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Abstract
Westudy the flux globalization based central-upwind scheme fromCheng et al. (J Sci Comput
80:538–554, 2019) for the Saint-Venant system of shallow water equations. We first show
that while the scheme is capable of preserving moving-water equilibria, it fails to preserve
much simpler “lake-at-rest” steady states. We then modify the computation of the global
flux variable and develop a well-balanced scheme, which can accurately handle both still-
and moving-water equilibria. In addition, we extend the flux globalization based central-
upwind scheme to the case when “dry” and/or “almost dry” areas are present. To this end,
we introduce a hybrid approach: we use the flux globalization based scheme inside the “wet”
areas only, while elsewhere we apply the central-upwind scheme from Bollermann et al. (J
Sci Comput 56:267–290, 2013), which is designed to accurately capture wet/dry fronts. We
illustrate the performance of the proposed schemes on a number of numerical examples.

Keywords Flux globalization · Central-upwind schemes · Well-balanced schemes ·
“Lake-at-rest” steady states · “Dry lake” steady states

Mathematics Subject Classification 76M12 · 65M08 · 86-08 · 35L65

1 Introduction

We consider one-dimensional (1-D) hyperbolic systems of balance laws, which, in general
case, can be written in the following form:

U t + f (U)x = S(U), (1.1)

where x is the spatial variable, t is the time, U is the vector of unknowns, f is the flux,
and S is the source term. We are interested in development of highly accurate and robust
numerical methods for 1.1. It is well-known that such methods should be well-balanced in
the sense that they are to be capable of preserving (several physically relevant) steady-state
solutions of 1.1 within themachine accuracy. This is especially important since such schemes
are typically able to accurately capture small perturbations of the steady states on a coarse
computational mesh, which is essential for the scheme to be applicable in many practically
relevant applications.
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In the past decades, many well-balanced schemes for a wide variety of models described
by 1.1 have been proposed. In this paper, we focus on a flux globalization technique recently
introduced in [8] and then applied to several shallow water models [6,15,16] and the Euler
equations with gravitation [7]. In the general setting, the flux globalization approach can be
presented as follows: we introduce a global flux variable

K (U(x, t)) := f (U(x, t)) + R(U(x, t)), R(U(x, t)) := −
x∫
S(U(ξ, t)) dξ, (1.2)

and use it to rewrite the system of balance laws 1.1 as a system of conservation laws with the
global flux:

U t + K (U)x = 0. (1.3)

The steady-state solution of 1.1 is then given by a very simple equation

K (U) = Const, (1.4)

and themain idea in the development of awell-balanced scheme for the system 1.3, 1.2 is very
simple: use a Riemann-problem-solver-free finite-volume method, which should employ a
piecewise polynomial reconstruction of the equilibrium variables K . The latter, according
to 1.4, are constant at the steady state and thus all of the reconstructed values of K will be
constant, which will help the scheme to exactly preserve this steady state. Thus, the main
attractive feature of the flux globalization based methods is their ability to preserve a wide
variety of steady-state solutions contained in formula 1.4 including those that cannot be
written in a simple algebraic form.

We would like to point out that the flux globalization idea was also explored earlier; see,
e.g., [5,10,11,19]. However, the well-balanced schemes developed in [5,10,11,19] were not
designed to directly solve the quasi-conservative system 1.3, 1.2.

One of the key issues in designing well-balanced schemes via the flux globalization tech-
nique from [6–8,15,16] is a proper approximation of the discrete values of the global variables
K out of the cell averages of U , which are the evolved quantities in finite-volume methods.
This requires accurate quadrature rules for the integrals R appearing in 1.2. In particular, in
the original paper [8] a generic approach for constructing such quadratures was proposed and
later implemented in [6] in the context of the Saint-Venant system of shallowwater equations,
for which

U =
(
h
q

)
, f (U) =

(
q

hu2 + g
2 h

2

)
, S(U) =

(
0

− ghBx − g n2

h7/3
|q|q

)
. (1.5)

here h(x, t) is the water depth, u(x, t) is the velocity, q(x, t) := h(x, t)u(x, t) is the water
discharge, B(x) is the bottom topography function, g is the constant gravitational accelera-
tion, and n is theManning friction coefficient. Using the flux globalization, the shallowwater
system 1.1, 1.5 can be rewritten in the following equivalent form:

{
ht + qx = 0,

qt + Kx = 0,
(1.6)

where

K := hu2 + g

2
h2 + R, (1.7)
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so that K is a global equilibrium variable with

R(x, t) := g

x∫ [
h(ξ, t)Bx (ξ) + n2

h7/3(ξ, t)
|q(ξ, t)|q(ξ, t)

]
dξ. (1.8)

In the absence of dry areas, the system (1.6)–(1.8) admits a family of smooth steady-state
solutions satisfying

q ≡ q̂ = Const, K ≡ K̂ = Const, h > 0. (1.9)

One of the particularly simple but practically very important steady-state solutions is the
so-called “lake-at-rest” (still-water) equilibria with the velocity of the water equal to zero
and a flat water surface w := h + B:

u ≡ 0, w ≡ ŵ = Const. (1.10)

We note that the well-balanced flux globalization based scheme from [6] can preserve
moving-water equilibria 1.9 with q �= 0. However, the generic quadrature rule for the global
integral R in 1.8 used in this scheme prevents it from preserving the “lake-at-rest” equilibria,
and one of the goals of the current paper is to illustrate this. We will also present a way to
eliminate this drawback by constructing a proper quadrature rule, which will lead to a flux
globalization based scheme capable of preserving both moving- and still-water equilibria.

Another limitation of the flux globalization based scheme from [6] is that it only applies
to the “wet” case, in which h > 0 for all x . In the presence of “dry” (h = 0) or “almost
dry” (h ≈ 0) areas steady-state solutions do not satisfy 1.9 everywhere, that is, steady states
consist of several pieces: pieces satisfying 1.9 in the “wet” areas, pieces with h ≡ 0, u ≡ 0
in the “dry” areas, and wet/dry fronts in the areas separating the “wet” and “dry” parts of the
solution. Therefore, the equilibrium variable K cannot be used in the entire computational
domain.

