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Abstract
In the present work, we first introduce a general framework for modelling complexmultiscale
fluids and then focus on the derivation and analysis of a new hybrid continuum-kinetic model.
In particular, we combine conservation ofmass andmomentum for an isentropicmacroscopic
model with a kinetic representation of the microscopic behavior. After introducing a small
scale of interest, we compute the complex stress tensor by means of the Irving-Kirkwood
formula. The latter requires an expansion of the kinetic distribution around an equilibrium
state and a successive homogenization over the fast in time and small in space scale dynamics.
For a new hybrid continuum-kinetic model the results of linear stability analysis indicate a
conditional stability in the relevant low speed regimes and linear instability for high speed
regimes for higher modes. Extensive numerical experiments confirm that the proposed mul-
tiscale model can reflect new phenomena of complex fluids not being present in standard
Newtonian fluids. Consequently, the proposed general technique can be successfully used to
derive new interesting systems combining the macro and micro structure of a given physical
problem.
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1 Introduction

Many important fluid flow problems are entirely multiscale: microscopic processes strongly
influence macroscopic behavior of the fluid and need to be taken into account in order
to accurately describe fluid dynamics. Typical examples are granular [27] and high-speed
rarefiedflows [6], the plastic deformation inmaterials [25], the viscoelastic [23] andbiological
type of fluids [31]. For this reason, in the last few decades, there has been a huge interest in
both modeling and numerical simulations of problems associated with multilevel physical
models, which are able to incorporate multiscale effects in different ways.

For the Newtonian fluids there have been many rigorous theoretical studies of hydro-
dynamic limits and the relationship between microscopic molecular dynamics and/or
mesoscopic kinetic models of the Boltzmann type with macroscopic models such as the
compressible Euler or Navier-Stokes equations, see, e.g., [2, 10, 15, 16, 22] and the refer-
ences therein. On the other hand, for complex fluids theoretical understanding is certainly
less developed, andmore research is needed.More precisely, compared to standard fluids, the
challenge associatedwith complex fluids lies in an accurate determination of rheological rela-
tions that are typically obtained from physical or computational experiments. Consequently,
inmany situations, e.g., softmatters or colloid-polymermixtures, their full analytical descrip-
tion is not available.

In order to take small scale effects into account we can apply either mesoscopic kinetic
models or directly microscopic models, such as molecular dynamics or dissipative particle
dynamics, to reconstruct time evolution ofmacroscopic quantities.However, as iswell known,
an obvious drawback of meso- and microscopic descriptions, despite their higher accuracy,
is sometimes prohibitively high computational costs, which limit their direct application in
many practical situations. To overcome this disadvantage and make large-scale simulations
possible the so-called hybrid multiscale methods have been developed in the literature. The
latter combine the advantages of both descriptions: the accuracy of microscopic models to be
able to consider complex rheological relationships with the efficiency of macroscopic models
based on using classical conservation laws.

A prototype of hybrid multiscale methods is the heterogeneous multiscale method pro-
posed by E, Enquist et al. [28, 34–36, 38, 39], see also [8, 30, 32, 33, 40] for its
application for complex polymeric fluids. In this context let us also refer to triple-decker
atomistic-mesoscopic-continuum method [14], the seamless multiscale methods [29, 37],
the equation-free multiscale methods [19, 20] or the internal-flow multiscale method [4, 5].
In [21] a overview of multiscale flow simulations using particles is presented. For classical
gas dynamics, similar ideas were employed, for instance, in [7, 9, 11, 26].

In heterogeneous multiscale methods the missing macroscopic information of a complex
fluid is typically obtained by solving at the numerical level a suitable microscopic model and
then by upscaling this information at the level of themacroscopic equations.However, such an
approach even if certainly very effective may be computationally very costly. Consequently,
an analytical closure bringing the needed microscopic knowledge would be preferable if it
can be found. In this work, we follow this latter path which permits to derive general closures
of underlying microscopic models at the macroscopic level.

In the present manuscript, we propose a general framework for approaching multiscale
physical problems through homogenization of the microscopic dynamics and successive
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upscaling. There are various ways complexity can be introduced in fluids. For instance,
one can consider polymeric fluids where polymeric molecular chains are suspended in a
solvent. In such case, the underlying microscopic model is the Fokker-Planck equation for
the polymer molecules. Here, we rather choose a different way of introducing complexity.
We consider an ordinary rarefied gas modeled by a Boltzmann-BGK kinetic equation and
assume that this fluid is subject to fast oscillations driven by initial or boundary conditions
(such as surface roughness). We choose this framework as a demonstrator of our approach
since the Boltzmann-BGk equation has been widely studied and a lot of methodologies and
techniques are available. However, we believe our approach can be extended to other types
of complex fluids, such as polymeric fluids and we intend to develop it in this direction in
future work.

Our new hybrid continuum-kinetic approach for complex fluids is described in detail in
Section 2 in the case of a rarefied gas exhibiting highly oscillating structures. Our appraoch
relies on two basic ideas. First, we assume that the problems we are studying have fast and
slow scale dynamics. In addition, we assume a scale separation between the microscopic
(fast) and macroscopic (slow) dynamics and thus, the phenomena may be imagined to act
at different domain scales. Second, we assume that the effects of the fast scale dynamics
on microscopic scale can be captured at the macroscopic level, at least approximately, by
homogenization of the microscopic properties of the fluid over a finite size domain. In this
work, we consider a prototype situation of isentropic flows governed by the conservation of
mass andmomentumat the continuum level. In order tomodel rheology of a complexfluid, the
non-Newtonian stress tensor is obtained by an upscaling homogenizing procedure using the
kinetic relaxation type equations, in the present case, the Boltzmann-BGK equation. We will
study properties of the derived hybrid multiscale model using a linear stability analysis and
successively conduct several numerical experiments to illustrate the accuracy and efficiency
of the proposed hybrid model.

The rest of the paper is organized in the following way. In Section 2, we derive the hybrid
continuum-kinetic model including the non-Newtonian stress tensor. The latter is obtained
by the Irving-Kirkwood formula which represents upscale microscopic effects. In Sect. 3, we
perform a linear stability analysis which shows that for the regimes of interest, the low speed
flows, the model is linearly stable. In Sect. 4, several numerical examples are conducted that
demonstrate the validity of the proposed model for different prototype situations arising in
complex flows. Finally, Sect. 5 is dedicated to the discussion of the obtained results and
future developments.

2 The hybridmodel approach

In this section, we detail the general framework which will be used to derive a new class of
hybrid multiscale models. The second part of the section is then dedicated to the detailed
derivation and analysis of a prototype case: a hybrid continuum-kinetic model for fluids
exhibiting fast oscillations. This is realized by homogenization over a fixed size cell of the
microscopic domains composed by the fluid molecules.

