COMMUN. MATH. SCI. (© 2020 International Press
Vol. 18, No. 8, pp. 2149-2168

OPERATOR SPLITTING BASED CENTRAL-UPWIND SCHEMES FOR
SHALLOW WATER EQUATIONS WITH MOVING BOTTOM
TOPOGRAPHY*

ALINA CHERTOCK', ALEXANDER KURGANOV#, AND TONG WU?

Abstract. In this paper, we develop a robust and efficient numerical method for shallow water
equations with moving bottom topography. The model consists of the Saint-Venant system governing
the water flow coupled with the Exner equation for the sediment transport. One of the main difficulties
in designing good numerical methods for such models is related to the fact that the speed of water surface
gravity waves is typically much faster than the speed at which the changes in the bottom topography
occur. This imposes a severe stability restriction on the size of time steps, which, in turn, leads to
excessive numerical diffusion that affects the computed bottom structure. In order to overcome this
difficulty, we develop an operator splitting approach for the underlying coupled system, which allows
one to treat slow and fast waves in a different manner and using different time steps. Our method is
based on the application of a finite-volume central-upwind scheme introduced in [A. Kurganov and G.
Petrova, Commun. Math. Sci., 5:133-160, 2007], and incorporates a staggered grid strategy needed for
a proper approximation of the bottom topography function. A number of one- and two-dimensional
numerical examples are presented to demonstrate the performance of the proposed method.

Keywords. Saint Venant system of shallow water equations; moving bottom topography; Exner
equation; operator splitting method, semi-discrete central-upwind schemes.
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1. Introduction

Shallow water models are widely used as a mathematical framework to study water
flows in rivers and coastal areas as well as to investigate a variety of phenomena in
atmospheric sciences and oceanography. One of the classical shallow water models is
the Saint-Venant (SV) system [11], which in the two-dimensional (2-D) case can be
written in the following form:

hi+ (hu) g+ (hv), =0,
2,92 _
(hu)t—i-(hu +5h )x—l—(huv)y——gth, (L.1)

(hv)e+ (huv), + (hv2 + gh2> =—ghB,.
Yy

Here, h(z,y,t) is the fluid depth above the bottom, u(z,y,t) and v(z,y,t) are the z-
and y-velocities, g is the constant gravitational acceleration, and B(z,y) is the bottom
topography function. More realistic shallow water models may also include, among
other things, Coriolis and wind forces, friction terms, horizontal and vertical density
variations, viscous, dispersive and turbulent effects.

In this paper, we consider the case, which appears in many practical situations,
when the bottom topography B = B(z,y,t) is time-dependent due to erosion, sediment
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transport, dam breaks, floods and submarine landslides; see, e.g., [20,21,40, 44,45, 50,
51,57,58]. The simplest way to model the bed load sediment transport was proposed
in [14,20]. According to this approach the bottom topography function satisfies the
following equation:

B+ A [u(u2 +v2)(m71)/2} + A {v(u2 +02)(m71)/2] =0, (1.2)
z Yy

where A is a constant, which accounts for the porosity of the sediment layer and effects
of sediment grain size and kinematic viscosity, and m € [1,4] is a constant. The values of
A and m are often obtained from experimental data. If A is zero, there is no sediment
transport, and the system (1.1), (1.2) reduces to the classical SV system (1.1). The
interaction between the sediment and the water is weak when A is small and strong
when A is large. One thing to note about this model is that there is no threshold
necessary to initiate motion and sediment bed load transport will begin with the fluid
motion.

The system (1.1), (1.2) is a system of hyperbolic balance laws, which admits non-
smooth solutions. Therefore, a numerical method for (1.1), (1.2) should be based on
a shock-capturing scheme. In addition, a good numerical method should be capable of
accurately capturing both the steady states and their small perturbations (quasi-steady
flows). This property ensures that the scheme suppresses the appearance of unphysical
waves of magnitude proportional to the grid size, which are normally present when com-
puting quasi-steady states. From a practical point of view, one of its most important
steady-state solutions of the system (1.1), (1.2) is a “lake at rest” one:

u=v=0, h+B=Const, B(z,y,t)=B(z,y,0) Vi.

The methods that exactly preserve such solutions are called well-balanced; see [1,3,27,30,
31,34,39,49,59] for some well-balanced methods for the SV system (1.1). Even though
a rigorous stability analysis of these schemes is usually out of reach, they typically
produce highly accurate approximations of quasi-steady solutions.

An additional difficulty in solving the coupled system (1.1), (1.2) numerically is
associated with the fact that the speed of water surface gravity waves is typically much
faster than the speed at which the changes in the bottom topography occur. This
imposes a severe stability restriction on the size of time steps, which, in turn, leads
to excessive numerical diffusion that affects the computed bottom structure; see, e.g.,
[2,5,13,23,24].

In this paper, we overcome the latter difficulty by developing an operator splitting
method (see, e.g., [25,42,52,55]) for the system (1.1), (1.2) and its one-dimensional
(1-D) version. To this end, we split the SV system (1.1) from the Exner equation (1.2).
The size of splitting time steps will be made inversely proportional to the amplitude
of a smaller eigenvalue of the Jacobians of the extended system (1.1), (1.2). We will
then follow the approach that was utilized in the framework of the fast explicit oper-
ator splitting method [8,9]: each SV splitting substep will consist of several smaller
time evolution steps. This way we will ensure the stability of the SV substeps, while
large Exner splitting substeps will prevent excessive numerical dissipation, which may
severely affect the resolution of the bottom topography, especially in the case when B
is discontinuous.

