1 − uj
∆x

− (Bx)j+ 1
2
uj+ 1

2

)

−hj− 1
2
· qj − qj−1

∆x

(
hj− 1

2

uj − uj−1
∆x

− (Bx)j− 1
2
uj− 1

2

)]

− 2(Bx)j(qx)j

{
(qx)j − [(hx)j + (Bx)j ]uj

}
(20)

Remark 2. In equations (15)–(18), (hx)j are obtained using the limiter as it is
described in Section 2.1.1, while (qx)j are calculated using the centered differences
(see (19)). The latter is done to avoid the need to solve a nonlinear system of
algebraic equations as we explain in Section 2.2.

Remark 3. We would like point out that all of the terms in (15)–(18) will be taken
at either tn or tn+1 depending on a particular choice of the time evolution method
for the numerical integration of the system (7). The manner in which these terms
are combined and treated is presented in Section 2.2.

2.1.3. Well-Balanced Source Discretization. Our goal is to design a numerical scheme
for (4) that exactly preserves the “lake-at-rest” steady-state solution (5). This is

achieved by selecting a proper discretization of the geometric source term S
(2)

j . Such
a discretization was derived for the classical Saint-Venant system in [20], and since
both Mj and Nj as defined in Section 2.1.2 vanish at this steady state, we use this
discretization along with an additional atmospheric pressure term for our scheme:

S
(2)

j =− g
(
w−
j+ 1

2

−Bj+ 1
2

)
+
(
w+
j− 1

2

−Bj− 1
2

)

2
·

(Bj+ 1
2
−Bj− 1

2
)

∆x

+ pa
w−
j+ 1

2

− w+
j− 1

2

∆x
.

2.2. Time Evolution. We solve the semi-discrete system (7) by applying the
third-order strong stability preserving Runge-Kutta (SSP-RK) method from [15,16],
which can be written as a convex combination of three forward Euler steps. For
the purpose of demonstration, we proceed by fully discretizing (7) according to the
forward Euler method, and all results obtained from doing so also apply to the
SSP-RK method used in all of our numerical experiments.

When fully discretized by the forward Euler method, the first component of (7)
becomes

wn+1
j = wnj − λ

(
H

(1)

j+ 1
2

−H(1)

j− 1
2

)
, (21)

where λ = ∆t/∆x. Notice that (21) has no contribution from M, N or S and
therefore we may advance the first component independently of the second one to

obtain the cell averages of w at the new time level, {wn+1
j }Nj=1 (and thus {hn+1

j }Nj=1

since h
n+1

j := wn+1
j −Bj , where Bj is given by (11)). The fully discretized version

of the second component of (7) then becomes

qn+1
j + αMM

n+1
j = qnj + αMM

n
j − λ

(
H

(2)

j+ 1
2

−H(2)

j− 1
2

)
+ ∆tS

(2)

j −∆tαNN
n
j , (22)

where all of the terms on the RHS of (22) are taken at t = tn.
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Combining (15)–(18) for the discretization of M at time level tn+1 and inserting
this into the left-hand side (LHS) of (22) leads to the tridiagonal system T =
(τn+1
i,j ), j = 1, . . . , N, i = j − 1, j, j + 1 for {qn+1

j }:

qn+1
j + αMM

n+1
j = τn+1

j−1,jq
n+1
j−1 + τn+1

j,j qn+1
j + τn+1

j+1,jq
n+1
j+1 , (23)

where

τn+1
j−1,j = αM



h
n+1

j (Bx)j − hn+1
j− 1

2

(Bx)j− 1
2

4∆x
−

(
hn+1
j− 1

2

)3

3h
n+1

j−1 (∆x)2


 ,

τn+1
j,j = 1 + αM

[
hn+1
j+ 1

2

(Bx)j+ 1
2
− hn+1

j− 1
2

(Bx)j− 1
2

4∆x
+

(
hn+1
j+ 1

2

)3
+
(
hn+1
j− 1

2

)3

3h
n+1

j (∆x)2

+
(Bx)j(hx)n+1

j

2
+ (Bx)2j

]
,

τn+1
j,j+1 = αM



hn+1
j+ 1

2

(Bx)j+hf − h
n+1

j (Bx)j

4∆x
−

(
hn+1
j+ 1

2

)3

3h
n+1

j+1 (∆x)2


 .