We start by considering the following general setting. We assume that a microscopic
process used to describe time evolution of the state of the system of interest is known. For
instance, molecular dynamics or kinetic mesoscopic equations are able to provide such infor-
mation accurately enough.We also assume that we have at our disposal a macroscopic model
in which a missing information will be provided by means of a microscopic model. These
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Fig. 1 Sketch of the hybrid multiscale approach

two models, micro/meso and macro, can be related through a reconstruction (upscaling) and
a projection (downscaling) operator which permits to commute from one system to the other.
The upscaling operator averages the micro properties of the fluid up to a coarser descrip-
tion, while the downscaling operator uses the coarser description to obtain the unknown
variables at the microscopic level. A classical example of the above operators are down-
scaling/upscaling operators between kinetic and macroscopic description. In this case, the
upscaling procedure is obtained by the integration of the distribution function multiplied by
the so-called collision invariants over the velocity space while the downscaling operator is
recovered from the knowledge of the macroscopic variable defining a so-called equilibrium
distribution. In such a setting, our aim is to be able to give a description of the state of the
system by working on a given macroscopic grid, defined a-priori, and through the use of a
macroscopic model bringing some information from the microscopic/mesoscopic dynamics.
Schematically, the proposed method works as depicted in Fig. 1. We upscale the microsolver
information, which is determined by time evolution of the unknown u, through a homoge-
nization on a box of fixed size [−α, α]d with d the spatial dimension and α the characteristic
length of the microscopic variation. The size of the box depends on the problem under con-
sideration. This micro information is successively used into the macroscopic solver, with
unknown U , over the macroscopic grid to update the solution of the complex flow.

In what follows, we describe the details of such procedure in the case, where the macro-
scopic model is represented by the isentropic fluid equations for complex fluids while the
microscopic model is the BGK kinetic equation [3]. From the depicted scenario, it is possi-
ble to imagine alternative types of combination of micro and macro dynamics which will be
discussed in future investigations.

2.1 A prototype case and derivation of themodel

In this section, we consider a fluid which, by hypothesis, can be described at the macroscopic
level by the compressible isentropic fluid equations. In this case, the system is governed by
two equations describing the conservation of mass and momentum. This system reads

123



Partial Differential Equations and Applications             (2022) 3:63 Page 5 of 28    63 

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x · (ρu ⊗ u) = ∇x · T,
(2.1)

where ρ and u stand for the fluid density and velocity, respectively. The so-called Cauchy
stress tensor T describes specific rheological fluid properties. All unknowns are functions
of space x ∈ R

d and time t > 0. For inviscid fluids, T = −pI, where I is the identity
tensor. This expression leads to the Euler equations. Considering isentropic fluids, pressure
p = p(ρ) is a given function of density ρ.

If viscous effects are taken into account, the Cauchy stress tensor reads

T = −pI + S,

where S stands for the viscous stress. For Newtonian fluids, the latter is given by the Newton
rheological rule (NRR)

S = μ

(
∇xu + ∇xuT − 2

d
∇x · uI

)
+ λ∇x · uI,

with μ > 0 and λ ≥ 0 being the constant shear and bulk viscosity coefficients, respectively.
This relation leads to the compressible Navier-Stokes equations. In complex fluids, however,
the rheological relation for the Cauchy stress tensor is more general and typically obtained
by computational or physical experiments. Here, we propose instead that the Cauchy stress
tensor takes into account microscopic effects in a homogenized way. This new model is
derived from considering the kinetic equations underpinning fluid models of the type (2.1)
as a microscopic model.

More specifically, we make the hypothesis that the so-called BGK (Bhatnagar-Gross-
Krook) equation is a suitable microscopic model which can be upscaled to yield a missing
information on a complex Cauchy stress tensor at the macroscopic level. The considered
BGK equation reads [3]

∂t f + v · ∇x f = Q( f ), (2.2)

where f is the probability density function of fluid molecules at position x having velocity
v ∈ R

d at time t and Q( f ) is a collision operator (modelling the molecular interactions)
to be described later on. This hypothesis can be relaxed giving rise to similar models with,
however, different coefficients.

We assume now as depicted in Fig. 1 that f has slow variations at the domain scale D and
fast variations at scale α � D. Given that hypothesis, we consequently set f = f̃ (x, x

α
, v, t)

where f̃ (x, y, v, t) is 2-periodic with respect to y, with unit cell [−1, 1]d . We also suppose
that the collision operator has magnitude 1/α, i.e. that the microscopic spatial effect are
balanced by the collision dynamics among molecules. Substituting this representation into
(2.2), yields the following microscopic model

∂t f̃ + v · ∇x f̃ + 1

α
v · ∇ y f̃ = 1

α
Q( f̃ ). (2.3)

Now, we introduce two new functions, one for the density ρ̃ = ρ̃(x, y, t) and one for the
vector velocity ũ = ũ(x, y, t) to be precisely defined later on. Q( f̃ ) is the BGK operator,
i.e. a relaxation operator towards a given Maxwellian distribution M(ρ̃,ũ) of parameter ρ̃ and
ũ. We observe at this stage that the way in which ρ̃ and ũ will be defined will permit to close
the resulting system of macroscopic equations. Denoting by T the (constant) temperature
and R the universal gas constant, M(ρ̃,ũ) is given by
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M(ρ̃,ũ)(v) = ρ̃

(2πRT )d/2 exp

(
−|v − ũ|2

2RT

)
, (2.4)

and the BGK operator is given by

Q( f̃ ) = − 1

τ̃
( f̃ − M(ρ̃,ũ)), (2.5)

where τ̃ is a relaxation time. Finally, (2.3) takes the form

α
(
∂t f̃ + v · ∇x f̃

)+ v · ∇ y f̃ = − 1

τ̃
( f̃ − M(ρ̃,ũ)). (2.6)

The microscopic model (2.6) can be used to provide a missing detailed information for the
macroscopic model (2.1). To this end, the Cauchy stress tensor T can be reconstructed from
f̃ by an upscaling homogenization procedure through the Irving-Kirkwood (or Kramer)
formula [17]:

T(x, t) = − 1

2d

∫

[−1,1]d

∫
Rd

(v − ũ(x, y, t)) ⊗ (v − ũ(x, y, t)) f̃ (x, y, v, t)dvd y (2.7)

with f̃ being the solution of (2.6). In other words, we measure the microscopic effects by
homogenization of the kinetic model over the microscopic box of size [−α, α]d . Problem
(2.6) can be viewed as a cell problem for y in the unit cell [−1, 1]d and v ∈ R

d . The size
of this box is left as a free parameter, which may depend on the system under consideration.
An interesting setting, which will be numerically explored in Sect. 4, consists of considering
the size of the box into relation with the macroscopic description of the flow at the numerical
level. This can be done, for instance, by fixing a ratio between the box where the microscopic
effects are measured and the size of the mesh employed at the macroscopic level.

In order to have a well posed problem, we finally supplement (2.6) with the periodic
boundary conditions for the probability density function:

f̃ (x, y + n, v, t) = f̃ (x, y, v, t), ∀n ∈ (2Z)d .