Each of the splitting substeps will be carried out using a second-order well-balanced
central-upwind (CU) scheme. High-resolution Godunov-type semi-discrete CU schemes
were originally developed in [32,33,35] as a universal method for general multidimen-
sional systems of hyperbolic conservation laws. CU schemes belong to a family of
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Riemann-problem-solver-free non-oscillatory central schemes and thus can be applied
as a “black-box” solver to the Exner Equation (1.2). The CU schemes have also been
extended to systems of balance laws and applied to the SV system (1.1) in a series of
works. In this paper, we will implement the well-balanced CU scheme proposed in [34].
Since this scheme uses a continuous piecewise linear (or bilinear) reconstruction of the
bottom topography, the Exner equation will be solved on a staggered grid so that the
point values of B will be evolved in time at every finite-volume cell interface, while the
cell averages of h, hu and hv will be evolved inside each cell.

The paper is organized as follows. The 1-D numerical scheme is presented in §2.
First, in §2.1, we describe the operator splitting approach. We then present the semi-
discretizations of the hydrodynamic (§2.2) and morphodynamic (§2.3) subsystems. Fi-
nally, we summarize the 1-D algorithm in §2.4. The 2-D scheme is presented in §3 in a
similar way: we introduce the operator splitting method (§3.1), semi-discretizations of
the hydrodynamic (§3.2) and morphodynamic (§3.3) subsystems, and the general algo-
rithm (§3.4). The proposed 1-D and 2-D schemes are tested on six numerical examples
in §4. Some concluding remarks can be found in §5.

2. One-dimensional numerical scheme
We begin by considering a 1-D version of the SV system (1.1):

hi+ (hu), =0,
2.1
(hu), + (hu2+ ghQ) — _ghB,, 21)
coupled with the 1-D version of the Exner Equation (1.2):
B+ A(u?), =0, (2.2)

where we have taken m =3 (this value of m will be used throughout the paper). Fol-
lowing [31, 34], we rewrite the SV system (2.1) in terms of the equilibrium variables
w:=h+B and q:=hu:

wy + (q+Au3)z =0,

qt+( - +g<w—B>2) — _g(w-B)B,. (2:3)

w—B 2

x

The eigenvalues of the Jacobian of the system (2.3), (2.2) (or (2.1), (2.2)) are the three
roots of the following characteristic polynomial:

P(X) =\ —2u)’+ (u® — 3Agu® — gh) A+ 3Agu®. (2.4)
It can be shown (see, e.g., [47]) that the roots of (2.4) are real, distinct and given by
1 2
MO =2,/—Qcos (3 [arceos (\/%) + 27l > + 3 £=0,1,2, (2.5)

provided the polynomial determinant D= Q3+ R2 <0, where

Q:f% [u+3g(h+3Au®)] and R=— [9gu(2h—3Au®)—2u"]. (2.6)

1
54
A straightforward computation leads to the following formula for determinant D:

D= f% [4h(u® — gh)? +108A%g*u® +9A%gu* (12gh +u?) + 12 Aghu®(36gh +5u?)]
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which clearly indicates that indeed D <0 for any h>0.

One may show that in (2.5), A(?) is always between A(?) and A(). As it was men-
tioned above, the speed of water surface gravity waves is in many cases much faster
than the speed at which the bottom topography moves and as a result, A(?) and A(V) are
typically of a much larger magnitude than A(?). For instance, in a subcritical case with
a relatively small u, A9 and (V) are typically close to u++/gh, while A is very small
(in a supercritical case, A(®) and A(V) are quite different from u4+/gh, and A?) is close
to u). As a result, the CFL time step restriction, which is based on max{|A(|,]A(V|},
may result in excessive numerical diffusion that would affect the computed (slowly mov-
ing) bottom structure. This naturally leads to the idea of applying an operator splitting
approach, in which the numerical methods for (2.3) and (2.2) can be based on different
local propagation speeds.

2.1. Operator splitting. In this section, we describe the proposed operator
splitting method. To this end, we consider the following two subsystems:

U,+FU,B),=S8(U,B), -
B,=0 (2.7)
with
w q+ Au? 0
U:(q), FU,B)= wquJr%(w_B)z ; S(U,B)Z(_g(w_B)Bﬁ), (2.8)
and

U:=0, 2.9
Bi+A(u?), =0. (2.9)

The subsystem (2.7)—(2.8) represents slightly modified shallow water equations with the
time-independent bottom topography, and it will be referred to as the hydrodynamic sub-
system. The subsystem (2.9) represents the Exner equation with the time-independent
water depth and velocity, and it will be referred to as the morphodynamic subsystem.

Assuming U (z,t) and B(z,t) are available at time ¢, let Sy and Sjs denote the
solution operators for the subsystems (2.7)—(2.8) and (2.9), respectively. Then, an
approximate solution at the next time level t + At can be obtained by using the following
second-order Strang operator splitting method:

(ggﬁ ﬁg) ~ S (A/2)Su (A1)SH (AL/2) (ggg) . (2.10)

For a practical implementation, one needs to choose a proper splitting time step At and
replace the solution operators, Sy and Sy, in (2.10) with their finite-volume discretiza-
tions, which will be described in detail in §2.2 and §2.3.

