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Abstract
We develop new hybrid numerical algorithms for compressible multicomponent fluids prob-
lem. The fluid components are assumed to be immiscible and are separated by material
interface. We track the location of the interface using the level set approach and replace the
energy equation in the original model with the corresponding pressure equation in its neigh-
borhoods. In these neighboring areas we solve the resulting nonconservative system using a
path-conservative central-upwind scheme, while in the rest of the computational domain, a
central-upwind scheme is used to numerically solve the original conservative system.We first
develop a finite-volumemethod of the second order and then extend it to the fifth order via the
finite-difference alternative WENO (A-WENO) framework. In order to reduce oscillations,
we switch fromA-WENOback to second-order central-upwind scheme in certain nonsmooth
parts of the computational solution. We illustrate the performance of the new hybrid methods
on a number of one- and two-dimensional examples including the shock–bubble interaction
tests.
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1 Introduction

In this paper, we develop a new numerical method for multifluids, which are assumed to
be immiscible and compressible. Assuming that all fluid components can be described by a
single velocity and a single pressure, the governing equations in the two-dimensional (2-D)
case read as:

ρt + (ρu)x + (ρv)y = 0, (1.1)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0, (1.2)

(ρv)t + (ρuv)x + (ρv2 + p)y = 0, (1.3)

Et + [u(E + p)]x + [v(E + p)]y = 0. (1.4)

Here, x and y are spatial variables, t is time and ρ(x, y, t), u(x, y, t), v(x, y, t) and E(x, y, t)
are the density, x- and y-velocities, and total energy, respectively. The system is completed
through the following equations of state (EOS) for each of the fluid components:

p = (γ − 1)
[
E − ρ

2
(u2 + v2)

]
− γ p∞, (1.5)

where the parameters γ and p∞ represent the specific heat ratios and the stiffness parameters,
respectively, with p∞ = 0 corresponding to the ideal gas case. In this paper, we consider a
multifluid problemwith two components and assume that γ = γI , p∞ = p∞,I and γ = γI I ,
p∞ = p∞,I I for the first and second fluid components, respectively.

For multifluid problems, the fluid components are usually identified by the variable φ,
which can be taken as a state variable, such as the specific heat ratio γ (or any function of
it), or the mass fraction of the fluid component in the fluid mixture, or a level- set function
whose zero level-set defines the interface between the fluid components; see [1,2,12,29,34].
In all of the cases, φ propagates with the fluid velocity satisfying the equation

φt + uφx + vφy = 0, (1.6)

which may be combined with the first equation in (1.1) and recast in the conservation form:

(ρφ)t + (ρuφ)x + (ρvφ)y = 0. (1.7)

It should be noted that there are situations, like bubbly flows or liquid suspensions, in
which the number of interfaces is too large to be tracked. In such cases, it is widely accepted
that average flow characteristics are sufficient to describe the relevant macroscopic dynam-
ics. Averaging the fluid equations yields multiphase models in which at every point in space,
all fluid components co-exist with certain volume fractions. In the two fluid case, the cor-
responding 2-velocity 2-pressure compressible model was first proposed in [5] to describe
the deflagration-to-detonation transition in porous granular explosives mixed with gaseous
products of combustion and then extended to gas–gas and gas–liquid flow models in [34]. In
the one-dimensional (1-D) case, the model from [34] is also refer to as the “seven-equation”
model. It may be reduced to the so-called “six-equation”model, several “five-equation”mod-
els, and the “four-equation” model studied in this paper; see, e.g., [23,24] and the references
therein.

The system (1.1)–(1.5), (1.7) is a system of hyperbolic conservation laws, whose solutions
are expected to develop complicated nonlinear wave structures that may include shocks,
rarefactions and contact discontinuities. Computing such solutions numerically requires the
use of high-resolution shock-capturing numerical methods with finite-volume (FV) schemes
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being a popular choice; see, e.g., themonographs [17,25,38] and references therein. It is well-
known, however, that applying single fluid FV methods to the multifluid system (1.1)–(1.5),
(1.7) may lead to significant pressure and velocity oscillations, which typically originate near
the material interface and then spread all over the computational domain; see, e.g., [1,20].
This happens since in the cells where the interface is located the fluids are artificially mixed,
with the mixed cell average values often being nonphysical. Therefore, one needs to design
special multifluid algorithms.

A number of FV methods solving compressible multifluids problems were proposed.
When the interface is tracked using a FV approach to solve either (1.6) or (1.7), one can
only obtain the information about a set of cells, in which the interface is located. In this
situation, one may need to consider cells occupied by different fluids—the so-called “mixed”
cells. There were attempts to derive special equations of state for the “mixed” cells using
either γ or mass fraction values obtained from either (1.6) or (1.7); see, e.g., [3,36]. This
technique, however, has several limitations and may lead to nonphysical jumps near the
material fronts. A more accurate “mixed” cell information can be obtained by considering
the so-called five-equation models [4,7], in which the continuity equation (1.1) is replaced
with the corresponding equation for each fluid fraction. A simpler and fully conservative
method was developed in [35], where the pressure and velocity kept constant across the
material interface. This approach is very robust for tracking contact waves but may suffer
obvious drawbacks when strong shocks pass through the fluid interface. An alternative way
of treating multifluids was introduced in [2,12]. The material interface was placed not inside
a cell but at a cell interface at which two sets of fluxes are computed using the extrapolation of
the material data across the interface, which results in nonconservative ghost fluid methods,
which are capable of accurately tracking the material interface.

A different interface tracking method, which is also capable of sharply resolving contact
waves at material interfaces, was introduced in [9]; see also [41]. There, the unreliable
“mixed” cell data have never been never used. Instead the reliable single fluid data from the
both sides of the interface is used to interpolate the missing “mixed” cell information. The
interpolation is carried out in the phase space by solving the correspondingRiemann problem;
see [9] for details. It is worth pointing out that while the ghost fluid and interface tracking
methods are very robust in the 1-D case, their extensions to multidimensional problems are
rather cumbersome. For high-order WENO schemes for compressible multifluids, we refer
the reader to [11,16,19,31,32].