Our aim now is to find an approximate solution of the cell problem by means of the
Chapman-Enskog expansion [6] for small relaxation times τ̃ . This will allow us to upscale
the microscopic effects at the macroscopic level without resorting to the numerical resolu-
tion of the microscopic model which would lead to an expensive computation. This step is
performed in the next section.

2.2 Chapman-Enskog expansion for the prototype hybridmodel

In this part, we present a perturbation analysis of the distribution function f̃ over the box
[−1, 1]d . We assume in the rest of the paper that τ̃ = O(ε), where ε � 1 is the Knudsen
number, i.e. the ratio of the relaxation parameter τ̃ to a characteristic hydrodynamic temporal
scale. The latter represents the macroscopic scale of interest in our analysis. More precisely,
we write τ̃ = ετ̂ , where τ̂ = O(1)when ε → 0 in the following. We proceed by introducing
the Chapman-Enskog expansion [6] that will be truncated at the first-order terms

f̃ ε = f̃ (0) + ε f̃ (1) + O(ε2), (2.8)
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where f̃ ε is the solution of (2.6) when τ̃ is replaced by ετ̂ . The so-called cell problem (2.3)
is then rewritten, using the Einstein summation convention under the above scaling as(

α
(
∂t f̃

ε + vi∂xi f̃
ε
)+ vi∂yi f̃

ε
)
(x, y, v, t)

= − 1

ετ̂

[
f̃ ε(x, y, v, t) − M(ρ̃ε(x, y,t),ũε(x, y,t))(v)

]
. (2.9)

Let observe that now in (2.9) all scaling parameters are present, namely the scaling induced
by Chapmann-Enskog expansion, the relaxation parameter τ̂ and the box size α. Typically τ̂

measures the intensity of the diffusion term in Navier-Stokes dynamics while ε the distance
from equilibrium of a given probability distribution f̃ ε. Finally, within ourmodeling assump-
tion α measures the size at which fast oscillations are produced in the fluid. As detailed next,
α is chosen typically smaller than the parameter measuring the departure from equilibrium
state. This is due because we suppose that inside this small boxes, high oscillations produce
sensible departure from equilibrium state giving rise to to macroscopic system of equations
with microscopic upscaling terms which effects are clearly visible.

Substituting (2.8) into (2.9) and equating the same powers of ε yields

f̃ (0) = M(ρ̃,ũ), f̃ (1) = −τ̂
(
α
(
∂t f̃

(0) + vi∂xi f̃
(0))+ vi∂yi f̃

(0)
)
.

Weproceed now, using the first order expansion (2.9), to the computation of the Cauchy stress
tensor appearing in equation (2.1) in the above described setting. To this end, we denote

Ti j =
∫
Rd

(v j − ũ j )(vi − ũi ) f̃
(0)dv + ε

∫
Rd

(v j − ũ j )(vi − ũi ) f̃
(1)dv + O(ε2)

=: T (0)
i j + T (1)

i j + O(ε2), (2.10)

the contribution to the stress tensor coming from the Chapmann-Enskog expansion and we
consider in the following computations each term separately.

First, using the equation of state for perfect gases p̃ = RT ρ̃, we obtain that the leading
term in (2.10) can be written as

T (0)
i j =

∫
Rd

(v j − ũ j )(vi − ũi ) f̃
(0)dv

=
∫
Rd

(v j − ũ j )(vi − ũi )
ρ̃

(2πRT )d/2 exp

(
−|v − ũ|2

2RT

)
dv

= ρ̃RT δi j = p̃δi j (2.11a)

or in the matrix form as

T (0) = p̃I. (2.11b)

The second term in (2.10) reads:

T (1)
i j = ε

∫
Rd

(v j − ũ j )(vi − ũi ) f̃
(1)dv

= −τ̂ ε

∫
Rd

(v j − ũ j )(vi − ũi )
(
α
(
∂t f̃

(0) + v
∂x

f̃ (0))+ v
∂y
 f̃

(0)
)
dv. (2.12)

We analyze now each term of equation (2.12) separately. We start by applying the chain rule
first to

∂y
 f̃
(0) = ∂ρ̃ f̃ (0)∂y
 ρ̃ + ∂ũm f̃ (0)∂y
 ũm . (2.13)
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We then observe that we can write the following relation

v


∂ f̃ (0)

∂ y

= v


∂ f̃ (0)

∂ρ̃

∂ρ̃

∂ y

+ v


∂ f̃ (0)

∂ ũm

∂ ũm
∂ y


= v


f̃ (0)

ρ̃

∂ρ̃

∂ y

+ v
(vm − ũm)

RT
f̃ (0) ∂ ũm

∂ y

=: A1 + A2,

(2.14)

to separate different contributions to the stress tensor, i.e. the one, denoted by A1, is due to the
mass variation and the other one, denoted by A2, is due to the variation of the mean velocity
in the cell [−1, 1]d . Now, by introducing the notation 〈·〉 ≡ ∫

Rd ·dv to indicate integration
over the velocity space, one can compute the moments for the terms A1 and A2 defined in
(2.14) separately. To that aim, with the notation Ãk = 〈(v j − ũ j )(vi − ũi )Ak〉, with k = 1, 2,
for the second order moments of A1 and A2 we obtain:

Ã1 := 1

ρ̃

∂ρ̃

∂ y

〈(v j − ũ j )(vi − ũi )v
 f̃

(0)〉

= 1

ρ̃

∂ρ̃

∂ y

〈(v j − ũ j )(vi − ũi )(v
 − ũ
) f̃

(0)〉 + 1

ρ̃

∂ρ̃

∂ y

ũ
〈(v j − ũ j )(vi − ũi ) f̃

(0)〉

= ∂ρ̃

∂ y

ũ
RT δi j ,

Ã2 := 1

RT

∂ ũm
∂ y


〈(v j − ũ j )(vi − ũi )(vm − ũm)v
 f̃
(0)〉

= 1

RT

∂ ũm
∂ y


〈(v j − ũ j )(vi − ũi )(vm − ũm)(v
 − ũ
) f̃
(0)〉

+ ũm
RT

∂ ũm
∂ y


〈(v j − ũ j )(vi − ũi )(vm − ũm) f̃ (0)〉

= ∂ ũm
∂ y


ρ̃RT
(
δi jδm
 + δimδ j
 + δi
δ jm

)
.

We now analyze the term involving the time derivative ∂ f̃ (0)

∂t in (2.12). Similarly to (2.13) we
have

∂ f̃ (0)

∂t
= f̃ (0)

ρ̃

∂ρ̃

∂t
+ vm − ũm

RT
f̃ (0) ∂ ũm

∂t
,

and analogously to (2.14) with y replaced by x we have

v


∂ f̃ (0)

∂x


= v


f̃ (0)

ρ̃

∂ρ̃

∂x


+ v
(vm − ũm)

RT
f̃ (0) ∂ ũm

∂x


.