REMARK 2.1. The proposed operator splitting method can be extended to the third
order of accuracy by implementing the algorithm proposed in [25]. We also refer the
reader to [38,60] for higher-order operator splitting methods. Notice, however, that it
can be shown that splitting methods of orders higher than three will require some nega-
tive time increments [53], which may cause numerical instability when time irreversible
(dissipative) systems like the ones studied here are solved.
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2.2. Semi-discretization of the hydrodynamic subsystem. We denote by
Cj:= [:Ej_;,xj+1] the uniform cells of size Ax centered at xj The computed solu-

tion, realized in terms of the cell averages U _4 fC (z,t)dz and point values

Bj 1 (t)~B(x Tiy1 ,t), is assumed to be known at a glven time ¢ (for the sake of brevity,
we will omit the time dependence of all of the indexed quantities in the rest of this
paper). The cell averages are evolved in time according to the well-balanced semi-
discretization from [34] (note that this can be done since B is time-independent in the

system (2.7)—(2.8)):

d — Hj+l —Hj_; —
—Uj=—"2—-"248. 2.11
dt J Ax + 7 ( )
where
+ - + + -
H+1:a3+%F(Uj+l’Bj+l) +2F(U %7B+1)~|» ajJr% Jt3 {U+1*U_1
JT3 — o + i+4
2 @i 101 @jy1—05, Iz
(2.12)
are the central-upwind numerical fluxes and
+ T
§-: 0_ghj+1+h %-Bj_,,_%—Bj_%
J ’ 2 Ax
are the approximated cell averages of the geometric source term S.
In (2.12),
— Az _ — Az

are the reconstructed right- and left-sided point values of U, which are monotonized
using the generalized minmod limiter (see, e.g., [41,46,54,56]):
U0,

Uj-Uj1 Ujpi—-U;, J
1,2 2.14
Ar . 0ell2], ( )

Az ’ 2Azx 0

(U,); =minmod <9

where the minmod function is defined by
min{z;}, if z; >0 Vj,
minmod(zy,...,2;) = mjjax{zj}, if z; <0 Vj, (2.15)
0, otherwise.

The parameter 6 in (2.14) is used to control the amount of the numerical viscosity, with
larger 6 values resulting in less dissipative, but slightly more oscillatory results.

Finally, the local one-sided speeds of propagation aj++ , and a;_ , in (2.12) are
2

obtained from the largest and smallest eigenvalues of the Jacobian of the original unsplit
system (2.3), (2.2) and are given by

= :max{)\(,o)+ AWDF (0= 3 (1)

- O+ )+ (1=
Yt PEAENT AN b i XT AT ALY o),

(0)—
g3 ity it
(OES (€SES + _,+ _pn
where A 11 an nd A 11 are computed using (2.5), (2.6) with h= hi i =wr =B
2 2
and u= qj+%/hj+%, respectlvely.
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2.3. Semi-discretization of the morphodynamic subsystem. In this sec-
tion, we describe the semi-discrete central-upwind scheme for the system (2.9), which is
discretized on a staggered grid with Cj+% =[zj,2j41]. To this end, we first project the

data, {l_fj}, obtained at the hydrodynamic splitting step onto the staggered grid as it
was done, for example, in [26]:

_ﬁj+ﬁj+1 _&

Uity 2 8

[(Uw)jJrl - (Ux)j} :

where the slopes (Us); are computed using (2.14). Bj, 1 are then evolved in time
according to the following semi-discretization (note that at this splitting stage u is
time-independent):

d Hj—Hj
GBri=— (2.16)
where
b (ur) =7 (ut)® bThT
HJ:AJ(J)+ {(J) . [Bf - B;] (2.17)
bj —b; bj —b;
are the central-upwind numerical fluxes.
In (2.17),
Ax _ Ax
By =By == (Bu)jry and By =B 1 +—-(B.);_,

are the reconstructed right- and left-sided point values of B, which, as before, are
computed using the generalized minmod limiter:

Bjy1—B; s Bs—B; 1 B

. J i—3 i i- it+3
(Bz);4+1 =minmod (9 AL = N ,0 2A:I:

_B 1
*) bel1,),

where the minmod function is defined by (2.15). The reconstructed point values wf

and qj-t, obtained in a similar manner, are used to calculate uji :qji (w]i fBji).

Finally, b;r and b; are local one-sided speeds of propagation, which are obtained
using the middle eigenvalue of the Jacobian of the original unsplit system (2.3), (2.2)
and are given by

b;r :max{)\g-ZH, )\§-2)7,0}, by :min{)\fH, )\;2)7, 0}7

where )\gz)i are computed using (2.5), (2.6) with h :w]j-[ — B]j-[ and u :uji, respectively.

REMARK 2.2. The ODE systems (2.11) and (2.16) are numerically solved using
the three-stage third-order strong-stability preserving (SSP) Runge-Kutta method (see,
e.g., [18,19]).

2.4. Summary of the algorithm. In this section, we summarize one time step
of the splitting method assuming that at a certain time level ¢ the computed quantities
{w;}, {g;} and {BH%} are available.

Step 1. Compute w , and ¢& , using (2.13)-(2.15).
Jjts it3
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Step 2. Compute

bmax ::mjax{max{pgzy, |)\§i)%_ }},

(2)+
Wihere )\ij Tl
qj+%/(wj+% —Bj, 1), respectively.