Notice that the term qnj +αMM
n
j on the RHS of (22) is discretized in the same way,

but at time level t = tn.

Remark 4. The addition of the dispersive terms M and N does not affect the well-
balanced property of the scheme because these terms vanish at the “lake-at-rest”
steady state (5). The positivity-preserving property of the scheme is also unaffected
because these terms do not appear in the first equation of (1).

Remark 5. We may write the LHS of (22) as described by (23) as T qn+1, where
qn+1 is the vector of the unknown cell averages {qn+1

j }Nj=1. When using free bound-
ary conditions, T will be strictly tridiagonal, and it is well-known that in this case,
the linear algebraic system (22) can be efficiently solved using the LU decomposition;
see, e.g., [8, 34] for details. In the case of periodic boundary conditions, the matrix
T becomes circulant and one may still take advantage of the banded structure of
the matrix by implementing the Sherman-Morrison algorithm proposed in [32].

3. Numerical Experiments. In the following experiments, we will examine the
role that the non-hydrostatic pressure terms play in the long-time propagation of
water waves. We will use the classical Saint-Venant system for comparison, which
is simply (4) with αM = αN = pa ≡ 0. In all of the experiments, we take pa ≡ 0,
take the minmod parameter θ = 1.3, and consider free boundary conditions.

Example 1 — Solitary Wave Propagation. In the first example (taken from [5]), we
study propagation of the wave given by the following initial data:

h(x, 0) = 1 +
1

10
sech2

(√ 3

40
(x− 70)

)
, u(x, 0) =

√
g

10
sech2

(√ 3

40
(x− 70)

)
,

over a flat bottom topography with B(x) ≡ −0.1. We take g = 9.81 and divide
the computational domain [0, 400] into 3200 finite-volume cells. According to [5],
in the case when αM = αN = 1, these data correspond to a solitary wave, which
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is a single elevation of water surface above an undisturbed surrounding, which is
neither preceded nor followed by any free surface disturbances.

In our numerical experiments below, we compute the solutions until the final
time t = 50 and demonstrate how the speed, magnitude and shape of the wave is
affected by the choice of αM and αN . We begin with the classical Saint-Venant
system (αM = αN = 0) and then start adding the non-hydrostatic pressure terms
by gradually increasing αM and αN . We first observe that for a very small value
of αM = αN = 0.01, the solutions of hydrostatic and non-hydrostatic systems are
almost the same except for a small change of the shape of the wave at the top; see
Figure 1. We then further increase αM and αN to 0.02–0.05 and observe that up
to the intermediate times (around t = 20) the solution magnitude increases before
decreasing at later times. One can also observe a substantial change in the shape of
the wave as a dispersive wave structure clearly develops for αM = αN = 0.04 and
0.05; see Figure 2. When αM and αN are increased up to 0.01, the magnitude of the
wave seem to increase up to about t = 30 and then it stabilizes; for even larger values
of αM = αN = 0.25 and 0.5, the dispersive wave structure starts disappearing and
the amplitude growth becomes less pronounced; and for αM = αN = 1 the expected
solitary wave structure is numerically recovered; see Figure 3. Finally, in Figure 4,
we show the solution obtained for larger dispersive coefficients αM = αN = 2 and
5. As one can see, in these two cases the magnitude of the wave decreases and a
wave train is clearly formed.

Figure 1. Example 1: Time evolution of the water surface for αM =
αN = 0 (left) and 0.01 (right).

We also perform an experimental convergence study of the proposed method.
To this end, we take the solution computed with αM = αN = 1 at time t = 0.1
on different grids and compare them with the reference solution obtained with
51200 finite-volume cells. The results are reported in Tables 1 and 2 for w and
q, respectively. as One can observe, the expected second order of convergence is
achieved in both L∞-, L1- and L2-norms.