This leads to the following contribution for what concerns the time derivative of the distri-
bution f̃ 0

Ã3 :=
〈
(v j − ũ j )(vi − ũi )

∂ f̃ (0)

∂t

〉

=
〈
(v j − ũ j )(vi − ũi )

(
f̃ (0)

ρ̃

∂ρ̃

∂t
+ vm − ũm

RT
f̃ (0) ∂ ũm

∂t

) 〉

=
〈
(v j − ũ j )(vi − ũi )

f̃ (0)

ρ̃

∂ρ̃

∂t

〉
+
〈
(v j − ũ j )(vi − ũi )

vm − ũm
RT

f̃ (0) ∂ ũm
∂t

〉

= RT
∂ρ̃

∂t
δi j = ∂ p̃

∂t
δi j ,
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while the contribution to the stress tensor coming from the space variation of the quantities
ρ̃, ũm at the macroscopic scale x is

Ã4 :=
〈
(v j − ũ j )(vi − ũi )v


∂ f̃ (0)

∂x


〉
= ∂ρ̃

∂x


ũ
RT δi j

+∂ ũm
∂x


ρ̃RT
(
δi jδm
 + δimδ j
 + δi
δ jm

)
.

Collecting all these terms, we obtain the following form of T (1)
i j = −τ̂ ε

(
Ã1 + Ã2 + α( Ã3

+ Ã4)
)
:

T (1)
i j = −ετ̂ RT ρ̃

[∂ ũm
∂ y


(
δi jδm
 + δimδ j
 + δi
δ jm

)+ δi j
ũ


ρ̃

∂ρ̃

∂ y


]

−εατ̂
[∂ p̃

∂t
δi j + RT ρ̃

(∂ ũm
∂x


(
δi jδm
 + δimδ j
 + δi
δ jm

)+ δi j
ũ


ρ̃

∂ρ̃

∂x


)]
.

(2.15)

In the matrix form, the contribution to the stress tensor given by the truncated Chapmann-
Enskog expansion can be written as

T (1) = −ετ̂ RT ρ̃
[
∇ yũ + ∇ yũ

T +
(
∇ y · ũ + ( ũ

ρ̃
· ∇ y

)
ρ̃
)
I

]

−εατ̂
[
∂t p̃ I + RT ρ̃

[
∇x ũ + ∇x ũ

T +
(
∇x · ũ + ( ũ

ρ̃
· ∇x

)
ρ̃
)
I

]
=

=: T (1,1) + T (1,2). (2.16)

Combining now (2.7), (2.11b), (2.16), and discarding the terms O(ε2), yields

T(x, t) = − 1

2d

∫
[−1,1]d

(
T (0) + T (1)

)
d y

and after substituting plugging this into (2.1) we finally obtain

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x · (ρu ⊗ u) =
∇x ·

[ 1

2d

∫

[−1,1]d

{
− p̃I + ετ̂ RT ρ̃

(
∇ yũ + ∇ yũ

T + [∇ y · ũ + ( ũ
ρ̃

· ∇ y
)
ρ̃
]
I

)

ετ̂α
{
∂t p̃ I + RT ρ̃

(
∇x ũ + ∇x ũ

T + [∇x · ũ + ( ũ
ρ̃

· ∇x
)
ρ̃
]
I

)}}
d y
]
.

(2.17)

We proceed in the next section by proposing a closing strategy for the system (2.17). This
will be established by relating the perturbations ũ, ρ̃, p̃ to the mean velocity u and density
ρ of the fluid at the macroscopic scale. With this aim, we will assume that ũ and ρ̃ have
approximate polynomial variations w.r.t. y in the unit cell. More precisely, we assume that
ρ̃(x, y, t) ≈ ρ(x + α y, t) and similarly for ũ ≈ u(x + α y, t). We will use the Taylor
expansion and successive truncation with respect to the parameter α.
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2.3 System closure

In order to get a closed system of equations we proceed with inserting our assumption on a
linear variation of the perturbed quantities ũ and ρ̃ into (2.17). We assume that both ρ and u
are sufficiently regular to be Taylor-expanded from the center of the box. In our expansion,
we keep the terms up to order O(α2). Thus, ρ( y, t), u( y, t) can be written as:

ρ̃(x, y, t) = ρ(x, t) + α( y · ∇x)ρ(x, t) + α2

2
( y · ∇x)

2ρ(x, t) + O(α3),

ũ(x, y, t) = u(x, t) + α( y · ∇x)u(x, t) + α2

2
( y · ∇x)

2u(x, t) + O(α3).

(2.18)

Substituting (2.18) into (2.11a) and (2.15), integrating over the microscopic box with respect
to y and noting that odd terms with respect to y cancel by antisymmetry, we obtain:

− 1

2d

∫

[−1,1]d
T (0) d y = − 1

2d

∫

[−1,1]d
ρ̃(x, y, t)RT I d y

= − 1

2d

∫

[−1,1]d

[
ρ + α( y · ∇x)ρ + α2

2
( y · ∇x)

2ρ

]
RT I d y

+ O(α3)

= −
(

ρ + α2

6
�xρ

)
RT I + O(α3).

(2.19)

Now taking the y-derivative of the second equation in (2.18) relative to the expansion of the
velocity ũ, we have

∇ yũ = α (∇xu + α( y · ∇x)∇xu) + O(α3),

with similar relations holding true for (∇ yũ)T , (∇ y · ũ), and (∇ yρ̃). Using again that odd
terms in y cancel by antisymmetry, we get

− 1

2d

∫

[−1,1]d
T (1,1) d y = ετ̂ RT

2d

∫

[−1,1]d
ρ̃
(∇ yũ + (∇ yũ)T + (∇ y · ũ) I

)
d y

+ετ̂ RT

2d

∫
[−1,1]d

(ũ · ∇ y)ρ̃ I d y

= ετ̂ RTα

2d

∫

[−1,1]d

[
ρ + α( y · ∇x)ρ

]

×
[
∇xu + (∇xu)T + (∇x · u) I + α( y · ∇x)(

∇xu + (∇xu)T + (∇x · u)I
)]

d y

+ετ̂ RTα

2d

∫

[−1,1]d

[
u + α( y · ∇x)u

]

·
[
∇xρ + α( y · ∇x)(∇xρ)

]
Id y + O(α3)
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= ετ̂ RTα
{
ρ
[
∇xu + (∇xu)T + (∇x · u) I

]
+ u · ∇xρ I

}
+ O(α3).