Step 3. Choose the splitting time step At based on the CFL-type condition for the
morphodynamic subsystem:

are computed using (2.5), (2.6) with hzwji%—BjJr% and u=

Az

bmax

At=K

; (2.18)

where K is a CFL constant, which according to the stability restriction of central-upwind
schemes is supposed to be smaller than 1/2; see, e.g., [29,30].

Step 4. Evolve { 17]} by numerically solving the ODE system (2.11) from time level ¢ to
t+ At/2 with the time step Aty being constrained by the following CFL-like condition:

Aty <K Az 7 amaxzzmax{max{a;.:%,—a._ 1}} (2.19)

Gmax J

Denote the obtained solution by {17; }

Step 5. Evolve {Bj+%} by numerically solving the ODE system (2.16) from time level
t to t+ At.

Step 6. Evolve {17]* } by numerically solving the ODE system (2.11) from time level
t+At/2 to t+ At with the time step Aty being constrained by (2.19).

Step 7. Set t=t+ At and go to Step 1.

3. Two-dimensional numerical scheme
We first take m =3 and rewrite the system (1.1), (1.2) in terms of B and the
equilibrium variables w, ¢:=hu and p:=hv as follows:

wy + (q—l—Au(uQ—i—vz))m—i- (p—|—Av(u2+v2))y =0,

2
C 2 () — g

2
ap p I 2\ —_ _
pt+<w—B>m+<w—B+2(w B) )y g(w—B)B,,

B+ A(u(u?+v%)) +A(v(w’ +v2))y =0.

(3.1)

The eigenvalues of the Jacobian of the system (3.1) in the z-direction are w and the
three roots of the following characteristic polynomial:

Pr(\) =23 —2u\? + [u? — Ag(3u® +v?) — gh) A+ Ag(3u® +uv?).

The eigenvalues of the Jacobian of the system (3.1) in the y-direction are v and the
three roots of the following characteristic polynomial:

Py(p) = i —20p° +[0* — Ag(3v” +-u?) — gh)p+ Ag(3v° +vu?).
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It can be shown that similarly to the 1-D case, the roots of both P, and P» are real,
distinct and given by

1
MO =2,/—Qxcos (3 [arccos( L2 = ) +27l
b\

2
>+3u, (=0,1,2, (3.2)

where

1 1
Qa =3 [u®+3g(h+A(3u®+v?))], Ry= = [18ghu—2u® —9Agu(3u®+v?))], (3.3)

1 R 2
Y =2,/-Q, cos 3 arccos( r >+27TZ +§v, (=0,1,2, (3.4)

where
1 1
Q.= -3 [0*+3g(h+A(u*+30%))], R.= o [18ghv —2v® —9Agu(u®+3v?))], (3.5)

respectively.

One may show that both u and A?) in (3.2) are always between A\(?) and \(*) and
both v and p® in (3.4) are always between 1© and p(M). We therefore will select the
operator splitting time step based on the local speeds that correspond to the bottom
topography propagation, that is, on A(?) and p(?) to prevent excessive numerical diffusion
to smear the computed (slowly moving) bottom structure.

3.1. Operator splitting. The 2-D operator splitting method is similar to the
1-D one. As before, we consider the hydrodynamic,

{Ut—&-F(U,B)ﬁ—G(U,B)y:S(U,B), 56)

Bt = 0
with

q+ Au(u® +v?)
¢ 9

w
U=|q|, FUB=|,52p5T3w-B’
p qp
w—B

b

p+ Av(u? +0?)
qp 0
G(UaB): 5 w—B ) S(UaB): _g<w_B)
q 9, 2
w—B+2(w B)

2
g
|
5
W W
<

and morphodynamic,
Ut:07
2,2 2, .2 (3.8)
B+ A(u(u®+v?)) +A(v(u®+v ))yzO.

subsystems. One step of the Strang operator splitting method is then still given by
(2.10).
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3.2. Semi-discretization of the hydrodynamic subsystem. We denote by
Cik:=[r; 1,2, 1] ¥[yp_1,Ypy 1] the uniform Cartesian cells of size AzAy centered
at x; and yr. The computed solution, realized in terms of the cell averages ﬁj7k%
@ffcj  U(z,y,t)dzdy and point values Bj 1 1~ B(2;,1,Y;1), is assumed to
be known at a given time t. The cell averages are evolved in time according to the
well-balanced semi-discretization from [34]:

H?* —H? HY —HY
d(j o J+i.k j—%.k Jk+3 jk—% = (3.9)
= Lk — — - 7.k .
de Az Ay
where
+ FE - \ + -
! Lo—a F a’ a’,
HT , — AS Lt L A T AR ity kityk W ~UP 310
+1 = T — + T — [ j+1.k k} ( )
T2 at . —a. at ., —a.
Jj+3.k Jj+3.k J+3.k Jt3z.k
and
G —a’ GS at a
HY - Jk+2 G k+3 Jvk+1+ Gk+3 7 k45 [US UN} (3.11)
Jkt+3 at, ,—a> at, i —a; SR .
@ikt ™ Yt d Gk+s  ak+s

are the central-upwind numerical fluxes in the z- and y-directions, respectively, and