The second and the main goal of this paper is to extend the applicability of flux globaliza-
tion based central-upwind scheme from [6] to the case when “dry” and/or “almost dry” areas
are present. In this case, we identify the wet/dry fronts and use the global fluxes 1.7 inside
the “wet” areas only, while in the “dry” areas and near the wet/dry fronts, we implement the
central-upwind scheme from [3], which is based on a special piecewise linear reconstruction
of the water surfacew in those areas.We prove that the resulting scheme is capable of exactly
preserving “lake-at-rest” steady states in the presence of “dry” or “almost dry” areas.

The paper is organized as follows. Section 2 is devoted to the flux globalization approach
in the fully flooded case, that is, when the bottom topography is fully submerged in the
entire computational domain. In Sect. 2.1, we give an overview of the flux globalization
based central-upwind scheme from [6]. In Sect. 2.2, we demonstrate the insufficient flux-
source balancing in this scheme, which prevents it from being capable of exactly preserving
“lake-at-rest” steady states. In Sect. 2.3, we introduce a new well-balanced computation
of the global variables, which helps to make the modified flux globalization based central-
upwind scheme to be capable of exactly preserving both moving- and still-water equilibria.
In Sect. 2.4, we test the schemes on two numerical examples and illustrate that the modified
scheme clearly outperforms the scheme from [6]. In Sect. 3, we study the situation when
“dry” and/or “almost dry” areas are present and develop a new hybrid well-balanced central-
upwind scheme capable of accurately handling wet/dry fronts. Our hybrid strategy on a
hybrid piecewise linear reconstruction, summarized in Sect. 3.1, and different time evolution
inside and outside the “wet” areas, as described in Sect. 3.2. The performance of the proposed
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hybrid scheme is illustrated on two numerical examples in Sect. 3.3. We end the paper with
the concluding remarks in Sect. 4

2 Flux Globalization in the Fully Flooded Case

We split the computational domain into the uniform (for simplicity) cells C j :=
[x j− 1

2
, x j+ 1

2
], j = j�, . . . , jr with x j+ 1

2
− x j− 1

2
≡ �x . We assume that at a certain time

level t , the computed solution realized in terms of its cell averages

U j (t) :≈ 1

�x

∫

C j

U(x, t) dx,

is available.Wealso follow the approach introduced in [17] and replace the bottom topography
function B(x) with its continuous piecewise linear approximation

B̃(x) = Bj− 1
2

+
Bj+ 1

2
− Bj− 1

2

�x

(
x − x j− 1

2

)
, x ∈ C j ,

where

Bj+ 1
2

:=
B
(
x+
j+ 1

2

)+ B
(
x−
j+ 1

2

)
2

,

which reduces to Bj+ 1
2

:= B(x j+ 1
2
) if B is continuous at x = x j+ 1

2
. We then introduce the

following notations:

Bj := B̃(x j ) =
Bj+ 1

2
+ Bj− 1

2

2
, (Bx ) j := B̃x (x j ) =

Bj+ 1
2

− Bj− 1
2

�x
. (2.1)

In this section, we assume that no “dry” or “almost dry” areas are present and that all of
the computational cells remain fully flooded at all times. The definition of fully flooded, dry
and partially flooded cells are given by

Definition 2.1 We say that the cell C j at time t is:

(i) fully flooded if

h j (t) > ε and h j (t) + Bj ≥ max
(
Bj− 1

2
, Bj+ 1

2

)
, (2.2)

where ε is a small positive number chosen in such a way that the amount of water present
in cell j can be considered as negligibly small according to the scales of the studied
problem;

(ii) dry if

h j (t) ≤ ε; (2.3)

(iii) partially flooded if neither 2.2 or 2.3 is satisfied.

Note that equation 2.2 can be equivalently rewritten as

h j (t) ≥ �x

2
|(Bx ) j |.

We also note that U j , h j as well as many other indexed quantities below depend on t , but
from now on we will omit this dependence for the sake of brevity.
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2.1 Flux Globalization Based Central-Upwind Scheme from [6]: An Overview

In this section, we briefly review the second-order semi-discrete central-upwind scheme
based on the flux globalization technique for the 1-D Saint-Venant system of shallow water
Eqs. 1.6–1.8.

The solution is evolved in time according to the following semi-discretization:

d

dt
U j = −

H j+ 1
2

− H j− 1
2

�x
, (2.4)

where H j+ 1
2

= (H (1)
j+ 1

2
, H (2)

j+ 1
2

)� are the central-upwind numerical fluxes from [14]:

H (1)
j+ 1

2
=

a+
j+ 1

2
q−
j+ 1

2
− a−

j+ 1
2
q+
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
h+
j+ 1

2
− h−

j+ 1
2

)
,

H (2)
j+ 1

2
=

a+
j+ 1

2
K−

j+ 1
2

− a−
j+ 1

2
K+

j+ 1
2

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
q+
j+ 1

2
− q−

j+ 1
2

)
.

(2.5)

here h±
j+ 1

2
, q±

j+ 1
2
and K±

j+ 1
2
are the left/right-sided point values of h, q and K at the cell

interface x = x j+ 1
2
(for the details, see below), and a±

j+ 1
2
are the one-sided local propagation

speeds, which can be estimated by

a+
j+ 1

2
= max

{
u−
j+ 1

2
+
√
gh−

j+ 1
2
, u+

j+ 1
2

+
√
gh+

j+ 1
2
, 0

}
,

a−
j+ 1

2
= min

{
u−
j+ 1

2
−
√
gh−

j+ 1
2
, u+

j+ 1
2

−
√
gh+

j+ 1
2
, 0

}
.