Using similar computations for the term T (1,2) in (2.16), we have

− 1

2d

∫

[−1,1]d
T (1,2) d y = 1

2d
ετ̂ RTα

∫

[−1,1]d

{
∂t ρ̃ I + ρ̃

(∇x ũ + (∇x ũ)T

+ (∇x · ũ) I
)+ (ũ · ∇x)ρ̃ I

}
d y

= 1

2d
ετ̂ RTα

∫

[−1,1]d

{(
∂tρ + α( y · ∇x)

∂ρ

∂t

)
I

+
[
ρ + α( y · ∇x)ρ

] [
∇xu + (∇xu)T

+ (∇x · u) I + α( y · ∇x)
(
∇xu + (∇xu)T + (∇x · u)I

)]

+
[
u + α( y · ∇x)u

]
·
[
∇xρ + α( y · ∇x)(∇xρ)

]
I

}
d y + O(α3)

= ετ̂ RTα
{
∂tρ I

+ ρ
[
∇xu + (∇xu)T + (∇x · u) I

]
+ u · ∇xρ I

}
+ O(α3).

We finally assume that ε = √
α. This means that the spatial inhomogeneity due to the

microscopic interactions of order α are much smaller and specifically equal to the square of
the relaxation length, i.e. the mean free-path which is of order ε as stated at the beginning
of Section 2.2. Thus, we drop all terms of order α2 in front of terms of order εα. This is the
case of the term involving �xρ in (2.19). With this closure and using that ∂tρ = −∇x · (ρu)

the system (2.1) is written:

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x · (ρu ⊗ u) + ∇x p

= α3/2τ̂ RT ∇x ·
{
2ρ
(
∇xu + (∇xu)T

)
+ ∇x · (ρu) I

}
,

(2.20)

with p = ρRT .We note that when terms of order α3/2 are neglected, we recover the standard
Euler equations.

Remark 1

• Using alternative closure relations with respect to the one defined in (2.18) leads to
alternative systems of balance laws which may be used to describe different phenomena
related to the microscopic dynamics.

• Keeping additional terms in the Taylor expansion (2.18)/considering a different scaling
relation with respect to

ε = √
α

leads also to a different balance laws of dispersive type: third order terms appears.
• The choice done about the relation occurring between the mean free path ε and the

box size α is in particular related to the numerical experiments. Since we are looking
for a model exhibiting similar features with respect to the underlying kinetic one, we
experimentally observed that within this choice, results are particularly close each other
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as discussed in the numerical section. However, other choices are possible and may lead
to equally interesting results. We postpone such investigation to future works.

• Different kinetic models can be applied instead of the BGK relaxation equation (2.5).
For example, molecular dynamics interacting through short range potential can be used
giving rise, for instance, to alternative Piola-Kirchhoff stress tensors.

3 Linear stability analysis

In this section,we study the linear stability of system (2.20). Let us assumeρ = ρ0+βρ1+· · · ,
and u = u0 + βu1 + · · · with β � 1, where (ρ0, u0) represents a uniform steady state and
(ρ − ρ0, u − u0) is a small perturbation from this equilibrium state. We then substitute the
above expressions into (2.20) and, dropping terms of order β2 or more, we obtain a system of
linearized equations for ρ1(x, t) and u1(x, t). The scope of this section is to investigate the
stability properties of the resulting linear system. The corresponding equations for (ρ1, u1)
are

∂tρ1 + ρ0∇x · u1 + u0 · ∇xρ1 = 0,

ρ0 (∂tu1 + (u0 · ∇x)u1) + RT∇xρ1

= α3/2τ̂ RT ∇x ·
{
2ρ0

(
∇xu1 + (∇xu1)T

)
+
(
ρ0∇x · u1 + u0 · ∇xρ1

)
I

}
.

(3.1)

Using the Fourier transform in both space and time, we can write
[
ρ1
u1

]
(x, t) =

[
ρ̄1
ū1

]
ei(k·x−ωt) (3.2)

with ρ̄1 and ū1 being the Fourier coefficients and k ∈ R
3, ω ∈ C. Using such transformation,

one can infer that the system is stable about the stationary solution (ρ0, u0) if and only if the
imaginary part of ω is nonpositive for all non-trivial solution (3.2). Moreover, one can state
that the system is stable if and only if it is stable for all (ρ0, u0) ∈ [0,∞) × R

d .
For simplicity, before proceeding with the computations, we redefine the following quan-

tities RT ≡ T , α3/2τ̂ ≡ τ and (ρ̄1, ū1) ≡ (ρ, u). Substituting now (3.2) in (3.1) and using
these redefined quantities, we get

− iωρ + ρ0i(k · u) + i(k · u0)ρ = 0,

ρ0

(
− iωu + i(k · u0)u

)
+ T ikρ

= τT ikT
{
2ρ0

(
ik ⊗ u + iu ⊗ k

)
+
(
ρ0i(k · u) + i(k · u0)ρ

)
I

}
.

Simplifying the above expressions, we obtain
(

− ω + k · u0
)
ρ + ρ0k · u = 0,

(
− ω + k · u0

)
u + T

ρ0

(
1 − iτ(k · u0)

)
kρ − 2iτT

(
|k|2u + (k · u)k

)
= 0.

(3.3)

Now, we want to analyze equation (3.3). To this aim, let us first assume that k = 0. This
choice directly implies ω �= 0 otherwise, the perturbed solution is just like the unperturbed
equation: constant in time and spatially uniform. From the above hypothesis, we immediately
obtain−ωρ = 0 and−ωu = 0. This means ρ = 0 and u = 0 and thus, the perturbed solution
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is again constant in time and space, i.e. there does not exist any non-trivial solution to the
system (3.3) in this setting. Thus, in the sequel, we assume that k �= 0.

Let thus, under the hypothesis k �= 0, the orthogonal projection onto {k}⊥ be denoted as
Pk⊥ . Applying Pk⊥ to the second equation in (3.3), yields(

− ω + k · u0 − 2iτT |k|2
)
Pk⊥u = 0. (3.4)

It should be observed that the expression inside the parentheses in (3.4) can not be zero,
otherwise, by taking the imaginary part, one concludes that k = 0, which is a contradiction.
Hence, the perturbed velocity is in the direction of k and thus Pk⊥u = 0. As a consequence,
we can write

u = v
k
|k| , (3.5)

where v ∈ R. After substituting (3.5) into equation (3.3), the system for (ρ, v) reads(
− ω + k · u0

)
ρ + ρ0|k|v = 0,

(
− ω + k · u0

)
v + T

ρ0

(
1 − iτ(k · u0)

)
|k|ρ − 4iτT |k|2v = 0.

We introduce now the angle θ between u0 and k, hence k · u0 = ku0 cos θ , where we denote
k = |k| and u0 = |u0|. This leads to(

− ω + ku0 cos θ
)
ρ + ρ0kv = 0,

T

ρ0

(
1 − iτku0 cos θ

)
kρ +

(
− ω + ku0 cos θ − 4iτT k2

)
v = 0,

or, in matrix form:[ −ω + ku0 cos θ ρ0k
T
ρ0

(
1 − iτku0 cos θ

)
k −ω + ku0 cos θ − 4iτT k2

][
ρ

v

]
= 0

Thus, there exists a non trivial solution if and only if the determinant of the above system is
equal to zero. This gives∣∣∣∣∣

−ω + ku0cosθ ρ0k
T
ρ0

(
1 − iτku0cosθ

)
k −ω + ku0cosθ − 4iτT k2

∣∣∣∣∣ = 0.