In this paper, our primary objective is to develop a robust and highly accurate hybrid
algorithm based on switching between the pressure and energy equations. Following the
idea in [20], we use the level-set function (1.7) to identify the “mixed” cells, in which we
replace the conservative energy equationwith the nonconservative pressure one.We carefully
derive the pressure equation, which in the multifluid case contains the nonconservative term
responsible for the jumps in fluid parameters across the material interface. The obtained
nonconservative system is then solved in the “mixed” cells using the path-conservative central
upwind (PCCU) scheme introduced in [6]. In the rest of the computational domain, we solve
the original conservative system (1.1)–(1.5), (1.7) using the central-upwind (CU) scheme
from [8,21]. Our method is first designed in the 1-D case and then easily extended to the
2-D case with the PCCU method applied in a component-wise manner. We also extend the
proposed hybrid algorithm to higher order using the framework of the fifth-order finite-
difference alternative WENO (A-WENO) schemes developed in [18,27,28,39,40]. To this
end, we use the A-WENO scheme with the CU fluxes to solve the original conservative
system away frommaterial interfaces and the path-conservative A-WENO schemes, recently
proposed in [10], to solve the nonconservative system near the material interfaces.
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The paper is organized as follows. In Sect. 2, we describe the proposed hybrid multifluid
algorithms. We first present the 1-D algorithm in Sect. 2.1, and then extend it to the 2-D case
in Sect. 2.2. In Sect. 3, we present both the 1-D (Sect. 3.1) and 2-D (Sect. 3.2) numerical
results.

2 Hybrid Multifluid Algorithms

We now present the new hybrid multifluid algorithms based on the CU and PCCU schemes.

2.1 One-Dimensional Algorithm

We begin with the 1-D Euler equations of gas dynamics,

ρt + (ρu)x = 0, (2.1)

(ρu)t + (ρu2 + p)x = 0, (2.2)

Et + [u(E + p)]x = 0, (2.3)

combined with the EOS

p = (γ − 1)
[
E − 1

2
ρu2

]
− γ p∞, (2.4)

and the equation
(ρφ)t + (ρuφ)x = 0, (2.5)

where φ is the level-set function used to determine the position of the interface.
We consider the 1-D system (2.1)–(2.5) in a computational domain covered with the

uniform cellsC j := [x j− 1
2
, x j+ 1

2
] of size�x centered at x j = (x j− 1

2
+ x j+ 1

2
)/2. We denote

by �U j (t) the cell averages of U(·, t) over the corresponding intervals C j :

�U j (t) :≈ 1

�x

∫

C j

U(x, t) dx,

where U := (ρ, ρu, E, ρφ)� is a vector of conservative variables. Assuming that the cell
average values { �U j } are available at a certain time t ≥ 0, we compute the point values
φ j = �(ρφ) j/ �ρ j and the corresponding values of γ and p∞ at the center of each cell:

γ j =
{

γI , if φ j > 0,

γI I , otherwise,
(p∞) j =

{
p∞,I , if φ j > 0,

p∞,I I , otherwise.
(2.6)

For the simplicity of presentation, we assume that there is only one material interface present
in the computational domain and we use the point values φ j (t) to determine its location at
each time level, that is, we set that the material interface is located in either CJ or CJ+1, if
φJ (t) · φJ+1(t) ≤ 0. Cells CJ and CJ+1 are referred to as the interface cells, for which we
follow the hybrid approach introduced in [20] and replace the energy equation (2.3) with the
pressure one:

pt + (up)x = − [
(γ − 1)p + γ p∞

]
ux . (2.7)

The case of a larger, but finite number of interfaces can be treated similarly.
Note that the pressure equation (2.7) is obtained by expressing the total energy E in terms

of ρ, u and p from the EOS (2.4), substituting it into the energy equation (2.3) and then using
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the density and momentum equations (2.1) and (2.2) to eliminate the ρt and (ρu)t terms,
respectively.

The proposed multifluid hybrid algorithms is based on implementing different numerical
schemes in different parts of the computational domain. Specifically, we solve the conser-
vative system (2.1)–(2.5) using the CU scheme outside of the interface regions, while inside
such regions, we solve the nonconservative system (2.1), (2.2), (2.4), (2.5), (2.7) using the
PCCU scheme. Notice that our hybrid approach is generically nonconservative, but the con-
servation error is expected to decay when �x decreases as we solve the pressure equation
(2.7) in a small neighborhood of the material interface only.

In Sects. 2.1.1–2.1.4, we describe the semi-discrete second-order CU and PCCU schemes
and their fifth-order extensions developed within the A-WENO framework.

2.1.1 Semi-Discrete Central-Upwind (CU) Scheme

We first provide a brief description of the 1-D second-order CU scheme. To this end, we
rewrite the conservative system (2.1)–(2.5) in the vector form as

U t + F(U)x = 0, (2.8)

where F(U) = (ρu, ρu2 + p, u(E + p), ρuφ)� and apply the CU scheme from [21] in each
cell C j : j /∈ {J , J + 1}. The latter results in the following system of ODEs:

d�U j

dt
= −

H j+ 1
2

− H j− 1
2

�x
, j /∈ {J , J + 1},

where

H j+ 1
2

=
a+
j+ 1

2
F
(
U−

j+ 1
2

)− a−
j+ 1

2
F
(
U+

j+ 1
2

)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+

j+ 1
2

− U−
j+ 1

2
− Q j+ 1

2

)
.

(2.9)
Notice that all of the indexed quantities depend on t , but from now on we will omit this
dependence for the sake of brevity.