0
_ _ghEk+h Bt kit Bkt = Bi ks —Bi 11
Sjk= 2 2Ax
BNt hS Bisskes TBitaes —Binga-i —Bigag
2 2Ay

are the approximated cell averages of the geometric source term S.
In (3.10) and (3.11),

ka —F(U]%wBJJrEJH%;BJJr%JC*%)’ F]Y\li :F(UXIQ, J 27]@“1’%—;3]4*%7]@—%)’
J 7,k 9 s ; Sk . ,

Ugl'?k:Uj,k‘f'T(Um)j,ka UN=U;ir—=(Us)jr
Ay

2

(3.12)

UNk, ﬁ] k +

7, (Uy) ks U'Sk Ujr——

are the one-sided point values of U reconstructed inside the cell Cj; ; at the midpoints of
the corresponding cell interfaces. As in the 1-D case, the slopes in (3.12) are computed
using the generalized minmod limiter:

. ﬁ'k_ﬁ'—lk 5"+1k_l7"—1k: [7"+1k_[7'k
Uac N dl e J» J ) J > J AR J ) s
(Us ) =minmo ( Az ’ 2Ax ’ Az ’

(Uy);,x =minmod (g Ujr=Ujk=1 Ujks1 =Ujks1 yUjnsr = Uj7k> 7

Ay ’ 2Ay ’ Ay
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where 6 €[1,2] and the minmod function is given by (2.15).

Finally, the local one-sided speeds of propagation in the z- and y-directions are
obtained using the largest and smallest eigenvalues of the Jacobians of the system (3.1)
in the - and y-directions, respectively, and they are given by

0ty o =max A AL AN AN o},
e S )
s e 52 03, 4505, 0),
@ s = mm{,ugo,g »N§12N7M§Ok+1a 3113-5170}

Here, )\Eole and /\§1le are computed using (3.2), (3.3) with

Biyigy1+DB 1, 1 B 2
+1 ket k- 9.k Pjk
h=h% =w Ek— EaE-Ruas: 22 u=—2, v=pe (3.14)
I I 2 h h
and )\53_)1\7\,; nd )‘5271 . are computed using (3.2), (3.3) with
B.. 1 1+B 1 1 W W
Jt35,k+35 j+s5.k—5 911k p +1,k
h:hﬁ-l,k:wﬂl,k* 22 3 2z, u:hjw , U:hgw . (3.15)
41,k 41,k
Similarly, ,uﬁ.?lz’N and uEllzN are computed using (3.4), (3.5) with
B.. 1 1 +B. 1 1 N N
+3.k+3 T -5 k43 95,k Pk
h=h}, =w)), — 22 202 y=2 =2 (3.16)
I b 2 h?{k h?{k
and ,ué?,ifl and uillzfl are computed using (3.4), (3.5) with
B. .1 1+B: 1 1 S S
S S Jt+3.k+3 J—5.k+35 q5 k41 Pj k41
h=h3 1 = W5 1 — — B —, u= hjs U= hjs7~ (3.17)
k1 k41

3.3. Semi-discretization of the morphodynamic subsystem. In this sec-
tion, we describe the semi-discrete central-upwind scheme for the system (3.8), which
is discretized on a staggered grid with €1 ;1= [2j,241] X [Yk,Yk+1). As in the 1-D

case, we first project the data, U,r , obtained at the hydrodynamic splitting step onto
3,
the staggered grid:
U 7l_jj,k +Ej+1,k+l_]j,k+l +Ej+1,k+1
J+3k+E T 4
Ax
16 [(Uw)jJrl,k ~(Us)jk+(Uz)jsi k1 — (Um)j,k+1] ,

Ay
~T6 [(Uy)j,k+1 —(Uy)j+Uy)jt1k+1— (Uy)j+1,k] ;

where the slopes (Uy); are computed using (3.13). B; 1 ;41 are then evolved in time
according to the following semi-discretization:
T T Y Y
EB L HJ+1 st " Hires - H]+27k+1 HJ+27I€ (3.18)
At itakts Az Ay ’ '
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where
+ E - w + -
7 _Abj,k%F‘f%,k% bj,k+%Fj+%,k+% bj,k+%bj,k+% BY B®
Jktg bt b bt b Jt+gktg T Ci—gkts
Jk+% Tik+3 Jk+y  Tik+d
(3.19)
and
+ N - s + -
v bj+§,ij+%,kf% bj+%,ij+%,k+% bH%’ka%’k s N
H! , =A [B, 11— B ,;}
Jj+3.k pt —b- pt —b- Jt+3,k+3 Jt+35.k—3
J+ik Titik Jt3k itk
(3.20)
are the central-upwind numerical fluxes.
In (3.19) and (3.20), we have used the following notation:
2 2
E _E E E
By =gy | (B aurs) + (0 h0rs) }
I 2 2
_. W w w
F s =0y | (8000p) + (5 300) }
- (3.21)
N N 2 N 2
G ey =iy | (i) + (Npicy) |-
r 2 2
S S s S
Giraetd =V ks (“j+%,k+%) + (”j+%,k+%) ]
The reconstructed point values of B in (3.19) and (3.20) are given by
Az Az
B _ w _ _
Bj+%,k+§ _Bj+%,k+%+ 9 (Bﬁc)j+%,k+%7 Bj+%7k+§ —Bj+%,k+% D) (Bz)j+%,k+%’

A A
N _ Y S _ Y
Biiskry=Bivtnrs = Boivinrts Birpnes =Bivintt =5 Blitined

where the slopes are, as before, computed using the generalized minmod limiter:

B B B B

. +3.kt3 T Pi-g.kts +3.k+3 T Pk ts
(Bm)jJrl k+3 =minmod { ¢ = : 2 . ’ L . L : )
R Ax 2Ax
o Dittits = Bivg hey
Az ’
: Biry ety ~Birgn-3 Birgrerg ~Birgn-g
(By)j+1 k41 =minmod ( ¢ , ,
2072 Ay 2Ay
o Ditbirs =By hey
Az ’

and the minmod function is defined by (2.15). The reconstructed point values w; 1 pgd
27 2

and ¢ i€ {E,W,N,S} are obtained in a similar manner and then used to calcu-

J+3.kt+3’

late the corresponding values of the velocities, which are needed in (3.19)—(3.21):

i

i _ Castan)
J+5kEE T 4t _pi

N

%
i _ Pjti e+l
HEREAS NS B - B '
it et T i+ k+d
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+

J+5.k
y-directions, respectively, are given by

+ — (2)7E (2)7W - — 1 (2)5E (2),W
bzk+é‘JHaX{Aj—ék+%’Aj+%w+%’o v kg TN T A ey O

Finally, bjik L1 and b are local one-sided speeds of propagation in the z- and
’ 2

+ = (2),N (2),8 - —mind &N (2),8
bj+%,k_max{“j+%,k—%’“j+%,k+%’0 ’ bj+%,k_mm “j+é,k—%’“j+%,k+§’0 ’

2),E . S oy
Here, )\;_)’l )1 is computed using (3.2), (3.3) with
2 2
E E
q. 1 1 D1 1
E _ B E _ J-gkts _ J—3kts
h_hj Lt =W L k] _BJ—%JH-%’ U=9E v UTE ’
J=3kts J=3kts
2w . NS o s
and A7), is computed using (3.2), (3.3) with
J+5.k+t3
qW 1 1 pw 1 1
_ W W w _ Yytgk+s _ Yitg.k+s
h=hiis 1 =wis =B, u= A  VEw :
3. k43 J+3.k+1
o (2),N . . o ey s
Similarly, [y 1 ds computed using (3.4), (3.5) with
2 2
N N
q..1 1 D1 1
_ 1N _..N N _ jt5.k—35 _ Jt+35.k—3
h=hji1 e 3 =wiii 1= Bipie1 u= nN » UTN ’
Jt+3.k—3 Jt+3.k—3
d @5 : d usi 3.5) with
and p> 7, 1 is computed using (3.4), (3.5) wit
Jt3.k+3
s s
q:.1 1 P 1
_ 18 _.S S _ Mytgk+s _ Yitgkts
h=hiysmes =Wt et ~Biasney U=733 v VTS :
Jta.kts Jt3.kts

3.4. Summary of the algorithm. In this section, we summarize one time
step of the 2-D splitting method assuming that at a certain time level ¢ the computed
quantities {w;x}, {q;}, {P; )} and {BjJr%’kJr%} are available.

Step 1. Compute w} ;, ¢}, and p’ ;, i€ {E,W,N,S} using (3.12), (3.13).
Step 2. Compute

T (2).E] 1,(2),W — (2),N] | (2,8
bmax.—njl_elxcx{max{P\j,k |7’/\j+17k }} and b?r’nax.—nj;e}fx{max{wj’k },|,uj7k+1 }},

where A;?’E are computed using (3.2), (3.3) with h, u and v given by (3.14), )\gi)’lvz are

computed using (3.2), (3.3) with h, u and v given by (3.15), M§-2]27N are computed using

3.4), (3.5) with h, v and v given by (3.16), and u(.z)’s are computed using (3.4), (3.5
J,k+1
with h, v and v given by (3.17).

Step 3. Choose the splitting time step At based on the CFL-type condition for the
morphodynamic subsystem:

Aticmin{bfx,bfy}, (3.22)
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where K is, as before, a CFL constant.

Step 4. Evolve {17 j,k} by numerically solving the ODE system (3.9) from time level
t to t+ At/2 using the three-stage third-order SSP Runge-Kutta method with the time
step Aty being constrained by the following CFL-like condition:

Az Ay}

T (3.23)

Aty SICmin{

where

o= + —a~ y . + -
ay .« .fn;ix{max{aﬁ%’k, ajJr%,k}} and a¥ .. .7n;%cx{max{aj’k+%, a].JH%}}.

(3.24)
Denote the obtained solution by {Uj’k}.

Step 5. Evolve {Bj+%’k+%} by numerically solving the ODE system (3.18) from time
level ¢t to t+ At using the three-stage third-order SSP Runge-Kutta method.

Step 6. Evolve {17 J* k} by numerically solving the ODE system (3.9) from time level
t+At/2 to t+ At with the time step Aty being constrained by (3.23), (3.24).

Step 7. Set t=t+ At and go to Step 1.

4. Numerical examples

In this section, we present six numerical examples. In all of the examples, the
water-sediment interaction model was considered with the gravitational acceleration
g=29.8 and free flow boundary conditions on all sides of the computational domain. The
minmod limiter was computed with § =1.3 and the CFL constant was taken = 0.475.