Letting X = −ω + ku0 cos θ , the previous equation leads to the following characteristic
equation

X2 − 4iτT k2X − T k2(1 − iτku0 cos θ) = 0. (3.6)

Let us consider the set of solutions of (3.6). We want to guarantee that the imaginary part of
ω remains non-positive such that the linear stability holds true. To analyse (3.6), we refer to
the Routh-Hurwitz criterion [18]. This criterion is summarized as follows: let a polynomial
equation be of the form

(a0 + ib0)μ
n + (a1 + ib1)μ

n−1 + · · · + (an + ibn) = 0. (3.7)

Then, all solutions of the above equation satisfy Re(iμ) < 0 if and only if

(−1)�2 = −
∣∣∣∣ a0 a1
b0 b1

∣∣∣∣ > 0,
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(−1)2�4 =

∣∣∣∣∣∣∣∣

a0 a1 a2 a3
b0 b1 b2 b3
0 a0 a1 a2
0 b0 b1 b2

∣∣∣∣∣∣∣∣
> 0,

...

(−1)n�2n = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 · · · an−1 an 0 · · · · · · 0
b0 b1 · · · bn−1 bn 0 · · · · · · 0
0 a0 · · · an−2 an−1 an 0 · · · 0
0 b0 · · · bn−2 bn−1 bn 0 · · · 0
...

...
. . .

...
...

...
...

. . .
...

0 0 · · · a0 a1 a2 a3 · · · an
0 0 · · · b0 b1 b2 b2 · · · bn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0.

Now, observing that Re(i X) = Im(ω), the stability conditions follow immediately. We then
apply the Routh-Hurwitz criterion directly to (3.6). To this aim, we compare the coefficients
of (3.6) with those of (3.7). This gives

a0 = 1, b0 = 0
a1 = 0, b1 = −4τT k2

a2 = −T k2, b2 = τT k3u0 cos θ.

(3.8)

Using the above quantities in the Routh-Hurwitz criterion we get

−�2 = 4τT k2 > 0

and

�4 = τ 2T 2k6(16T − u20 cos
2 θ).

Thus, we can conclude that if u20 ≥ 16T , then, �4 ≥ 0, i.e. the model is stable for all values
of θ . On the other hand, if u20 > 16T , then, there is a threshold cos θc defined by

cos2 θc = 16T

u20
,

such that the model is stable if | cos θ | ≤ cos θc and unstable if | cos θ | > cos θc. In this
case, the model is unstable for waves propagating in directions close to the direction of the
unperturbed velocity.

To summarize the above stability analysis we have showed that when the flow is subsonic
the system is certainly linearly stable.Moreover, even for supersonic flows the system remains
stable, in fact for the model considered the sound speed corresponds to c = T . Only for
hypersonic flows (Mach number M > 4) we have the appearance of linearly unstable modes.
However, for the applications we have in mind, we always consider regimes where the fluid
velocity is small compared with the thermal velocity, and so, the stability criterion is always
verified.

4 Numerical methods and experiments

In this section, we study the behavior of the hybrid continuum-kinetic model (2.20) derived
in Sect. 2 by comparing it with the isentropic Euler equations, the isentropic Navier-Stokes
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equations, and the BGK model. In what follows, we shall refer to our hybrid continuum-
kinetic model (2.20) as HCKM.We expect the HCKM to improve the results of the standard
macroscopic model and to approach the behavior of the BGK equation, at least in specific
regimes that have been used in its derivation.

In the rest of this sectionwefirst describe the numericalmethods used for computations and
then illustrate the performance of the derived hybrid continuum-kinetic model in a number
of experiments that clearly illustrate that the HCKM is capable to better describe the physics
of complex fluids in several regimes.

4.1 The BGKmodel and its numerical discretization

The HCKM has been derived using the Chapmann-Enskog expansion starting from a steady
state BGK model, cf. Sect. 2.2. It is therefore natural to expect the HCKM to be close to the
underlying kinetic equation in several regimes of the relaxation parameter τ . Consequently,
we consider the following time dependent BGK equation

∂t f + v · ∇x f = 1

τ
(M(ρ,u) − f ), (4.1)

where as assumed in the derivation of the HCKM, the Maxwellian distribution (2.4) has
constant temperature. In particular, we consider T = 1 and also fix the gas constant R = 1.
The shape of this equilibrium distribution is given in equation (2.4). Now, themean velocity u
and the density ρ are those obtained from integration of the distribution f in velocity space:

ρ =
∫
Rd

f dv, u =
∫
Rd

v f dv.

For the sake of comparison with the other macroscopic models, we choose and fix the dimen-
sion of the velocity space as d = 2 both for the BGK as well as for the HCKM. Then, in
order to numerically approximate (4.1) (see [13] for details), we first replace the unbounded
velocity space with a suitable sufficiently large bounded set. This implies the truncation of
the tails of the distribution function, which normally lives in a non-compactly supported
set. Successively, we replace our continuous model by a so-called Discrete Velocity Model
(DVM) by discretizing this new bounded space bymeans of a finite number of discrete points
representing the discrete velocities that the particles can assume. The result of this proce-
dure is that the continuous BGK model is replaced by N linear transport equations coupled
through a suitable discretization of the relaxation operator (M(ρ,u) − f ). We now introduce
the method and the notations, taking inspiration from [24]. We work on a Cartesian grid V
with

V =
{
vk = k�v + a, k = (k(1), k(2)), a = (a1, a2)

}
,

where a is an arbitrary vector,�v is a constantmesh size in velocity andwhere the components
of the index k have some given bounds K (1), K (2). In this setting, the continuous distribution
function f is replaced by the vector fK(x, t) of size N , where N is chosen as a compromise
between accuracy and computational cost. Each component of this vector is assumed to be
an approximation of the distribution function f at location vk:

fK(x, t) = ( fk(x, t))x, fk(x, t) ≈ f (x, vk, t).
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Thus, the discrete ordinate kinetic model consists of the following system of ODEs to be
solved

∂t fk + vk · ∇x fk = 1

τ
(Mk − fk), (4.2)

with Mk ≈ M(x, vk, t) being a suitable approximation of Mρ,u(x, vk, t).
The system (4.2) is discretized in space using standard WENO approaches of order three

and we do not detail them here. With respect to the time discretization, it should be observed,
that the Maxwellian distribution in (4.2) depends on the distribution function f through its
moments, cf. (2.4), and hence the time integration of this ODE system is implemented using
an implicit-explicit (IMEX) Runge-Kutta method; see, e.g., [12] and references therein. A
general formulation of the IMEX Runge–Kutta method for (4.2) can be written as