In order to complete the construction of the scheme, one needs to provide an algorithm
for computing the point values h±

j+ 1
2
, q±

j+ 1
2
and K±

j+ 1
2
out of the available cell averages

{h j } and {q j }. As mentioned in the Introduction, the key point is to use a piecewise linear
reconstruction of the equilibrium variables q and K . According to [6], one can proceed as
follows.Wefirst use themidpoint rule to compute the integral in 1.8with the lower integration
limit set to be x j�− 1

2
. This results in the following recursive formula for the point values of

the global variable R at the cell interfaces x = x j+ 1
2
:

R j�− 1
2

:= 0, R j+ 1
2

= R j− 1
2

+ g�x

(
h j (Bx ) j + n2

h
7/3
j

|q j |q j

)
, j = j�, . . . , jr . (2.6)

After that, the point values of R at the cell centers x = x j were computed in [6] using a
straightforward approach, namely, by setting

R j = 1

2

(
R j+ 1

2
+ R j− 1

2

)
, j = j�, . . . , jr . (2.7)

Next, from the definition of K in formula 1.7, we obtain the point values of K at the cell
centers x = x j :

K j = q 2
j

h j
+ g

2
h
2
j + R j , (2.8)
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which are used, along with the cell averages q j , to compute the one-sided point values of q
and K at the cell interfaces x = x j+ 1

2
:

q−
j+ 1

2
:= q̃(x j+ 1

2
− 0) = q j + �x

2
(qx ) j ,

q+
j+ 1

2
:= q̃(x j+ 1

2
+ 0) = q j+1 − �x

2
(qx ) j+1,

K−
j+ 1

2
:= K̃ (x j+ 1

2
− 0) = K j + �x

2
(Kx ) j ,

K+
j+ 1

2
:= K̃ (x j+ 1

2
+ 0) = K j+1 − �x

2
(Kx ) j+1.

(2.9)

here q̃ and K̃ are the piecewise linear reconstructions,

q̃(x) = q j + (qx ) j (x − x j ), K̃ (x) = K j + (Kx ) j (x − x j ), x ∈ C j , (2.10)

with the slopes (qx ) j and (Kx ) j computed using the generalized minmod limiter [20,23,24]:

(qx ) j = minmod

(
θ
q j+1 − q j

�x
,
q j+1 − q j−1

2�x
, θ

q j − q j−1

�x

)
,

(Kx ) j = minmod

(
θ
K j+1 − K j

�x
,
K j+1 − K j−1

2�x
, θ

K j − K j−1

�x

)
,

θ ∈ [1, 2],

(2.11)

where the minmod function is defined by

minmod(z1, z2, . . .) :=
⎧⎨
⎩
min(z1, z2, . . .), if zi > 0 ∀i,
max(z1, z2, . . .), if zi < 0 ∀i,
0, otherwise,

and the parameter θ is used to control the amount of the numerical dissipation—larger values
of θ correspond to sharper, but more dispersive reconstructions. In all of the numerical
examples reported below, we have taken θ = 1.3.

Finally, equipped with the point values q±
j+ 1

2
and K±

j+ 1
2
, we need to approximate the

corresponding water depth values. To this end, we solve the following cubic equations for
h±
j+ 1

2
:

K+
j+ 1

2
=
(
q+
j+ 1

2

)2
h+
j+ 1

2

+ g

2

(
h+
j+ 1

2

)2 + R j+ 1
2
,

K−
j+ 1

2
=
(
q−
j+ 1

2

)2
h−
j+ 1

2

+ g

2

(
h−
j+ 1

2

)2 + R j+ 1
2
. (2.12)

The details on solving these equations can be found in [6].

Remark 2.2 The system of ODEs 2.4 has to be solved by a stable and accurate ODE solver.
In all of the numerical experiments reported below, we have used the three-stage third-order
strong stability preserving (SSP) Runge–Kutta method [12,13] with the time step selected
adaptively using the CFL number 0.5.
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2.2 Insufficient Flux-Source Balancing in the Scheme from [6]

It was demonstrated in [6] that the central-upwind scheme described in Sect. 2.1 can preserve
the moving-water equilibria given by 1.9. The question we investigate in this section is
whether that scheme is also capable of preserving the “lake-at-rest” (still water) equilibria
given by 1.10 as well. It is easy to check that on the continuous level 1.9 reduces to 1.10
when q ≡ 0. This is, however, not true on the discrete level as we show below.

Let us consider the discrete data, which is at the “lake-at-rest” steady state satisfying

q j = u j ≡ 0, h j = ŵ − Bj , for all j, (2.13)

where ŵ is a given constant. Our goal is to check whether 2.13 implies that K j = K j+1 for
all j . According to 2.7, 2.8, we obtain that for the “lake-at-rest” data

K j = g

2
h
2
j + 1

2

(
R j+ 1

2
+ R j− 1

2

)
, K j+1 = g

2
h
2
j+1 + 1

2

(
R j+ 3

2
+ R j+ 1

2

)
.

Then, subtracting K j from K j+1 and using 2.6 and 2.13 results in

K j+1 − K j = g

2

(
h
2
j+1 − h

2
j

)+ 1

2

(
R j+ 3

2
− R j− 1

2

)

= g

2

(
h
2
j+1 − h

2
j

)+ g

2

(
h j+1

(
Bj+ 3

2
− Bj+ 1

2

)+ h j
(
Bj+ 1

2
− Bj− 1

2

))

= g

2

(
(ŵ − Bj+1)

2 − (ŵ − Bj )
2
)

+ g

2

(
(ŵ − Bj+1)

(
Bj+ 3

2
− Bj+ 1

2

)+ (ŵ − Bj )
(
Bj+ 1

2
− Bj− 1

2

))
.

Finally, we use the first equality in 2.1 and end up with

K j+1 − K j = −g

4

(
Bj+ 3

2
− Bj− 1

2

)(
Bj+ 3

2
− 2Bj+ 1

2
+ Bj− 1

2

)
,

which might obviously be not zero for a nonflat nonlinear bottom topography B.
We stress that since K j will not necessarily be constant for all j , the numerical flux

difference H (2)
j+ 1

2
− H (2)

j− 1
2
will not vanish for some j , and thus the right-hand side (RHS)

of 2.4 will not be identically equal to zero, which will prevent the scheme from being well-
balanced.

The main reason the scheme from [6] does not preserve the discrete “lake-at-rest” steady
states 2.13 is related to the way the discrete values of the global variable R j are evaluated in
2.7. In the next section, we propose an alternative way, which would lead to another version
of the flux globalization based central-upwind scheme, which is capable of preserving both
moving- and still-water equilibria.