We note that one can choose the size of the splitting step At according to the stricter
CFL conditions (2.19) and (3.23) instead of (2.18) and (3.22), respectively. This would
lead to smaller splitting time steps and thus a somewhat smaller splitting error, but it
would increase the CPU times by a factor of about 3. We observed, however, that the
use of smaller splitting time steps did not lead to any significant improvement in the
quality of the obtained numerical solutions since the other discretization errors seem
to dominate the operator splitting one. Therefore, we only report the results obtained
according to the algorithms presented in §2.4 and §3.4.

Example 1—Accuracy test. In this example, taken from [4], we consider a 1-D
channel on the interval [-10,10], with A=0.5 in (2.2), the final time t=0.2, and initial
conditions given by:

h(z,0)=2—0.1e""", ¢(z,0)=0, B(z,0)=0.1—0.0le " .

Since the exact solution is unknown, we compare the computed solutions with a reference
one obtained using a very fine mesh consisting of N =6400 uniform cells. The solutions
computed using N =50, 100, 200 and 400 uniform cells are plotted in Figure 4.1. The
L'- and L2-errors together with the corresponding experimental convergence rates for
both h, ¢ and B are presented in Table 4.1 and 4.2. As one can see, the proposed scheme
achieves the expected second order of convergence.

Example 2—Weak water-sediment interaction. In this problem taken from
[10], the interaction between the water and moving bottom topography is weak. This
is modeled by taking the constant A in the Exner Equation (2.2) to be relatively small,
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B(z,t=0.2)
0.1 Y | S
3 f
0.098 Vo
Vo
i f
0.096 i [}
1 !
1 !
[
0.094 ... N = 50 | !l
—N =100 ||
0.092 N=200 ]
N =400 Y
0.09
10 5 0 5 10 10 5 0 5 10 -10 5 0 5 10

Fi1G. 4.1. Ezample 1: Solution (h, q¢ and B) computed on four different grids.

N | Error in h | rate | Error in ¢ | rate | Error in B | rate
50 9.20E-3 - 5.91E-2 - 5.86E-4 -
100 2.20E-3 2.06 1.29E-2 | 2.19 1.65E-4 1.82
200 5.45E-4 2.16 | 2.74E-3 | 2.24 4.35E-5 1.92
400 1.36E-4 2.01 6.06E-4 | 2.17 1.07E-5 2.02

TABLE 4.1. Example 1: L'-errors and corresponding experimental convergence rates.

N | Error in h | rate | Error in ¢ | rate | Error in B | rate
50 4.98E-3 - 3.27E-2 - 3.62E-4 -
100 1.00E-3 | 2.31 | 6.89E-2 | 2.24 9.83E-5 1.88
200 | 2.52E-4 1.99 | 1.35E-3 | 2.35 2.53E-5 1.96
400 | 6.48E-4 1.95 | 2.96E-4 | 2.19 6.27E-6 2.01

TABLE 4.2. Example 1: L2-errors and corresponding experimental convergence rates.

namely, A=0.005. The initial data,

q(x,0)=0.5, B(z,0)=0.1(1 +67(m75)2)7

*(x,0)

q (4.1)
2h2(x,0)

+g[h(x,0)+ B(z,0)] = 6.386,

correspond to a subcritical moving-water steady state for the SV system (2.7), (2.8).
We note that h(z,0) can be obtained by solving the third equation in (4.1), which is a
cubic equation and details on its exact solution can be found in [37]; also see [28].

We compute the solution until the final time ¢=10 in the interval [0,10] using
N =400 uniform cells. The obtained results, presented in Figure 4.2 (left), are in good
agreement with the reference solution computed on a much finer mesh with N =4000
uniform cells as well as with the results reported in [10]. This demonstrates that our
splitting method is capable of handling cases with weak water-sediment interactions.

It is instructive to compare the values of a* with the largest /smallest eigenvalues of
the SV system (2.7), (2.8), that is, u4+/gh. As the water-sediment interaction is quite
weak in this example, one expects these quantities to be close to each other. Indeed,
this is true as one can see from Figure 4.2 (right). We also plot there the value of A2,
which is, as expected, very small in this case.

Example 3—Strong water-sediment interaction. In this problem, also taken
from [10], we consider system (2.3), (2.2) subject to the same initial condition (4.1) as
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0.7 |[—w(N = 400) w(N = 4000)
----- B(N = 400) - B(N = 4000)

F1G. 4.2. Ezample 2: Computed water surface w and bottom topography B (left) and the local
speeds of both the coupled SV-Ezner system (2.3), (2.2) and classical SV system (2.7), (2.8).

in Example 2, but with stronger sediment-water interaction modeled by choosing larger
A=0.07.

We implement the proposed splitting approach and compute the numerical solu-
tion until the final time ¢=2.1 in the interval [0,10] using N =400 uniform cells. The
obtained results, plotted in Figure 4.3 (left), agree well with the reference solution com-
puted on a much finer mesh with N =4000 uniform cells as well as with the results
reported in [10]. This clearly demonstrates that our method is capable of handling
strong water-sediment interactions without producing spurious oscillations.

0.7 | |—w(N = 400) w(N = 4000)
----- B(N = 400) - B(N = 4000)

_____ a” ——u—+/gh
.......... A2
1
0
-1 /\..____’/\._______
e e s
0 2 4 6 8 10 0 2 4 6 8 10

Fi1G. 4.3. Ezample 3: Computed water surface w and bottom topography B (left) and the local
speeds of both the coupled SV-Ezner system (2.3), (2.2) and classical SV system (2.7), (2.8).