F (i)
k = f nk − �t

i−1∑
j=1

ãi jvk · ∇xF
( j)
k + �t

ν∑
j=1

ai j
1

τ

(
M ( j)

k − F ( j)
k

)
,

f n+1
k = f nk − �t

ν∑
i=1

w̃ivk · ∇xF
(i)
k + �t

ν∑
i=1

wi
1

τ

(
M (i)

k − F (i)
k

)
,

(4.3)

where the matrices Ã = (ãi j ), ãi j = 0 for j ≥ i and A = (ai j ) are ν × ν matrices such
that the resulting scheme is explicit in vk · ∇x f , and implicit in (Mρ,u − f ). Here, we use
the so-called second order in time ARS(2,2,2) scheme [1], for which the coefficient vectors
w̃ = (w̃1, .., w̃ν)

T , w = (w1, .., wν)
T are determined by the following double Butcher

tableau:

0 0 0 0
γ1 γ1 0 0
1 γ2 1 − γ2 0

γ2 1 − γ2 0

0 0 0 0
γ1 0 γ1 0
1 0 1 − γ1 γ1

0 1 − γ1 γ1

with γ1 = 1−1/
√
2 and γ2 = 1−1/(2γ1). The above scheme belongs to a particular class of

IMEXmethods for which the implicit tableau is simply diagonally implicit, i.e. it is such that
ai j = 0 if j > i . This permits a direct evaluation of the implicit terms without resorting to
the inversion of non linear systems despite the nonlinearity of the function which defines the
equilibrium state Mρ,u. Indeed, let us remark that the stage evaluation (4.3) can be rewritten
as

F (i)
k = f nk − �t

i−1∑
j=1

ãi jvk · ∇xF
( j)
k + �t

i−1∑
j=1

ai j
1

τ

(
M ( j)

k − F ( j)
k

)

+�t
aii
τ

(
M (i)

k − F (i)
k

)
, (4.4)

where the only implicit term is the diagonal factor aii
τ

(
M (i)

k − F (i)
k

)
, in which M (i)

k depends

on the density and momentum of the distribution function (ρ, u). These macroscopic quan-
tities can be obtained from equation (4.4) by discrete integration in velocity space against
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φk = (1, vk):

(ρ(i)(x), u(i)(x)) =
∑
k

(1, vk)F
(i)
k (x)�v := 〈φkF

(i)
k 〉K

= 〈φk f
n
k 〉K − �t

i−1∑
j=1

ãi j 〈φkvk · ∇x (F
( j)
k )〉K.

(4.5)

As a consequence from the calculation performed in (4.5), (ρ(i)(x), u(i)(x)), and thus M (i)
k ,

can be explicitly evaluated and then the scheme (4.3)-(4.4) is, in fact, explicitly solvable.
The choice of this specific IMEX Runge-Kutta ODE solver reflects the facts that we

need to compare different model acting at different scales and the scheme should allow to
handle consistently the passage from the kinetic to the fluid equations. In particular, when
the scaling parameter τ → 0, the scheme is formally equivalent to a discretization of the
inviscid equation (2.1). For small but non zero values of τ , one can also expect the scheme
to be close to the new HCKM. An analysis of the above scheme can be performed showing
that indeed it possesses the property of being consistent with the limit macroscopic inviscid
model (2.1) when τ → 0; see, e.g., [12].

4.2 A numerical method for the hybrid continuum-kinetic model ( HCKM)

We continue by introducing the numerical method for the HCKM.We give the details of the
two-dimensional discretization since the following numerical experiments will be restricted
to two space dimensions. Let us fix, as for the BGK case, the gas constant R = 1 as well as
the temperature T = 1, set also α3/2τ̂ ≡ τHCKM. HCKM equations (2.20) rewritten in the
vector form read

Qt + Fx + Gy = S, (4.6)

where the vectors of conservative variablesQ, the fluxes (F(Q), G(Q) and the source terms
S(Q) are

Q =
⎡
⎣ ρ

ρux
ρuy

⎤
⎦ , F(Q) =

⎡
⎣ ρux

ρu2x + p
ρuxuy

⎤
⎦ , G(Q) =

⎡
⎣ ρuy

ρuyux
ρu2y + p

⎤
⎦ ,

S(Q) = τHCKM

⎡
⎣ 0

(ξxx )x + (ξyx )y
(ξxy)x + (ξyy)y

⎤
⎦ .

(4.7)

Here, u = (ux , uy) is the macroscopic velocity and

ξxx = 4ρ
∂ux
∂x

+ ∂(ρux )

∂x
+ ∂(ρuy)

∂ y
, ξyy = 4ρ

∂uy

∂ y
+ ∂(ρuy)

∂ y
+ ∂(ρux )

∂x
,

ξxy = ξyx = 2ρ

(
∂ux
∂ y

+ ∂uy

∂x

)
,

(4.8)

We also use the notation x = (x, y) ∈ �, where � is the computational domain. We assume
that � = [xmin, xmax] × [ymin, ymax] is paved with Nx × Ny uniform cells of size �x × �y.
A cell is labelled by two indices i, j , one for each direction, while when referring to an
interface between the cells we use respectively (i + 1

2 , j) or (i, j + 1
2 ). Using this notation,

the cell center is located at point xi, j = (xi , y j ) while a face center lies at point
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xi+ 1
2 , j =

(
1

2
(xi + xi+1), y j

)
, xi, j+ 1

2
=
(
xi ,

1

2
(y j + y j+1)

)
.

We denote any generic cell-centered quantity mi, j , i.e. in the following density, momentum,
pressure and mean velocity. A conservative finite volume scheme is adopted along with
the first order explicit Euler scheme for time integration, and we define the generic explicit
operator F[mn

i, j ] applied to mn
i, j as

F[mn
i, j ] = mn

i, j − �t

�x

(
f m
i+ 1

2 , j
− f m

i− 1
2 , j

)
− �t

�y

(
gm
i, j+ 1

2
− gm

i, j− 1
2

)
,

where the numerical fluxes f m
i+ 1

2 , j
and gm

i, j+ 1
2
are of Rusanov type:

f m
i+ 1

2 , j
= 1

2

(
f (mn

i+1, j ) + f (mn
i, j )
)

− 1

2
|λx,max

i+1/2, j |
(
mn

i+1, j − mn
i, j

)
, (4.9)

gm
i, j+ 1

2
= 1

2

(
g(mn

i, j+1) + g(mn
i, j )
)

− 1

2
|λy,max

i, j+1/2|
(
mn

i, j+1 − mn
i, j

)
(4.10)

with the eigenvalues at the interfaces given by

|λx,max
i+ 1

2 , j
| = max

(
|λx,n

i+1, j |, |λx,n
i, j |
)

, |λy,max
i, j+ 1

2
| = max

(
|λy,n

i, j+1|, |λy,n
i, j |
)

.