2.3 Well-Balanced Computation of the Global Variables

As one can see from the computation in Sect. 2.2, the lack of balancing in the original scheme
from [6] is caused by the way the values R j are computed in 2.7. We propose to modify this
computation in the following recursive way.
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We begin by approximating the global variable R at the first cell on the left of the com-
putational domian, that is, at x = x j� . Namely, we need to evaluate

R j� = R
j�− 1

2
+

x j�∫

x
j�− 1

2

(
ghBx + g

n2

h7/3
|q|q
)
dx =

x j�∫

x
j�− 1

2

(
ghBx + g

n2

h7/3
|q|q
)
dx . (2.14)

Our goal is to make sure that the quadrature for the intergral on the RHS of 2.14 is exact
when the data correspond to the “lake-at-rest” steady state 2.13, that is, when q j� = 0 and

h j� = ŵ − Bj� . To this end, we replace the functions B, h and q in this intergral with

B̃ j� (x) = Bj�− 1
2

+ (Bx ) j� (x − x j�− 1
2
),

h̃ j� (x) = h j� + 1

2

(
Bj�− 1

2
+ Bj�+ 1

2

)− B̃ j� (x) and

q̃ j� (x) = q j� ,

respectively, and apply the trapezoidal rule to obtain

R j� ≈
x j�∫

x
j�− 1

2

(
gh̃ j� (x)(Bx ) j� + g

n2(̃
h j� (x)

)7/3 |̃q j� (x)|̃q j� (x)
)
dx

≈ g�x

2

⎡
⎣(Bx ) j�

h̃ j� (x j�− 1
2
) + h̃ j� (x j� )

2
+ n2

2
|q j� |q j�

{
1(̃

h j� (x j�− 1
2
)
)7/3 + 1(̃

h j� (x j� )
)7/3
}⎤
⎦

= g�x

2

[
(Bx ) j�

(
h j� + �x

4
(Bx ) j�

)
+ n2

2
|q j� |q j�

{
1(

h j� + �x
2 (Bx ) j�

)7/3 + 1(
h j�

)7/3
}]

.

(2.15)

We then follow the approach proposed in [15,16,18], and use a special second-order
quadrature rule to obtain the following recursive formula:

R j+1 = R j +
x j+1∫

x j

(
ghBx + g

n2

h7/3
|q|q
)
dx

= R j + g

2

(
h j+1 + h j

)(
Bj+1 − Bj

)

+ gn2�x

2

{ |q j+1|q j+1(
h j+1

)7/3 + |q j |q j(
h j
)7/3
}
, j = j�, . . . , jr − 1.

(2.16)

We now verify that if 2.7 is replaced with 2.15, 2.16, the resulting scheme will preserve
the “lake-at-rest” steady states satisfying 2.13. To this end, as in Sect. 2.2 we assume that the
data are at the discrete equilibrium 2.13 and we need to show that in this case, K j = K j+1

for all j . Indeed, we have

K j+1 − K j = g

2

(
h
2
j+1 − h

2
j

)+ R j+1 − R j = g

2

(
h
2
j+1 − h

2
j

)+ g

2

(
h j+1 + h j

)(
Bj+1 − Bj

)

= g

2

(
h j+1 + h j

) (
h j+1 + Bj+1 − (h j + Bj )

) = g

2
(h j+1 + h j )(ŵ − ŵ) = 0.
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Table 1 Example 1: L1- and L∞-errors in the water depth h and discharge q

L1-error in h L∞-error in h L1-error in q L∞-error in q

Proposed scheme 6.13e−16 8.88e−16 9.51e−14 6.70e−14

Scheme from [6] 8.80e−3 8.68e−2 8.21e−6 4.10e−6

2.4 Numerical Example

In this section, we demonstrate that the proposed flux globalization based central-upwind
scheme clearly outperforms the scheme from [6].

2.5 Example 1: “Lake-at-Rest” Steady State

We first consider the “lake-at-rest” steady state subject to the initial data

h(x, 0) = 3 − B(x), q(x, 0) ≡ 0, (2.17)

which are prescribed in the computational domain [−1, 1] supplementedwith the free bound-
ary conditions. The bottom topography contains a hump located between x = 0.1 and
x = 0.3:

B(x) =
{
1.25
[
cos(10π(x − 0.2)) + 1

]
, if 0.1 ≤ x ≤ 0.3,

0, otherwise.

We take the gravitational constant g = 9.8, the Manning friction coefficient n = 0.05 and
compute the numerical solutions until the final time t = 10 with 50 uniform cells using both
the proposed scheme and the scheme from [6]. The obtained discrete L1- and L∞-errors are
reported in Table 1. As one can clearly see, the proposed scheme preserves the “lake-at-rest”
steady state within a machine accuracy while the errors in the scheme from [6] are quite large
as the scheme from [6] cannot preserve “lake-at-rest” steady states.

2.6 Example 2: Small Perturbation of the“Lake-at-Rest” Steady State

In the second example, we use the same data as in Example 1, but add a small perturbation
to the steady state 2.17 and consider the following initial data:

h(x, 0) = 3 − B(x) +
{
10−5, if − 0.2 ≤ x ≤ −0.1,

0, otherwise,
q(x, 0) ≡ 0.

The difference between the computed h(x, t) and the background stationary water depth
heq(x) := 3 − B(x) computed using a uniform mesh with 100 cells at times t = 0.02,
0.06 and 0.08 is plotted in Fig. 1. As one can see, the evolution of the small perturbation
is captured very well by the proposed scheme: at t = 0.02, the perturbation splits into two
waves propagating in the opposite directions; at t = 0.06, the right-going wave passes over
the bottom hump and its magnitude increases; at t = 0.08, the right-going wave passes over
the hump, its magnitude decreases and a small reflected wave is generated. At the same time,
none of these phenomena can be captured by the scheme from [6], whose truncation error
dominates the waves to be captured on the coasre grid selected.
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Fig. 1 Example 2: Time snapshots of the difference h(x, t) − heq(x), computed by the proposed scheme (top
row) and by the scheme from [6] (bottom row) using a coarse mesh with 100 cells. A reference solution (blue
dash-dotted line) is plotted in the bottom row

In order to futher demonstrate the importance of an improved well-balanced property of
the proposed scheme, we compute the solutions at the same times using the two studied
schemes, but on a substantially finer mesh consisting of 5000 uniform cells. The obtained
differernces h(x, t) − heq(x) are plotted in Fig. 2, where one can observe a much higher
resolution achieved by the proposed scheme. At the same time, the scheme from [6] can
accurately capture the left-going wave only, whereas the right-going wave, which interacts
with the nonflat bottom topography, is still dominated by the spuriouswaveswhosemagnitude
is proportional to the size of truncation error. Finally, a reference solution computed by the
proposedwell-balanced scheme using 18000 uniform cells has been added in the bottom rows
of Figs. 1 and 2. This reference solution helps to clearly distinguish between the spurious
waves generated by the scheme from [6] and the accurate solution.