Example 2 — Large-Scale Tsunami-Like Wave Propagation. In the second example,
we consider a wave that was created using a Savage-Hutter type model of submarine
landslides and generated tsunami waves. This model is governed by a two-layer
system in which the lower layer is considered to be a fluid-granular mixture that
has a larger density than the upper layer, which is water. The lower layer slides
down the slope of the solid bottom, and the through momentum exchange causes
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Figure 2. Example 1: Time evolution of the water surface for αM =
αN = 0.02 (top left), 0.03 (top right), 0.04 (bottom left) and 0.05
(bottom right).

Number of cells L∞-error Rate L1-error Rate L2-error Rate
400 2.94e-04 – 1.97e-04 – 1.47e-04 –
800 9.23e-05 1.67 4.46e-05 2.14 3.54e-05 2.06
1600 1.51e-05 2.61 8.99e-06 2.31 5.53e-06 2.68
3200 2.55e-06 2.56 2.04e-06 2.14 1.01e-06 2.45
6400 6.63e-07 1.94 5.13e-07 1.99 2.31e-07 2.13
12800 1.75e-07 1.92 1.49e-07 1.79 5.88e-08 1.97

Table 1. L∞-, L1- and L2-errors in w and the corresponding exper-
imental rates of convergence.

waves to form at the water surface. For more details of this system and associated
numerical methods, see [13,18,22].

The initial data are obtained from [22, Section 4.5], where a submarine landslide
on the ocean floor creates surface waves traveling to the left and right. We choose
the right-moving wave at t = 0.3 as the initial condition for the non-hydrostatic
system (4) and the following bottom topography function:

B(x) =





− 5, x < 0,

− 5 +
5∑

i=1

Ci sin(π(x− Si)/Li), x ≥ 0,
(24)
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Figure 3. Example 1: Time evolution of the water surface for αM =
αN = 0.1 (top left), 0.25 (top right), 0.5 (bottom left) and 1 (bottom
right).

Figure 4. Example 1: Time evolution of the water surface for αM =
αN = 2 (left) and 5 (right).

where the parameters Ci, Si and Li are given in Table 3. The initial water sur-
face w(x, 0) and velocity u(x, 0) are plotted in Figure 5 and a nonflat part of the
bottom topography is shown in Figure 6. In this example, the length scale is kilo-
meters and the time scale is hours, so we take the corresponding gravity to be
g = 271008 km/h2. The computational domain, [−150, 2200], is divided into 18800
finite-volume cells.
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Number of cells L∞-error Rate L1-error Rate L2-error Rate
400 2.28e-04 – 4.12e-04 – 1.90e-04 –
800 5.48e-05 2.06 1.03e-04 2.00 4.62e-05 2.04
1600 1.34e-05 2.04 2.56e-05 2.01 1.12e-05 2.05
3200 2.89e-06 2.21 6.49e-06 1.98 2.78e-06 2.01
6400 7.31e-07 1.98 1.65e-06 1.98 6.94e-07 2.00
12800 1.70e-07 2.10 4.14e-07 1.99 1.71e-07 2.02

Table 2. L∞-, L1- and L2-errors in q and the corresponding exper-
imental rates of convergence.

i 1 2 3 4 5
Ci 0.1 0.3 0.5 0.1 1
Si 0 2 3 0 80
Li 40 70 100 10 2500

Table 3. Parameters used in for the bottom topography functions
(24) and (25).

Figure 5. Example 2: Initial water surface (left) and discharge (right).

We compute the solutions until the final time t = 2 and as in Example 1 study the
dependence of the computed solutions on the choice of the dispersion parameters
αM and αN . We begin with the classical Saint-Venant system (αM = αN = 0) and
plot the obtained results in Figure 7. As one can see, there are many small waves
created behind the large wave as a result of the nonflat bottom topography, but the
structure of the larger waves does not seem to be significantly affected. Figure 8
shows time snapshots of the numerical solutions of the non-hydrostatic system (4)
with αM = αN = 0.05, 0.1, 0.15 and 0.2. As expected, dispersive wave trains start
appearing and become more pronounced for larger values of αM and αN .