In (2.9),U±
j+ 1

2
are the right/left-sided values ofU constructed in the following way. From

the available cell averages �U j = (�ρ j , �(ρu) j , �E j , �(ρφ) j
)�, we first compute cell centered

values of the velocity u and pressure p,

u j =
�(ρu) j

�ρ j
, p j = (γ j − 1)

[
�E j −

( �(ρu) j
)2

2�ρ j

]
− γ j (p∞) j ,

and apply a piecewise linear reconstruction to the primitive variables V = (ρ, u, p, φ)�:

Ṽ j (x) = V j + (V x ) j (x − x j ), x ∈ C j , (2.10)

and a piecewise constant approximation to γ and p∞:

γ̃ j (x) ≡ γ j and ( p̃∞) j (x) ≡ (p∞) j , x ∈ C j , (2.11)

where both γ j and (p∞) j are defined in (2.6). Since here we restrict our consideration to the
case of a single material interface, we have

γ̃ j (x) =
{

γI , if x < xJ+ 1
2
,

γI I , otherwise,
( p̃∞) j (x) =

{
p∞,I , if x < xJ+ 1

2
,

p∞,I I , otherwise.
(2.12)
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In order to ensure a non-oscillatory nature of the piecewise linear reconstruction (2.10),
one needs to to compute the slopes (Vx ) j with the help of a nonlinear limiter. In the numerical
experiments reported in Sect. 3, we have used a generalized minmod limiter [26,30,37]:

(V x ) j = minmod

(
θ

�V j − �V j−1

�x
,

�V j+1 − �V j−1

2�x
, θ

�V j+1 − �V j

�x

)
,

applied to the vector quantity V in a component-wise manner. Here, the minmod function is
defined as

minmod(z1, z2, · · · ) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
j

{z j }, if z j > 0 ∀ j,

max
j

{z j }, if z j < 0 ∀ j,

0, otherwise.

(2.13)

The parameter θ can be used to control the amount of numerical dissipation present in the
resulting scheme and larger θ ’s correspond to less dissipative but, in general, more oscillatory
reconstructions.

We then use (2.10) and (2.12) to obtain

V+
j+ 1

2
:= Ṽ j (x j+ 1

2
+ 0) = V j+1 − �x

2
(V x ) j+1,

V−
j+ 1

2
:= Ṽ j (x j− 1

2
− 0) = V j + �x

2
(V x ) j+1, (2.14)

γ ±
j+ 1

2
= γ j = γ j+1, (p∞)±

j+ 1
2

= (p∞) j = (p∞) j+1, (2.15)

and the corresponding point values

U±
j+ 1

2
=
(

ρ±
j+ 1

2
, ρ±

j+ 1
2
u±
j+ 1

2
,

p±
j+ 1

2
+ γ ±

j+ 1
2
(p∞)±

j+ 1
2

γ ±
j+ 1

2
− 1

+
ρ±
j+ 1

2
(u±

j+ 1
2
)2

2
, ρ±

j+ 1
2
φ±
j+ 1

2

)�
.

Note that (2.15) is true since we now consider single-fluid parts of the computational domain
only, that is, j /∈ {J , J + 1}.
Remark 2.1 We use the piecewise linear reconstruction of the primitive variables V since
both the pressure and velocity are continuous across the material interface.

The term Q j+ 1
2
in (2.9) represents a built-in “anti-diffusion” and it is given by (see [21]):

Q j+ 1
2

= minmod

(
U+

j+ 1
2

− U∗
j+ 1

2
, U∗

j+ 1
2

− U−
j+ 1

2

)
, (2.16)

where

U∗
j+ 1

2
=

a+
j+ 1

2
U+

j+ 1
2

− a−
j+ 1

2
U−

j+ 1
2

−
{
F
(
U+

j+ 1
2

)− F
(
U−

j+ 1
2

)}

a+
j+ 1

2
− a−

j+ 1
2

. (2.17)

Finally, a±
j+ 1

2
are the one-sided local speeds of propagation obtained from the largest and the

smallest eigenvalues of the Jacobian ∂F
∂U as follows:
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a+
j+ 1

2
=
{
u−
j+ 1

2
+ c−

j+ 1
2
, u+

j+ 1
2

+ c+
j+ 1

2
, 0

}
, a−

j+ 1
2

=
{
u−
j+ 1

2
− c−

j+ 1
2
, u+

j+ 1
2

− c+
j+ 1

2
, 0

}
,

(2.18)

where c := √
γ (p + p∞)/ρ.

2.1.2 Path-Conservative Central-Upwind (PCCU) Scheme

In order to design a second-order PCCU scheme for the system (2.1), (2.2), (2.4), (2.5) and
(2.7), we first rewrite it in the following vector form:

U t + F(U)x = B(U)U x , (2.19)

where U = (ρ, ρu, p, ρφ)�, F(U) = (ρu, ρu2 + p, pu, ρuφ)�, and

B(U) =

⎛
⎜⎜⎜⎜⎝

0 0 0 0
0 0 0 0[

(γ − 1)p + γ p∞
]
u

ρ

(1 − γ )p − γ p∞
ρ

0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

. (2.20)

Applying thePCCUscheme from [6] to the system (2.19), (2.20),we arrive at the following
semi-discretization for U j = (�ρ j , �(ρu) j , p j , �(ρφ) j

)�:

dU j

dt
= − 1

�x

[
H j+ 1

2
− H j− 1

2
− B j −

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

B�, j− 1
2

+
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

B�, j+ 1
2

]
,

j /∈ {J , J + 1},
where

H j+ 1
2

=
a+
j+ 1

2
F(U−

j+ 1
2

)− a−
j+ 1

2
F(U+

j+ 1
2

)

a+
j+ 1

2
− a−

j+ 1
2

+
a+
j+ 1

2
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

(
U+

j+ 1
2

− U−
j+ 1

2
− Q j+ 1

2

)
,

B j =
(
0, 0,−

∫

C j

[
(γ̃ j (x) − 1) p̃ j (x) + γ̃ j (x)( p̃∞) j (x)

]
(ux ) j dx, 0

)�
, (2.21)

B�, j+ 1
2

=
(
0, 0,

1∫

0

B(p j+ 1
2
(s))

du j+ 1
2

ds
ds, 0

)�
. (2.22)

In order to evaluate the integral in (2.21), we use the piecewise linear reconstructions of p
and u from (2.14) to obtain

B(3)
j = − 1

2

[
(γ −

j+ 1
2

− 1)p−
j+ 1

2
+ (γ +

j− 1
2

− 1)p+
j− 1

2

+ γ −
j+ 1

2
(p∞)−

j+ 1
2

+ γ +
j− 1

2
(p∞)+

j− 1
2

](
u−
j+ 1

2
− u+

j− 1
2

)
, j ∈ {J , J + 1}.