3 NewHybridWell-Balanced Central-Upwind Scheme for Shallow
Water Equations withWet/Dry Fronts

Recall that in Sect. 2, the discussion was restricted to the case when all of the computational
cells are fully flooded, that is, they satisfyDefinition 2.1.We now turn our attention to the case
when the computational domain contains “dry” and/or “almost dry” areas. This is practically
important as it corresponds to the presence of islands and/or shore areas, and our goal is to
extend thewell-balanced flux globalization based central-upwind scheme presented in Sect. 2
to such cases. Specifically, we derive the scheme, which can preserve not only “lake-at-rest”
steady states 2.13, but also “dry lake” states as well as their combinations. The “dry lake”
equilibrium is defined as

q j = u j ≡ 0, h j = 0, for all j .

In Fig. 3, we present a typical steady-state setting with “lake-at-rest” and “dry lake” states
combined. Here, we assume that the cells are numbered as follows: cells C j� , . . . ,C jr are
fully flooded, while cells C j with j < j� and j > jr are either partially flooded or dry.
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Fig. 2 Example 2: Same as Fig. 1 but using a substantially finer mesh with 5000 cells

Fig. 3 Sketch of the combination of the “lake-at-rest” and “dry lake” steady states. Cells C j�−1 and C jr+1
are partially flooded; cells C j� , . . . ,C jr are fully flooded; other cells are dry

First of all, we note that theManning friction term should bemodified in “dry” and “almost
dry” ares, and therefore we consider only the frictionless version of the system 1.6–1.8 with
n = 0 in the current section. Second, we would like to draw the reader’s attention to the fact
that the global flux K is not constant at the studied combined steady states as in the “dry”
areas on the left the values of K will simply vanish. We will therefore introduce all of the
global variables inside the “wet” areas only, and in the case when there are multiple “wet”
areas, one has to introduce its own set of global variables in each of such areas. Third, we
follow [3] and introduce the free surface in cell C j (denoted by w j ), which represents the
average total water level in (the flooded parts of) this cell assuming that the water is at rest;
see Fig. 4, where we sketch the partially flooded cell C j�−1 and a typical fully flooded cell
C j . We always choose w j such that the area enclosed between the line with height w j and
the bottom line B̃ j equals the amount of water given by �x · h j . The resulting area is either
a triangle (in a partially flooded cell; see Fig. 4 (left)) or a trapezoid (in a fully flooded cell;
see Fig. 4 (right)). So, if the cell C j is fully flooded, the free surface � j (x) is defined as

� j (x) = w j , x ∈ C j ,

otherwise the free surface is a continuous piecewise linear function. Assuming that as in Fig. 4
(left) Bj− 1

2
> Bj+ 1

2
(the opposite case Bj− 1

2
< Bj+ 1

2
is treated similarly), this function is
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Fig. 4 Computation of w j in the partially (left) and fully (right) flooded cells

given by

� j (x) =
{
B̃(x), if x < x∗

j ,

w j , otherwise,

where x∗
j is location of the wet/dry front in the cell C j , which can be determined using the

water mass conservation as follows:

�x · h j =
x
j+ 1

2∫

x
j− 1

2

(
� j (x) − B̃(x)

)
dx =

x
j+ 1

2∫

x∗
j

(
w j − B̃(x)

)
dx

= �x∗
j

2

(
w j − Bj+ 1

2

) = �x∗
j

2

(
B̃(x∗

j ) − Bj+ 1
2

) = − (�x∗
j )
2

2
(Bx ) j ,

(3.1)

where �x∗
j := x j+ 1

2
− x∗

j . It then follows from 3.1 that

x∗
j = x j+ 1

2
− �x

√√√√ 2h j

B j− 1
2

− Bj+ 1
2

, w j = Bj+ 1
2

+
√
2h j
(
Bj− 1

2
− Bj+ 1

2

)
. (3.2)

We now consider a typical combined steady state with

h j = 0, for j < j� − 1 or j > jr + 1, w j�−1 = w j� = · · · = w jr = w jr+1 = ŵ,

q j = u j ≡ 0, for all j,
(3.3)

see Fig. 3, and introduce a new approach for constructing the global flux variable, which
will remain constant at such steady states. To this end, we first compute R j+ 1

2
for j =

j�−1, . . . , jr using 2.6, R j� using 2.15, and R j for j = j�+1, . . . , jr using 2.16. Aswe have
shown in Sect. 2.3, this will guarantee that K j� = · · · = K jr = K̂ at the studied combined
steady state.Wewill nowneed to develop formulae for computing K j�−1 and K jr+1 satisfying
the same property, namely, we need to ensure that at these states K j�−1 = K jr+1 = K̂ as
well.