Example 3 — On-Shore Dynamics of the Large Wave. In order to further empha-
size the difference between hydrostatic and non-hydrostatic solutions, we let the
computed waves to approach the shore. We take the solutions at time t = 2 shown
in Figure 7 for αM = αN = 0 and Figure 8 for αM = αN = 0.2 as initial data in
the domain [1000, 3000] (divided into 16000 finite-volume cells) along with following
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Figure 6. Example 2: The bottom topography function (24).

Figure 7. Example 2: Time evolution of the water surface for the
classical Saint-Venant system (αM = αN = 0).

bottom topography function:

B(x) =





− 5 +
5∑

i=1

Ci sin(π(x− Si)/Li), x < 2200,

− 4.86 + 2.75 exp
[
−300

(
1− x

2600

)]
, 2200 < x ≤ 2600,

10−10 − 2.11 exp
[
−300

( x

2600
− 1
)]
, x > 2600,

(25)

where the coefficients Ci, Si, and Li are given in Table 3. We notice that near the
shore, the function B is simply a smooth curve that increases from −4.86 to almost
zero; see Figure 9.

In order to accurately capture the on-shore arrival of the waves, we have im-
plemented a special well-balanced reconstruction of wet/dry fronts from [2] and
computed both the hydrostatic and non-hydrostatic solutions until the final time
t = 3. We present several time snapshots of the computed water surface in Fig-
ure 10. As one can see, both dispersive and non-dispersive waves go through the
shoaling process where they slow down and increase in height, and eventually ar-
rive on shore. If we look closer (Figure 11), we see that the trailing waves actually
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Figure 8. Example 2: Time evolution of the water surface for αM =
αN = 0.05 (top left), 0.1 (top right), 0.15 (bottom left) and 0.2
(bottom right).

Figure 9. Example 3: The bottom topography function (25).

impact how the wave comes to shore: The front of the non-hydrostatic solution is
about 10–20 km behind the hydrostatic one. This suggests that the non-hydrostatic
terms must be included in a tsunami model if one wants to accurately represent the
ultimate outcome of the tsunami waves.
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Figure 10. Example 3: On-shore arrival of the tsunami-like waves
in the hydrostatic (αM = αN = 0) and non-hydrostatic with αM =
αN = 0.2 regimes.

REFERENCES

[1] E. Barthelemy, Nonlinear shallow water theories for coastal waves, Surv. Geophys., 25 (2004),

315–337.
[2] A. Bollermann, G. Chen, A. Kurganov and S. Noelle, A well-balanced reconstruction of

wet/dry fronts for the shallow water equations, J. Sci. Comput., 56 (2013), 267–290.

[3] J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-
amplitude long waves in nonlinear dispersive media. I. Derivation and linear theory, J. Non-

linear Sci., 12 (2002), 283–318.
[4] J. L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-

amplitude long waves in nonlinear dispersive media. II. The nonlinear theory, Nonlinearity,

17 (2004), 925–952.

39



A. CHERTOCK, A. KURGANOV, J.MILLER AND J. YAN

Figure 11. Example 3: Same as Figure 10, but zoomed in.

[5] M.-O. Bristeau, N. Goutal and J. Sainte-Marie, Numerical simulations of a non-hydrostatic

shallow water model, Comput. & Fluids, 47 (2011), 51–64.
[6] M.-O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model;

comparison with Saint-Venant and Boussinesq systems, Discrete Contin. Dyn. Syst. Ser. B,

10 (2008), 733–759.
[7] E. Bryant, Tsunami: the Underrated Hazard, 2nd edition, Cambridge University Press, 2008.

[8] R. L. Burden and D. J. Faires, Numerical Analysis, 8th edition, Brooks Cole, 2005.

[9] M. J. Castro Dı́az, A. Kurganov and T. Morales de Luna, Path-conservative central-upwind
schemes for nonconservative hyperbolic systems, ESAIM Math. Model. Numer. Anal., To

appear.

[10] Y. Cheng and A. Kurganov, Moving-water equilibria preserving central-upwind schemes for
the shallow water equations, Commun. Math. Sci., 14 (2016), 1643–1663.

[11] A. Chertock, S. Cui, A. Kurganov and T. Wu, Well-balanced positivity preserving central-
upwind scheme for the shallow water system with friction terms, Internat. J. Numer. Meth.

Fluids, 78 (2015), 355–383.
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