The main difference between the experiments with A=0.005 (Example 2) and A=
0.07 is that in the latter case, the local speeds of propagation a* are far from the
eigenvalues of the SV system (2.7), (2.8), that is, u=++/gh, as illustrated in Figure 4.3
(right). Therefore, using the correct bounds for the local propagation speeds is essential
for obtaining highly accurate and stable results since in the stronger interaction case,
the numerical solution is more likely to produce oscillations; see [10,22] for details.

Example 4—Sediment mound with weak water-sediment interaction. In
this problem, taken from [22,23], we numerically solve the system (2.3), (2.2) with
A=1/600 in the computational domain [0,1000] and subject to the initial data given
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by

. m(z—300)
sin? (7
w(z,0)=10, ¢(x,0)=10, B(z,0)= 200
0, otherwise.

), 300 < 2 < 500,

We compute the numerical solution until the final time ¢t =238079 seconds on a series
of uniform grids with N =100, 200 and 400 cells and compare the obtained results with
the reference solution calculated analytically using the method of characteristics in [22].
As shown in Figure 4.4, the computed B converges to the reference one as N increases.

0.8 N =400
Reference solution

0.6

0.4

0.2

Fic. 4.4. Exzample 4: Bottom topography B computed on a series of grids.

Example 5—Discontinuous bottom topography. In this example, taken from
[22], we consider the same setting as in Example 4 with the only difference in the
description of the bottom topography, which now contains a jump:

B(z,0) 1, x<300,
$7 = .
0, otherwise.

This discontinuity propagates down the channel and in Figure 4.5, we plot B computed
on a uniform mesh with 200 cells at the final time ¢=250 hours (900000 seconds). As
one can observe, the propagating wave is sharply resolved and the proposed numerical
method clearly outperforms the ones studied in [22].

St =0
120 4 = 950hr
1 .
.
0.8 |
:
0.6 '
:
0.4 .
:
0.2 .
.
0 I
o2 ‘ ‘ ‘ ‘
0 200 400 600 800 1000

Fia. 4.5. Ezample 5: Bottom topography B at two different times.
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t = Ohr t = 25hr
0 1 0 1
0.8 08
06 06
30 . 0.4 30 . 0.4
02 02
0 0
% 500 1000 02 % 500 1000 02
t = 50hr t = 100hr
0 1 0 1
0.8 0.8
0.6 06
0 Q 0.4 0 o 0.4
02 : 02
0 0
% 500 000 02 % 500 1000 °

Fic. 4.6. Ezample 6: Bottom topography B at four different times.

100 . . . . . .
100 200 300 400 500 600 700 800

Fic. 4.7. Ezample 6: Estimation of the spreading angle.

Example 6—Evolution of conical dune. In the last example, we test the pro-
posed 2-D scheme on a conical sand dune problem, which is a slightly modified version
of the problems studied in [2,5,12,22,24]. We numerically solve the system (3.1) with
A=1/600 in the computational domain [0,1000] x [0,1000] and subject to the initial
data given by

w(z,y,0)=10, q(z,y,0)=10, p(z,y,0)=0,

sin? <7r(:r —300) ) sin? <7r(y —400)
200 200
0, otherwise.

4
Blog.0) ) (,y) € [300,500] x [400,600],

We compute the numerical solution until the final time ¢ =100 hours (360000 seconds)
on a uniform mesh with 100 x 100 cells. As time is evolved, the conical dune gradually
spreads out into a star shaped pattern as demonstrated in Figure 4.6, where we plot the
bottom topography B at times t=0, 25, 50 and 100 hours. According to the analysis
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n [12], the angle of spread has to be approximately 21.79 degrees from the line of
symmetry y=>500. In Figure 4.7, we plot the level curves at the base of the dune at
times t =0, 25, 50 and 100 hours. The angles between the dashed lines are 21.79 degrees
and one can see that the spread is mostly contained between the lines, and the results
are similar to those reported in [2, 5,22, 24].

5. Conclusion

In this paper, we have studied the shallow water system with time-dependent bot-
tom topography. We have considered the simplest case, in which the shallow water
waves are modeled by the Saint-Venant system and the bottom topography movement
is governed by the Exner equation. The resulting system is hyperbolic and its Jacobian
matrices typically contain both large and small eigenvalues. The largest eigenvalues
determine the speed of the fast surface waves, while the smallest eigenvalue reflects the
(slow) speed of the bottom topography propagation. Therefore, if the entire system
is solved using an explicit finite-volume method, the time steps, which are inversely
proportional to the maximum of the spectral radius of the Jacobians over the entire
computational domain, would be too small. This may prevent high resolution of the
bottom topography waves, especially when they contain sharp (discontinuous) fronts.
In order to tackle this difficulty, we have developed an operator splitting approach,
which allows one to take large time steps in the bottom evolution stages, while keeping
the small CFL-controlled time steps in the hydrodynamics stages. The time evolution
within each of the stages is carried out using the central-upwind scheme, which nat-
urally leads to the following staggered approach: while the hydrodynamics quantities
are sampled at the centers of each computational cell, the bottom topography data are
prescribed at the corners.

We have demonstrated high accuracy and robustness of the proposed numerical
method on a number of numerical experiments. In the future works, we plan to extend
our method to more realistic water-sediment interaction models, for example, to those
proposed and studied in [6,7,15-17,36,43,48].
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