(2.23)

For the integral in (2.22), one needs to select a path connecting the points (u−
j+ 1

2
, p−

j+ 1
2
) and

(u+
j+ 1

2
, p+

j+ 1
2
). In this paper, we use a linear path, that is,

p j+ 1
2
(s) = p+

j+ 1
2

+ (1 − s)p−
j+ 1

2
, u j+ 1

2
(s) = u+

j+ 1
2

+ (1 − s)u−
j+ 1

2
,
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which results in

B(3)
�, j+ 1

2
= −1

2

[
(γ +

j+ 1
2

− 1)p+
j+ 1

2
+ (γ −

j+ 1
2

− 1)p−
j+ 1

2

+ γ +
j+ 1

2
(p∞)+

j+ 1
2

+ γ −
j+ 1

2
(p∞)−

j+ 1
2

](
u+
j+ 1

2
− u−

j+ 1
2
), j ∈ {J − 1, J , J + 1}.

Note that according to (2.11), both γ and p∞ have jumps at the material interface x = xJ+ 1
2

so that⎧⎨
⎩

γ ±
J− 1

2
= γ −

J+ 1
2

= γJ ,

γ ±
J+ 3

2
= γ +

J+ 1
2

= γJ+1
and

⎧⎨
⎩

(p∞)±
J− 1

2
= (p∞)−

J+ 1
2

= (p∞)J ,

(p∞)±
J+ 3

2
= (p∞)+

J+ 1
2

= (p∞)J+1.
(2.24)

As in Sect. 2.1.1, we then reconstruct the primitive variables V to obtain the point values
U±

j+ 1
2
. The built-in “anti-diffusion” term Q j+ 1

2
is given by (2.16), (2.17) but with U and F

replaced with U and F , respectively. The local speeds a±
j+ 1

2
are still computed using (2.18)

with γ ±
j+ 1

2
and (p∞)±

j+ 1
2
given by (2.24).

Remark 2.2 Notice that the “anti-diffusion” term Q j+ 1
2
was not present in the PCCUschemes

in [6] as they were based on the earlier version of the central-upwind schemes introduced in
[22]. On the contrary, the PCCU scheme presented in this section is based on a more recent
version of the central-upwind schemes from [21].

2.1.3 Fifth-Order A-WENO Scheme

In order to increase the resolution of contact waves and smooth parts of the solution, one
may want to use a higher-order extension of the FV scheme presented above. In this section,
we show how to design such an extension using an A-WENO finite-difference approach.
According to this approach, the point values of the solution of (2.8) are evolved in time by
solving the following system of ODEs:

dU j

dt
= −

H j+ 1
2

− H j− 1
2

�x
.

Here, H j+ 1
2
is the fifth-order numerical flux defined by

H j+ 1
2

= H j+ 1
2

− 1

24
(�x)2(Fxx ) j+ 1

2
+ 7

5760
(�x)4(Fxxxx ) j+ 1

2
; (2.25)

see [18,27,28,39,40] for its derivation. In (2.25), H j+ 1
2
is the FV numerical flux (we use

the CU flux (2.9)), and the higher-order convection terms (Fxx ) j+ 1
2
and (Fxxxx ) j+ 1

2
are

computed using the second- and fourth-order finite-differences as follows:

(Fxx ) j+ 1
2

= 1

48(�x)2
(−5F j−2 + 39F j−1 − 34F j − 34F j+1 + 39F j+2 − 5F j+3),

(Fxxxx ) j+ 1
2

= 1

2(�x)4
(F j−2 − 3F j−1 + 2F j + 2F j+1 − 3F j+2 + F j+3).

(2.26)
It should be emphasized that the resulting scheme will be fifth-order accurate provided the
one-sided point values U±

j+ 1
2
used in the numerical flux H j+ 1

2
are also fifth-order accurate.

In this paper, we use the fifth-order alternative WENO polynomial interpolation procedure

123



Journal of Scientific Computing (2021) 89 :48 Page 9 of 24 48

with the Z-type weights (WENO-Z) (see [18,27,40]) applied once again to the primitive
variables V j in a component-wise manner. For the sake of brevity, we only introduce how
to compute V−

j+ 1
2
, while V+

j+ 1
2
can be obtained using the mirror-symmetric stencil.

Equippedwith the point values V j , we first compute three parabolic interpolantsPk(x) =
(P1(x),P2(x),P3(x))� using the point values

{
(x j−2+k, V j−2+k), (x j−1+k, V j−1+k),

(x j+k, V j+k)

}
for k = 0, 1, 2. The fifth-order WENO-Z interpolations for the i th com-

ponent of V (i = 1, 2, 3, 4) are then given by

(V (i)
j+ 1

2
)− =

2∑
k=0

ω
(i)
k P(i)

k (x j+ 1
2
), (2.27)

where

P(i)
0 (x j+ 1

2
) = 3

8
V (i)
j−2 − 5

4
V (i)
j−1 + 15

8
V (i)
j ,

P(i)
1 (x j+ 1

2
) = −1

8
V (i)
j−1 + 3

4
V (i)
j + 3

8
V (i)
j+1,

P(i)
2 (x j+ 1

2
) = 3

8
V (i)
j + 3

4
V (i)
j+1 − 1

8
V (i)
j+2.

The weights ω
(i)
k in (2.27) are computed by

ω
(i)
k = α

(i)
k

α
(i)
0 + α

(i)
1 + α

(i)
2

, α
(i)
k = dk

[
1 +

(
τ

(i)
5

β
(i)
k + ε

)p]

with d0 = 1
16 , d1 = 5

8 , d2 = 5
16 , β

(i)
k defined by

β
(i)
k =

2∑
�=1

(�x)2�−1
∫

C j

(
∂�P(i)

k

∂x�

)2

dx, k = 0, 1, 2,

and τ
(i)
5 = |β(i)

2 −β
(i)
0 |. In all of the numerical examples reported in Sect. 3, we have chosen

p = 2 and ε = 10−12.