In order to achieve this goal, we notice that in all of the fully flooded cells,

w j = h j + Bj , j = j�, . . . , jr . (3.4)
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However, in the partially flooded cells C j�−1 and C jr+1, 3.4 does not hold. Instead, one can
show that

w j�−1 = h j�−1 + B̂ j�−1, w jr+1 = h jr+1 + B̂ jr+1, (3.5)

where B̂ j�−1 is obtained using 3.2:

B̂ j�−1 = w j�−1 − h j�−1 = Bj�− 1
2

+
√
2h j�−1

(
Bj�− 3

2
− Bj�− 1

2

)− h j�−1. (3.6)

Similarly, in cell C jr+1, we have

B̂ jr+1 = w jr+1 − h jr+1 = Bjr+ 1
2

+
√
2h jr+1

(
Bjr+ 3

2
− Bjr+ 1

2

)− h jr+1. (3.7)

Equipped with 3.6 and 3.7, we then set

R j�−1 = R j� −
x j�∫

x j�−1

ghBx dx ≈ R j� − g

2

(
h j� + h j�−1

)(
Bj� − B̂ j�−1

)
,

R jr+1 = R jr +
x jr+1∫

x jr

ghBx dx ≈ R jr + g

2

(
h jr + h jr+1

)(
B̂ jr+1 − Bjr

)
,

(3.8)

and hence using 2.8 we obtain

K j�−1 = q 2
j�−1

h j�−1
+ g

2
h
2
j�−1 + R j�−1, K jr+1 = q 2

jr+1

h jr+1
+ g

2
h
2
jr+1 + R jr+1. (3.9)

Notice that this particular selection of the global variable values at the partially flooded cell
C j�−1 guaranties that at the steady state 3.3, K j�−1 = K j� = K̂ . Indeed, substituting 3.3 into
3.8, 3.9 and using 3.4 and 3.5, we obtain

K j� − K j�−1 = g

2

(
h
2
j� − h

2
j�−1

)+ R j� − R j�−1

= g

2

(
h j� + h j�−1

)(
h j� − h j�−1 + Bj� − B̂ j�−1

)

= g

2

(
h j� + h j�−1

)(
w j� − w j�−1

) = 0.

Similarly, one can show that at the steady state 3.3, K jr+1 = K jr = K̂ .
As it was mentioned in Sect. 1, we develop a hybrid approach, according to which the

flux globalization based central-upwind scheme described in Sect. 2 will be used only inside
the “wet” areas, namely, in cells C j�+1, . . . ,C jr−1. Outside these areas, we will implement
the scheme from [3], which is based on a special piecewise linear reconstruction of the water
surface w. The resulting hybrid scheme will exactly preserve the aforementioned combined
“lake-at-rest”–“dry lake” steady states provided the one-sided reconstructed point values
coincide at the interfaces between these areas (these interfaces are marked by the red dashed
line plotted in Fig. 3). We therefore need to verify that at these steady states the following
four equalities hold:

q−
j�+ 1

2
= q+

j�+ 1
2
, q−

jr− 1
2

= q+
jr− 1

2
, h−

j�+ 1
2

= h+
j�+ 1

2
, h−

jr− 1
2

= h+
jr− 1

2
. (3.10)

The first two equalities immediately follow from the fact that q j ≡ 0 for all j and q is
reconstructed in both schemes. Next, we prove the third equality in 3.10. Sincewe reconstruct
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w in cell C j� , w
−
j�+ 1

2
= w j� = ŵ and we obtain

h−
j�+ 1

2
= w−

j�+ 1
2

− Bj�+ 1
2

= w j� − Bj�+ 1
2

(3.4)= h j� + Bj� − Bj�+ 1
2

(2.1)= h j� − �x

2
(Bx ) j� .

(3.11)

At the same time, we recontruct K in cell C j�+1, so that K
+
j�+ 1

2
= K j�+1 = K̂ , and thus the

right-sided value of h is

h+
j�+ 1

2
=
√
2

g
(K+

j�+ 1
2

− R j�+ 1
2
) =
√
2

g
(K j� − R j�+ 1

2
)

(2.8)=
√
2

g

(g
2
h
2
j� + R j� − R j�+ 1

2

)

(2.6), (2.15)==
√
h
2
j� + �x(Bx ) j�

(
h j� + �x

4
(Bx ) j�

)
− 2h j��x(Bx ) j�

=
√(

h j� − �x

2
(Bx ) j�

)2 = h j� − �x

2
(Bx ) j� .

(3.12)

As one can see, Eqs. 3.11 and 3.12 imply h+
j�+ 1

2
= h−

j�+ 1
2
. The fourth equality in 3.10 can

be verified analogously.

3.1 Hybrid Piecewise Linear Reconstruction: A Summary

We use two different piecewsie linear reconstructions in different parts of the computational
domain.

• Inside the “wet” areas, that is, in the situation plotted in Fig. 3 in cells C j�+1, . . . ,C jr−1,
as well as in the two remaining wet cells C j� and C jr , we use the piecewise linear
reconstructions of q and K , 2.10 and 2.11, to obtain q±

j+ 1
2
and K±

j+ 1
2
for j = j�, . . . , jr −

1. We then solve the cubic equations 2.12 and obtain the corresponding point values
h±
j+ 1

2
, j = j�, . . . , jr − 1.

• In the partially flooded and dry cells, that is, in the situation plotted in Fig. 3 in cells
C j with j ≤ j� − 1 or j ≥ jr + 1, as well as in the two wet cells C j� and C jr , which
have partially flooded or dry neighbors, we use the wet/dry reconstruction proposed in
[3, Definition 3.2] and described below.

Given h j and q j , we first compute the values w j := h j + Bj and u j := q j/h j (the latter
computation needs to be desingularized as discussed in Remark 3.3 below) and perform a
piecewise linear reconstruction similar to 2.10, 2.11, but for the fileds ofw and u.We then use
a formula similar to 2.9 to evaluate the one-sided point values of w and u, which we denote
by w̃ ±

j+ 1
2
and u±

j+ 1
2
. The corresponding values of h are h̃ ±

j+ 1
2

= w̃ ±
j+ 1

2
− Bj+ 1

2
. Finally,

the values of h±
j+ 1

2
and w±

j+ 1
2
, which will be used in the numerical fluxes, are obtained by

modifying h̃ ±
j+ 1

2
and w̃ ±

j+ 1
2
according to the following wet/dry correction algorithm.

Case 1 (w j ≥ Bj− 1
2
and w j ≥ Bj+ 1

2
) There is enough water in C j to flood the entire

cell.