2.1.4 Path-Conservative A-WENO Scheme

In order to increase the accuracy inside the interface region {CJ ,CJ+1}, one may use the
path-conservative A-WENO scheme there. According to [10], this scheme reads as

dU j

dt
= − 1

�x

[
H j+ 1

2
− H j− 1

2
− B j −

a+
j− 1

2

a+
j− 1

2
− a−

j− 1
2

B�, j− 1
2

+
a−
j+ 1

2

a+
j+ 1

2
− a−

j+ 1
2

B�, j+ 1
2

]

+ �x

24

[
(K xx ) j+ 1

2
− (K xx ) j− 1

2

]
− 7

5760
(�x)3

[
(K xxxx ) j+ 1

2
− (K xxxx ) j− 1

2

]
,

whereH j+ 1
2
, B j , B�, j+ 1

2
and a±

j+ 1
2
are defined as in Sect. 2.1.2, U±

j+ 1
2
are computed using

the fifth-orderWENO-Z interpolant described in Sect. 2.1.3, and (K xx ) j+ 1
2
and (K xxxx ) j+ 1

2
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are finite-difference approximations of the second- and fourth-order spatial derivatives of the
function

K (U(·, t)) = F(U(x, t)) −
x∫

−∞
B(U(ξ, t))Ux (ξ, t) dξ.

The derivatives of K are given by (see [10])

(K xx ) j+ 1
2

= (F xx ) j+ 1
2

− [(B(U)U x )x ] j+ 1
2

(K xxxx ) j+ 1
2

= (F xxxx ) j+ 1
2

− [(B(U)U x )xxx ] j+ 1
2
,

where (F xx ) j+ 1
2

and (F xxxx ) j+ 1
2

are computed in the same way as (Fxx ) j+ 1
2

and

(Fxxxx ) j+ 1
2
were computed in (2.26), but with F replaced by F , and

[(B(U)U x )x ] j+ 1
2

= 1

24�x

{
− (B(U)U x ) j+2 + 27(B(U)U x ) j+1 − 27(B(U)U x ) j

+(B(U)U x ) j−1

}
,

[(B(U)U x )xxx ] j+ 1
2

= 1

(�x)3

{
(B(U)U x ) j+2 − 3(B(U)U x ) j+1 + 3(B(U)U x ) j

−(B(U)U x ) j−1

}
.

Here, (B(U)U x )m = B(Um)(U x )m , for m = j − 1, j, j + 1, j + 2, and

(U x ) j−1 = 1

12�x

(
U j+2 − 6U j+1 + 18U j − 10U j−1 − 3U j−2

)
,

(U x ) j = 1

12�x

(
− U j+2 + 8U j+1 − 8U j−1 + U j−2

)
,

(U x ) j+1 = 1

12�x

(
− U j+3 + 8U j+2 − 8U j + U j−1

)
,

(U x ) j+2 = 1

12�x

(
3U j+3 + 10U j+2 − 18U j+1 + 6U j − U j−1

)
.

Remark 2.3 In order to ensure the designed path-conservative A-WENO scheme is fifth-
order accurate, the term B j needs to be evaluated using a fifth-order quadrature instead of
the second-order one (2.23). In this paper, we use the Newton–Cotes approach presented in
[10, §4].

2.1.5 Mixed-Order Approach

Even though the component-wise WENO interpolation is essentially non-oscillatory, the
resulting A-WENO hybrid algorithmmay still generate spurious oscillations. Using the local
characteristic decomposition and performing the interpolation in terms of the primitive vari-
ables may help to reduce the magnitude of these oscillations but our numerical experiments
clearly demonstrate that this would not lead to a robust multifluid algorithm.

We therefore propose the following mixed-order strategy. We first reconstruct all of
the required the point values using the WENO-Z interpolant and then check whether the
obtained point values satisfy monotonicity and smoothness conditions. The monotonicity is
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checked for the following sequences:
(
ρ j , ρ

−
j+ 1

2
, ρ+

j+ 1
2
, ρ j+1

)
,
(
u j , u

−
j+ 1

2
, u+

j+ 1
2
, u j+1

)
and

(
p j , p

−
j+ 1

2
, p+

j+ 1
2
, p j+1

)
and the smoothness is checked for the pressure. Namely, we say

that the pressure profile is locally smooth if

|p+
j+ 1

2
− p−

j+ 1
2
|

max
{
p+
j+ 1

2
, p−

j+ 1
2

} < C(�x)2,

where C is a constant, which may be adjusted experimentally (in all of the 1-D numerical
examples reported in Sect. 3, we have taken C = 1).

If the above monotonicity or smoothness conditions are satisfied at x = x j+ 1
2
, we use the

fifth-order A-WENO fluxes from Sects. 2.1.3 and 2.1.4. Otherwise, we locally switch to the
second-order CU fluxes from Sects. 2.1.1 and 2.1.2, respectively.

2.2 Two-Dimensional Algorithm

We now consider the 2-D system (1.1)–(1.5), (1.7) and extend our 1-D hybrid algorithms
to the 2-D case. The extension is rather straightforward as it is carried out in a dimension-
by-dimension manner. We therefore only provide a brief description of the 2-D algorithm
here.

We introduce a uniform Cartesian mesh with x j := j�x and yk := k�y, and assume that
the cell averages,

�U j,k :≈ 1

�x�y

∫∫

C j,k

U(x, y, t) dy dx,

have been computed at a certain time t ≥ 0. Here, C j,k := [x j− 1
2
, x j+ 1

2
]× [yk− 1

2
, yk+ 1

2
] are

the FV cells and U := (ρ, ρu, ρv, E, ρφ)�.
As in the 1-D case, we first locate the position of the interface using the level-set function

φ, whose discrete values are computed by φ j,k = �(ρφ) j,k/�ρ j,k . These values are in turn used
to identify the so-called interface region. Specifically, we say that C j,k is an interface cell if
either φ j,k · φ j+1,k < 0, φ j,k · φ j−1,k < 0, φ j,k · φ j,k+1 < 0 or φ j,k · φ j,k−1 < 0. We then
replace the energy equation (1.4) with the pressure one,

pt + (up)x + (vp)y = − [
(γ − 1)p + γ p∞

]
ux − [

(γ − 1)p + γ vy p∞
]
vy, (2.28)

in the interface region, where we will solve the system (1.1)–(1.3), (1.5), (1.7) and (2.28)
instead of (1.1)–(1.5), (1.7).

We thus take the same hybrid approach as in the 1-D case. Away from the interface, we
solve the conservative system (1.1)–(1.5), (1.7) using the 2-D semi-discrete CU scheme. Its
second-order version is briefly described in Appendix A. A higher- (fifth-) order extension
can be obtained within the finite-difference A-WENO approach by implementing the 1-D
A-WENO numerical fluxes described in Sect. 2.1.2 in the x- and y-directions.

Inside the interface region, we solve the nonconservative pressure-based system (1.1)–
(1.3), (1.5), (1.7) and (2.28) using either the second-order PCCU scheme or its fifth-order
A-WENO extension recently proposed in [10]. In order to reduce the magnitude of the
oscillations that might be present in the fifth-order results, we implement the same mixed-
order strategy as the one presented in Sect. 2.1.5. We check the monotonicity at the middle
of each cell interface. In the x-direction, we check whether the following sequences are
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monotone:
(

�ρ j,k, ρ
E
j,k, ρ

W
j+1,k, �ρ j+1,k

)
,
(
u j,k, u

E
j,k, u

W
j+1,k, u j+1,k

)
,
(
v j,k, v

E
j,k, v

W
j+1,k, v j+1,k

)
,

(
p j,k, p

E
j,k, p

W
j+1,k, p j+1,k

)
.

Here, u j,k , v j,k and p j,k are the point values of u, v and p at the cell centers given by (A.2),
and ρE

j,k , ρW
j+1,k , u

E
j,k , u

W
j+1,k , vEj,k , vWj+1,k , p

E
j,k and pWj+1,k are the one-sided point values

of ρ, u, v and p at the center of the cell interface given by (A.3). We also verify the local
smoothness of the pressure there by checking whether the inequality

|pWj+1,k − pEj,k |
max

{
pWj+1,k, p

E
j,k

} < C(�x)2

is satisfied. Similarly, in the y-direction, the monotonicity is checked for the following
sequences:

(
�ρ j,k, ρ

N
j,k, ρ

S
j,k+1, �ρ j,k+1

)
,
(
u j,k, u

N
j,k, u

S
j,k+1, u j,k+1

)
,
(
v j,k, v

N
j,k, v

S
j,k+1, v j,k+1

)
,

(
p j,k, p

N
j,k, p

S
j,k+1, p j,k+1

)
,

and the corresponding smoothness condition is

|pSj,k+1 − pNj,k |
max

{
pSj,k+1, p

N
j,k

} < C(�y)2.

The one-sided point values ρN
j,k , ρ

S
j,k+1, u

N
j,k , u

S
j,k+1, v

N
j,k , v

S
j,k+1, p

N
j,k and pSj,k+1 used in

the above two formulae are defined in (A.3).
At the cell interfaces, where the above conditions fail, we replace the fifth-order A-WENO

fluxes with the second-order CU fluxes.

Remark 2.4 In all of the 2-D numerical examples reported in §3, we have taken C = 5.

3 Numerical Examples

In this section, five numerical experiments are conducted to test the proposed hybrid algo-
rithm. In the first three 1-D examples, we test the shock-tube problem, the stiff shock-tube
problem and the water–air model problem. In the last two 2-D examples, we present the
results for the Helium and R22 bubble problems.

In all of the five examples, the time evolution is carried out using the three-stage third-
order strong stability preserving (SSP) Runge–Kutta method [13,14] with the CFL number
0.3. The level-set function φ is initialized using

φ(x, 0) =
{
1, x ∈ �I ,

−1, x ∈ �I I ,
or φ(x, y, 0) =

{
1, (x, y) ∈ �I ,

−1, (x, y) ∈ �I I ,
(3.1)

for the 1-D and 2-D examples, respectively. In (3.1), �I and �I I are the parts of the com-
putational domain initially filled by fluids I and II, respectively.
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Fig. 1 Example 1: Density (ρ), velocity (u) and pressure (p) computed by the mixed-order A-WENO scheme

3.1 One-Dimension Examples

We begin with the 1-D numerical examples. Our numerical experiments (not shown
here for the sake of brevity) clearly indicate that in these three examples the second-
order CU scheme and the mixed-order A-WENO scheme perform very similarly. We
believe that this is related to the fact that the solutions of the studied Riemann problems
do not contain complicated wave interaction and/or oscillatory parts of smooth solu-
tion. We will therefore show the results obtained by the mixed-order A-WENO scheme
only.

In all of the 1-D examples, we measure the relative conservation error in the computation
of the total energy E using the following formula:

err :=

∑
j

�E j (t) −∑
j

�E j (0)

∑
j

�E j (0)
. (3.2)

Example 1—Shock-Tube Problem

In the first example, we consider the system (2.1)–(2.5) subject to the following initial con-
ditions:

(ρ, u, p; γ, p∞) =
{

(1.000, 0, 1.0; 1.4, 0), x < 0.5,

(0.125, 0, 0.1; 1.6, 0), x > 0.5.

We compute the numerical solution until the final time t = 0.2 on a uniform mesh with
�x = 1/200. The solution computed by the mixed-order A-WENO scheme is plotted in
Fig. 1. As one can see, there is no oscillations in either velocity or pressure fields at the
neighborhood of the contact wave, which demonstrates the robustness of the proposed hybrid
approach.

We also measure the relative conservation error in the total energy using formula
(3.2). The results reported in Table 1 indicate that while the conservation error decays
quite slow when the mesh is refined, it is very small even when the mesh is quite
coarse.
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Table 1 Example 1:
Conservation error in the total
energy computed by (3.2)

�x Err Rate

1/200 8.35e−4 –

1/400 5.84e−4 0.52

1/800 4.58e−4 0.35

1/1600 2.70e−4 0.76

1/3200 1.62e−4 0.74

Fig. 2 Example 2: Density (ρ) computed using �x = 1/400 (left) and zoomed mesh-refinement study (right)

Example 2—Stiff Shock-Tube Problem

In the second example, we consider another shock-tube problem with the initial conditions
given by

(ρ, u, p; γ, p∞) =
{

(1, 0, 500; 1.4, 0), x < 0.5,

(1, 0, 0.2; 1.6, 0), x > 0.5.

We compute the solution using the mixed-order A-WENO scheme until the final time t =
0.015 on a uniform mesh with �x = 1/400 and plot its components in Figs. 2 (density)
and 3 (velocity and pressure). As one can observe, the obtained solution is oscillation-free
and the achieved resolution is of a high quality. In order to demonstrate the experimental
convergence of the proposed scheme, we zoom at the shock and contact wave areas of the
density and compute the solution on finer uniform grids with �x = 1/800 and 1/1600. The
results of the mesh-refinement study, shown in Fig. 2 (right), indicate a fast and monotone
convergence of the solution.