Case 1A (w̃ +
j− 1

2
≥ Bj− 1

2
and w̃ −

j+ 1
2

≥ Bj+ 1
2
) No correction is needed and we set

w±
j+ 1

2
= w̃ ±

j+ 1
2
, h±

j+ 1
2

= h̃ ±
j+ 1

2
.
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Case 1B (w̃ +
j− 1

2
< Bj− 1

2
or w̃ −

j+ 1
2

< Bj+ 1
2
) We correct the water surface slope and

obtain

if w̃ −
j+ 1

2
< Bj+ 1

2
, then we set w−

j+ 1
2

= Bj+ 1
2
and w+

j− 1
2

= 2w j − Bj+ 1
2
;

if w̃ +
j− 1

2
< Bj− 1

2
, then we set w−

j+ 1
2

= 2w j − Bj− 1
2
and w+

j− 1
2

= Bj− 1
2
.

Case 2 (Bj− 1
2

> w j > Bj+ 1
2
) There might not be enough water inC j to flood the entire

cell.

Case 2A (the neighboring cell C j+1 satisfies Case 1A) We set

w−
j+ 1

2
= w+

j+ 1
2

and h−
j+ 1

2
= w−

j+ 1
2

− Bj+ 1
2
.

Case 2A1 (2h j − h−
j+ 1

2
≥ 0) There is enough water in C j to flood the entire

cell and we set

h+
j− 1

2
= 2h j − h−

j+ 1
2

and w+
j− 1

2
= h+

j− 1
2

+ Bj− 1
2
.

Case 2A2 (2h j −h−
j+ 1

2
< 0) There is not enough water in C j to flood the entire

cell and we set

h+
j− 1

2
= 0 and w+

j− 1
2

= Bj− 1
2
.

Notice that in this case the reconstruction within cell C j consists of two linear
pieces; see [3, Figure 5].

Case 2B (the neighboring cell C j+1 does not satisfy Case 1A) We set

w−
j+ 1

2
= w j and h−

j+ 1
2

= w j − Bj+ 1
2

and consider Cases 2A1 and 2A2 to set the values h+
j− 1

2
and w+

j− 1
2
.

Case 3 (Bj− 1
2

< w j < Bj+ 1
2
) Analogous to Case 2.

Remark 3.1 We stress that in the wet cells, which have partially flooded or dry neighbors, we
roconstruct both q , K and u, w.

3.2 Time Evolution of the Numerical Solution Inside and Outside the“Wet” Areas

In this section, we describe our hybrid well-balanced strategy of the time evolution of the
numerical solution. Inside the “wet” areas, that is, in cells C j�+1, . . . ,C jr−1 in the situation
illustrated in Fig. 3, we use flux globalization based central-upwind evolution described in
Sect. 2.1. Outside the “wet” areas, the solution is evolved according to the well-balanced
central-upwind scheme from [3].

Remark 3.2 It should be observed that at the cell interfaces x j�+ 1
2
and x jr− 1

2
(in the situation

shown in Fig. 3), we compute the global central-upwind fluxes 2.5 and the central-upwind
fluxes from [3] using the one-sided point values obtained from the two different reconstruc-
tions. However, this does not lead to any discrepancies since, as we have demonstrated in
3.10, in the case of the studied combined “lake-at-rest” and “dry lake” steady states, the left
and right reconstructed point values will coincide at these two interfaces.
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Remark 3.3 Inside the “wet” areas, we first reconstruct the one-sided point values q±
j+ 1

2
and

then obtain the corresponding velocities (needed for the numerical flux evaluation) by taking
u±
j+ 1

2
= q±

j+ 1
2
/h±

j+ 1
2
. However, if the point values h±

j+ 1
2
become too small or zero, this

calculation must be desingularized. To this end, we use the same desingularization technique
as in [6,9,15], namely, we set

u±
j+ 1

2
=

2 h±
j+ 1

2
q±
j+ 1

2(
h±
j+ 1

2

)2 + max

{(
h±
j+ 1

2

)2
, 10−12

} .

After that, for consistency we replace the point values q±
j+ 1

2
and K±

j+ 1
2
with the corrected

values h±
j+ 1

2
· u±

j+ 1
2
and h±

j+ 1
2

· (u±
j+ 1

2

)2 + g
(
h±
j+ 1

2

)2
/2 + R j+ 1

2
, respecively.

Outside the “wet” areas, we reconstruct the one-sided point values u±
j+ 1

2
and thus we first

need to compute the point values u j = q j/h j . This computation must be desingularized as
well and hence we set

u j = 2h j q j

h
2
j + max

{
h
2
j , 10−12

} .

Remark 3.4 We stress that, while inside the “wet” areas we numerically integrate the Saint-
Venant system 1.6 written using the global fluxes 1.7, outside the “wet” areas we numerically
solve the Saint-Venant system written in the classical balance law form:⎧⎨

⎩
ht + qx = 0,

qt +
(
hu2 + g

2
h2
)
x

= −ghBx .

Remark 3.5 In order to ensure that the proposed scheme preserves the positivity of the water
depth h, we implement the same “draining time step” technique, which was introduced in
[4] and used in [3].

3.3 Numerical Examples

In this section,we demonstrate the performance of the proposed hybridwell-balanced central-
upwind scheme on two numerical examples.

In both of the examples, we take g = 9.8 and use the free boundary conditions. We also
use the same discretization of the cell averages of the initial conditions as in [3]. Assume that
at time t = 0 the states at cell interfaces U j+ 1

2
are given. We first use the trapezoidal rule to

compute

q j =
q j+ 1

2
+ q j− 1

2

2
.

We then follow [22] and distinguish between the following cases for the computation of the
initial fluid depth cell averages:

• If both h j− 1
2

> 0 and h j+ 1
2

> 0 or if Bj− 1
2

= Bj+ 1
2
, then

h j =
h j+ 1

2
+ h j− 1

2

2
;
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Fig. 5 Example 3: Combined
“lake-at-rest” and “dry lake”
steady state 3.13
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• If max
{
h j− 1

2
, h j+ 1

2

}
> 0, min

{
h j− 1

2
, h j+ 1

2

} = 0, and Bj− 1
2

�= Bj+ 1
2
, then

h j =
max
{
h2
j− 1

2
, h2

j+ 1
2

}
2
∣∣Bj− 1

2
− Bj+ 1

2

∣∣ .