As in the previous example, we measure the conservation error using formula (3.2). As
one can observe from the results reported in Table 2, the relative conservation error is still
quite small and decays a bit slower than in Example 1 when the mesh is refined.

Example 3—Water–Air Model Using the Stiff Equation of State

In the last 1-D example, we consider a gas–liquid multifluid system, in which the liquid
component ismodeled by the stiff EOS (2.4)with p∞,I 
= 0.The initial conditions correspond
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Fig. 3 Example 2: Velocity (u) and pressure (p) computed by the mixed-order A-WENO scheme

Table 2 Example 2:
Conservation error in the total
energy computed by (3.2)

�x Err Rate

1/400 1.82e−3 –

1/800 8.12e−4 1.16

1/1600 5.27e−4 0.62

1/3200 3.74e−4 0.49

1/6400 2.50e−4 0.58

Fig. 4 Example 3: Density (ρ) computed using �x = 1/400 (left) and zoomed mesh-refinement study (right)

to a severe water–air shock tube problem and they are given by

(ρ, u, p; γ, p∞) =
{

(1000, 0, 109; 4.4, 6 · 108), x < 0.7,

(50, 0, 105; 1.4, 0), x > 0.7.

We compute the solution using the mixed-order A-WENO scheme until the final time t =
0.00025 on a uniform mesh with �x = 1/400 and present the results in Figs. 4 and 5. In
order to demonstrate the experimental convergence of the proposed scheme, we perform
computations on a series of refined meshes with �x = 1/800 and 1/1600, and zoom the
solution at the areas of shock and contact waves in Fig. 4 (right). The obtained results clearly
indicate that themixed-order scheme provides a high overall quality of the computed solution.
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Fig. 5 Example 3: Velocity (u) and pressure (p) computed by the mixed-order A-WENO scheme

Table 3 Example 3:
Conservation error in the total
energy computed by (3.2)

�x Err Rate

1/400 5.02e−4 –

1/800 5.79e−4 − 0.21

1/1600 6.19e−4 − 0.10

1/3200 3.28e−4 0.92

1/6400 3.29e−4 − 0.01

Fig. 6 Initial setting for the 2-D numerical examples

Once again, we measure the relative conservation error using formula (3.2) and show the
results in Table 3. Compared to Examples 1 and 2, the error is slightly larger and it decays
extremely slow asmesh is refined. This is due to the large initial jumps in both the density and
pressure, which lead to larger conservation error at the initial stages of the solution evolution.

3.2 Two-Dimensional Examples

In this section, we use the second-order CU scheme and the mixed-order A-WENO scheme
to compute the numerical results of the interaction between a shock and a bubble. A shock
wave in the air hits the resting bubble which contains either helium (Example 4) or R22
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Fig. 7 Example 4: Shock–helium bubble interaction by the second- (left column) and mixed-order (right
column) schemes at times t = 0.5, 1 and 1.5

(Example 5). In each case, complicated solution structures are developed having very distinct
wave properties since helium is lighter and R22 is heavier than air. These two examples
follow the experiments reported in [15] and numerical simulation conducted in [9,33]. The
computational domain of the initial setup is shown in Fig. 6. The top and bottom boundaries
are solid walls, while the left and right boundaries are open. In both Examples 4 and 5, the
uniform spatial grid with �x = �y = 1/500 has been used in numerical simulations. In
Figs. 7, 8, 9 and 10, we illustrate the results obtained at different time moments during the
interaction process. In these figures, we plot Schlieren images of the magnitude of the density
gradient field, |∇ρ|. To this end, we have used the following shading function:

exp

(
− K |∇ρ|

max(|∇ρ|)
)

, K = 80,

where the numerical density derivatives are computed using standard central differencing.
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Fig. 8 Same as in Fig. 7, but at larger times t = 2, 2.5 and 3

Example 4—Helium Bubble

In the first 2-D example, we consider the system (1.1)–(1.5), (1.7) subject to the following
initial conditions:

(ρ, u, p; γ, p∞) =

⎧
⎪⎨
⎪⎩

(4/29, 0, 0, 1; 5/3, 0), in region A,

(1, 0, 0, 1; 1.4, 0), in region B,

(4/3,−0.3535, 0, 1.5; 1.4, 0), in region C,

where regions A, B and C are outlined in Fig. 6.
Figures 7 and 8 show different stages of the shock–bubble interaction computed by the

second- and mixed-order schemes. When reaching the bubble, the shock wave partially
refracts and partially reflects. As the speed of sound in helium is faster than that in air, the
refracted shock is curved and propagates inside the helium bubble faster than in the air.
Under the force of the shock, the bubble compresses and is put into motion. The helium
accelerates more under the influence of the shock and a shear layer is created through the
bubble interface, giving rise to highly complex refraction patterns. After the shock finishes
its sweep over the bubble, the bubble begins to grow slowly into a recognizable kidney shape
until losing its integrity and breaking up. The obtained results are in good agreement with
the numerical results reported in [9,33]. From Figs. 7 and 8, one can see that the mixed-
order A-WENO scheme can capture the material interface sharper and resolve more small
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Fig. 9 Example 5: Shock–R22 bubble interaction by the second- (left column) andmixed-order (right column)
schemes at times t = 0.5, 1 and 1.5

details of the solution than the second-order scheme, especially near the interface at large
computational times; see Fig. 8.