3.4 Example 3: Combined“Lake-at-Rest” and“Dry Lake” Steady State

In this numerical example, we consider the following steady state:

heq(x) = max
{
0, 0.4 − B(x)

}
, ueq(x) ≡ 0, (3.13)

with a nonflat bottom topography containing two humps and defined by

B(x) =

⎧⎪⎨
⎪⎩
0.2 − 0.2(x − 7)2, if 6 ≤ x ≤ 8,

0.48 − 0.12(x − 17)2, if 15 ≤ x ≤ 19,

0, otherwise,

(3.14)

as illustrated in Fig. 5. As one can see, the lower hump is completely submerged, whereas
the higher hump is only partially submerged.

We first take the computational domain [0, 20] and use 3.13, 3.14 as the initial conditions.
The obtained results clearly show that the combined steady state 3.13, 3.14 is preserved by
the proposed hybrid scheme within the machine accuracy.

We then superimpose a small perturbation onto the background 3.13, that is, we take the
following initial data:

h(x, 0) = heq(x) +
{
10−4, if 11 ≤ x ≤ 12,

0, otherwise,
u(x, 0) ≡ 0.

We compute the numerical solution by the proposed hybrid scheme until the final time t =
4.2 using 400 uniform cells. In Fig. 6,we plot the difference h(x, t)−heq(x) at different times.
As expected, the perturbation splits into two waves propagating in the opposite directions
(t = 0.6). At time t = 1.8, the left-goingwave is located over the lower hump (x ∈ [6, 8]) and
its magnitude increases. Moreover, one can see that a small reflected wave is generated and
moves to the right. At time t = 2.4, the left-going wave passes the hump and its magnitude
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Fig. 6 Example 3: Time snapshots of h(x, t)−heq(x) computed by the proposed hybrid scheme. Blue dashed

line is a horizontal line at the level 5 · 10−5 (Color figure online)

decreases to the original level. At the same time, the right-going wave reaches the higher
hump located in [15,19]. After that, the left-going wave keeps moving and its shape does
not change much. However, the right-going wave starts interacting with the higher hump.
At time t = 3, the right-going wave passes over the submerged part of the higher hump and
the magnitude of the wave increases. At the same time, a small reflected wave is generated
and starts propagating to the left. At time t = 3.6, the right-going wave propagates over the
initially dry part of the hump and the magnitude of the wave keeps increasing. Finally, at
time t = 4.2, the water flows down the hump and magnitude of the right-going perturbation
decreases.

Remark 3.6 We note that in this example, we have used two sets of global variables: one of
them has been used on the left of the “dry” area located on the top of the higher hump, and
the second set of global variables has been used on the right of that “dry” area.

3.5 Example 4: Still and Oscillating Lakes withWet/Dry Fronts

In the final example taken from [1] (also studied in [3]), we consider the still and oscillating
lakes in a parabolic basin described by the following bottom topography function:

B(x) = 1

4

[
1 − cos

(
(2x − 1)π

)]
. (3.15)

The still lake equilibrium is given by

heq(x) = max
{
0, 0.4 − B(x)

}
, ueq(x) ≡ 0, (3.16)

which corresponds to a combined “lake-at-rest” and “dry lake” steady state.
We first take the computational domain [0, 1] and use 3.16, 3.15 as the initial conditions.

The discrete L1- and L∞-errors of numerical solutions computed using 200 uniform cells
at the final time t = 19.87 are shown in Table 2. The obtained results clearly show that
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Table 2 Example 4: L1- and
L∞-errors in the water depth h
and discharge q for the
unperturbed initial data 3.16, 3.15

L1-error in h L∞-error in h L1-error in q L∞-error in q

7.02e−17 2.06e−16 6.92e−16 7.76e−16

0.35

0.4

0.45

0.5

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

0

5

10

15
10-3

Fig. 7 Example 4 (oscillating lake):Water surfacew togetherwith the bottom topography B (left) and discharge
q (right). Red solid lines represent the results by the proposed hybrid scheme, blue dashed lines represent the
reference solution, and black dash-dotted lines stand for the bottom topography (Color figure online)

the combined steady state 3.16, 3.15 is preserved by the proposed hybrid scheme within the
machine accuracy, as expected.

We then introduce a sinusoidal perturbation of heq and take the following initial data:

h(x, 0) = max

{
0, 0.4 + sin

(
4x − 2 − max

{
0,−0.4 + B(x)

})
25

− B(x)

}
.

In Fig. 7, we plot the water surfacew and discharge q at the final time t = 19.87 computed by
the proposed hybrid scheme using 200 uniform cells. The obntained results are comparedwith
a reference solution computed by the scheme from [3] on a very fine mesh with 12800 cells.
As one can see, the proposed hybrid scheme provides an accurate approximation of wet/dry
fronts without producing any spurious waves during the wetting and drying processes.

4 Conclusion

In this paper, we have developed a novel well-balanced flux globalization based central-
upwind scheme, which can be viewed as an improved version of the scheme from [6].
The new scheme can exactly preserve not only the moving-water equilibria, but also the
“lake-at-rest” steady states for the 1-D Saint-Venant system of shallow water equations. This
was achieved by introducing a more accurate quadrature for computing the global variables
(integrals) in a recursive way. The advantage of the new scheme has been demonstrated on
two numerical examples.

Furthermore, we have extended the range of applicability of the flux globalization based
central-upwind scheme to cover the cases when “dry” and/or “almost dry” areas are present.
This goal has been achieved by introducing a hybrid approach: we use the flux globalization
based scheme inside the “wet” areas only, while elsewhere we apply the central-upwind
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scheme from [3]. The resulting hybrid method is capable of preserving still-water equilibria,
including those that combine “lake-at-rest” and “dry lake” steady states in the presence of
“dry” areas. It can also capture the time evolution of small perturbations of such steady states
as well as oscillating lakes in an accurate and robust manner as it has been demonstrated on
two numerical examples.

In our future work, we plan to extend the developed hybrid approach to several more
complicated models, for instance, the hyperbolic models for chemotaxis studied in [2,21].
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