Example 5—R22 Bubble

In the second 2-D example, we consider the following initial conditions:

(ρ, u, p; γ, p∞) =

⎧
⎪⎨
⎪⎩

(3.1538, 0, 0, 1; 1.249, 0), in region A,

(1, 0, 0, 1; 1.4, 0), in region B,

(4/3,−0.3535, 0, 1.5; 1.4, 0), in region C,

where, as in the previous example, the regions A, B and C are specified in Fig. 6.
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Fig. 10 Same as in Fig. 9, but at larger times t = 2, 2.5 and 3

In Figs. 9 and 10, we present different stages of the shock–bubble interaction computed by
the second- and mixed-order schemes. The R22 heavy bubble compresses and undergoes a
deformation upon being hit by the shockwave, and the shock partly reflects and partly refracts.
Unlike the case of a light helium bubble studied in Example 4, the speed of sound inside the
R22 bubble is lower than the outside speed, allowing the refracted shock wave to travel more
slowly than the shock outside the bubble. As the bubble is heavier than the surrounding air, it
accelerates less than the air under the influence of the shock. As a consequence, vorticity is
created at the bubble interface. It is possible to observe that the refracted shock concentrates
inside the bubble, creating a pressure increase and resulting in a noticeable forward jet around
the middle of the bubble. If the shear begins to develop under the induced vorticity field, the
shear at the boundary interface allows the interface to roll up. The obtained results are in
good agreement with the results reported in [9,33]. From Figs. 9 and 10 one can see that,
as in Example 4, the mixed-order A-WENO scheme can capture both the material interface
and small futures of the solution in a sharper manner than its second-order counterpart. The
difference in the results computed by the two studied schemes becomes larger at larger times;
see Fig. 10.
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Appendix: Semi-discrete Central-Upwind (CU) Scheme

In this section, we briefly describe the semi-discrete CU scheme for the homogeneous 2-D
systems (1.1)–(1.5). The 2-D semi-discrete CU scheme from [8,21] admits the following flux
form:

d

dt
�U j,k = −

H x
j+ 1

2 ,k
− H x

j− 1
2 ,k

�x
−

H y
j,k+ 1

2
− H y

j,k− 1
2

�y
,

where the numerical fluxes are

H x
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
F(UE

j,k) − a−
j+ 1

2 ,k
F(UW

j+1,k)

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

+ a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

×
⎡
⎣ UW

j+1,k − UE
j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

− Qx
j+ 1

2 ,k

⎤
⎦ ,

H y
j,k+ 1

2
=

b+
j,k+ 1

2
G(UN

j,k) − b−
j,k+ 1

2
G(US

j,k+1)

b+
j,k+ 1

2
− b−

j,k+ 1
2

+ b+
j,k+ 1

2
b−
j,k+ 1

2

×
⎡
⎣ UN

j,k+1 − US
j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

− Qy
j,k+ 1

2

⎤
⎦ . (A.1)

Here,UE,UW,UN,US are the approximate point values ofU ,which are computed as follows.
First, from the available cell averages �U j,k = (�ρ j,k, �(ρu) j,k,

�(ρv) j,k, �E j,k, �(ρφ) j,k
)�, we

compute cell centered values of the velocities u and v and pressure p:

u j,k =
�(ρu) j,k

�ρ j,k
, v j,k =

�(ρv) j,k

�ρ j,k
,

p j,k = (γ j,k − 1)

[
�E j,k −

( �(ρu) j,k
)2 + ( �(ρv) j,k

)2
2�ρ j,k

]
− γ j,k(p∞) j,k,

(A.2)

and construct a piecewise linear reconstruction applied to the primitive variables V =
(ρ, u, v, p, φ)�:

Ṽ (x, y) = �V j,k + (V x ) j,k(x − x j ) + (V y) j,k(y − yk), (x, y) ∈ C j,k .

We then obtain

VE
j,k = �V j,k + �x

2
(V x ) j,k, VW

j,k = �V j,k − �x

2
(V x ) j,k,

VN
j,k = �V j,k + �y

2
(V y) j,k, VS

j,k = �V j,k − �y

2
(V y) j,k,

(A.3)
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which are the values of Ṽ at midpoints of the edges of the cell C j,k . As in the 1-D case,
the numerical derivatives (V x ) j,k and (V y) j,k are computed using the generalized minmod
limiter as

(V x ) j,k = minmod

(
θ

�V j+1,k − �V j,k

�x
,

�V j+1,k − �V j−1,k

2�x
, θ

�V j,k − �V j−1,k

�x

)
,

(V y) j,k = minmod

(
θ

�V j,k+1 − �V j,k

�y
,

�V j,k+1 − �V j,k−1

2�y
, θ

�V j,k − �V j,k−1

�y

)
,

where the minmod function is defined by (2.13) and, as in the 1-D case, applied to the vector
quantity V in a component-wise manner.

The built-in “anti-diffusion” terms Qx
j+ 1

2 ,k
and Qy

j,k+ 1
2
in (A.1) are given by (see [8])

Qx
j+ 1

2 ,k
= minmod

⎛
⎝

U∗
j+ 1

2 ,k
− UE

j,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

UW
j+1,k − U∗

j+ 1
2 ,k

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

⎞
⎠ ,

Qy
j,k+ 1

2
= minmod

⎛
⎝

U∗
j,k+ 1

2
− UN

j,k

b+
j,k+ 1

2
− b−

j,k+ 1
2

,

US
j,k+1 − U∗

j,k+ 1
2

b+
j,k+ 1

2
− b−

j,k+ 1
2

⎞
⎠ ,

where

U∗
j+ 1

2 ,k
=

a+
j+ 1

2 ,k
UW

j+1,k − a−
j+ 1

2 ,k
UE

j,k −
{
F
(
UW

j+1,k

)− F
(
UE

j,k

)}

a+
j+ 1

2 ,k
− a−

j+ 1
2 ,k

,

U∗
j,k+ 1

2
=

b+
j,k+ 1

2
US

j,k+1 − b−
j,k+ 1

2
UN

j,k −
{
G
(
US

j,k+1

)− G
(
UN

j,k

)}

b+
j,k+ 1

2
− b−

j,k+ 1
2

.

Finally, a±
j+ 1

2 ,k
and b±

j,k+ 1
2
are the one-sided local propagation speeds in the x- and

y-directions, respectively. They are obtained using the largest/smallest eigenvalues of the
Jacobians ∂F

∂U and ∂G
∂U . For the reactive Euler systems (1.1)–(1.5), these speeds can be esti-

mated by

a+
j+ 1

2 ,k
= max

(
uEj,k + cEj,k, u

W
j+1,k + cWj+1,k, 0

)
,

a−
j+ 1

2 ,k
= min

(
uEj,k − cEj,k, u

W
j+1,k − cWj+1,k, 0

)
,

b+
j,k+ 1

2
= max

(
uNj,k + cNj,k, u

S
j,k+1 + cSj,k+1, 0

)
,

b−
j,k+ 1

2
= min

(
uNj,k − cNj,k, u

S
j,k+1 − cSj,k+1, 0

)
,

where c = √
γ (p + p∞)/ρ.
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