In this setting, the density ρn
i, j can be directly computed as

ρn+1
i, j = F[ρn

i, j ],
and the components of the momentum equations satisfy

(ρu)n+1
i, j = F[(ρu)ni, j ] + �t

�x

(
(ξxx )

n
i+ 1

2 , j
− (ξxx )

n
i− 1

2 , j

)
+ �t

�y

(
(ξyx )

n
i, j+ 1

2
− (ξyx )

n
i, j− 1

2

)
,

(ρv)n+1
i, j = F[(ρv)ni, j ] + �t

�x

(
(ξxy)

n
i+ 1

2 , j
− (ξxy)

n
i− 1

2 , j

)
+ �t

�y

(
(ξyy)

n
i, j+ 1

2
− (ξyy)

n
i, j− 1

2

)
.

According to the definitions (4.8) the computation of the stress components (ξxx , ξxy ,
ξyx , ξyy) requires the knowledge of the discrete velocity gradients. Here, they are computed
on each boundary face of the control volume using a trapezoidal quadrature rule, that is,

∇xui+ 1
2 , j = 1

4

(
∇xui+ 1

2 , j− 1
2

+ ∇xui+ 1
2 , j+ 1

2
+ ∇xui+ 1

2 , j− 1
2

+ ∇xui+ 1
2 , j+ 1

2

)
, (4.11)

where the two-dimensional gradient of the velocity field u(t, x) is obtained at each corner
defined by subscript index (i + 1

2 , j + 1
2 ) as follows:

∇xui+ 1
2 , j+ 1

2
= 1

2

⎡
⎣

ui+1, j−ui, j
�x + ui+1, j+1−ui, j+1

�x

ui, j+1−ui, j
�y + ui+1, j+1−ui+1, j

�y

⎤
⎦ .

Finally, to increase the accuracy in space, the cell-centred quantitiesmi, j used in the definition
of the numerical fluxes (4.9)-(4.10) are replaced by a high order polynomial interpolation
through the so-called WENO reconstruction of order three.

123



Partial Differential Equations and Applications             (2022) 3:63 Page 19 of 28    63 

4.2.1 A numerical method for the Navier-Stokes model

We briefly recall here the Navier-Stokes (NS) model which can obtained from the standard
Chapmann-Enskog expansion [6] in the case of isentropic flows and is used for comparison
purposes in the rest of the section. The NS model reads

∂tρ + ∇x · (ρu) = 0,

∂t (ρu) + ∇x · (ρu ⊗ u) + ∇x p = εRT ∇x ·
(
ρ
(
∇xu + (∇xu)T

))
.

(4.12)

The numerical method follows the path of the discretization of the HCKM. Thus, rewriting
the system (4.12) as (4.6), where Q, F, G have the same meaning of (4.7) while the source
term becomes

S(Q) = εRT

⎡
⎣ 0

(ξ NS
xx )x + (ξ NS

yx )y

(ξ NS
xy )x + (ξ NS

yy )y

⎤
⎦ .

with

ξ NS
xx = 2ρ

∂ux
∂x

, ξ NS
yy = 2ρ

∂uy

∂ y
, ξ NS

xy = ξ NS
yx = ρ

(
∂ux
∂ y

+ ∂uy

∂x

)
.

We then proceed, as done previously, using a first order explicit Euler scheme in time and
the same Rusanov flux with WENO reconstruction for the hyperbolic fluxes and the same
second order discrete velocity gradients (4.11) are used for the viscous terms. This ends the
description of the model and of the numerical scheme.

4.3 Highly oscillating fluid

We start by considering a highly oscillating initial condition for a flow in the computational
domain � = [0, 1] × [0, 2] and assume the periodic boundary conditions to be imposed in
both directions. The temperature T as well as the constant R are set to one. The domain is
paved with Nx × Ny = 64 × 128 cells in the physical space while for what concerns the
BGK model we discretize the velocity space with 20 × 20 cells with vx,max = vy,max = 5
and vx,min = vy,min = −5, where v = (vx , vy). The initial distribution function is assumed
to be at local equilibrium, i.e. f (x, v, 0) = Mρ,u(x, v, 0). The initial density and velocities
are

ρ(x, y, 0) = 1 + 0.2 cos(10πx) sin(12π y), u(x, y, 0) = (ux , uy) = (1, 0).

In Fig. 2, we plot the highly oscillating density and the velocity profiles after 100 time
iterations when the isentropic Euler model is used. In Fig. 3, we present the same result at
a fixed value of x = 0.5. In particular, we compare the results obtained for the isentropic
Euler, the BGK and the HCK models using different values of the scaling parameter τ . In
the BGK model we choose τ = 0.001, τ = 0.005 and τ = 0.01, while in the HCKM we
set τHCKM = τ/3. In Fig. 3 we can clearly see that oscillations are damped as fast as the
scaling parameter becomes larger. In these three tested situations, the HCKM seems to be
able to describe a kinetic regime both for the case of the density as well as for the case of the
mean velocity ux (x, y, t). For sake of comparison, in Fig. 4, we plot the same density and
velocity profiles at fixed x = 0.5 where we added the results of the Navier-Stokes model for
ε = τ . As one can see, for small values of the damping parameters both NS and HCKM
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Fig. 2 Highly oscillating fluid. Profiles of density (left) and first component of the velocity ux (x, y, t) (right)
at final time for the isentropic Euler equations

give results very close to those of the BGKmodel, while for τ = 0.01 the NS model tends to
overestimate the damping for the density and fails in describing the velocity profile. Instead,
the HCKM model provides a very good description of the density and while overdamping
the velocity still is able to follow the behavior of the BGK model.

4.4 Perturbed Couette flow

In this section, we consider a two-dimensional Couette-type flow in the domain� = [0, 1]×
[0, 2]perturbed byhigh frequencywaves. The setup is the following. The boundary conditions
in the x-direction are periodic while in the y-direction we impose the so-called no-slip
boundary conditions for which the normal to the walls velocity is fixed to zero while the
tangential velocity is set equal to the velocity of the walls. The spatial domain is discretized
as before with Nx × Ny = 64 × 128 cells, while the velocity space is approximated by
using 20 × 20 cells in the domain [−5, 5]2. Local equilibrium for the distribution function
is supposed at time t = 0. The initial density and velocities are

ρ(x, y, 0) = 1 + 0.2 cos(10πx) sin(12π y),

u(x, y, 0) = (ux , uy) = (y(1 + 0.125 sin(8πx)), 0).

In other words, we simulate a steady state Couette flow with an added high frequency pertur-
bations both in the density and the velocity. In particular, to the top wall and in the y-direction
it is imposed an oscillatory velocity in the x-direction which reads

uy(x, 2, t) = 1 + 0.25 sin(8πx).

The temperature and the universal gas constant are set T = 1 and R = 1 as before. In Fig.
5, we show the density and the velocities profiles after 100 time iteration with a time step
of �t = 6.25 10−4. At this time, the perturbed waves have not been completely damped
out: it is still possible to observe how the oscillations in velocity and density modify the
solution as the intensity of the relaxation parameter grows. In particular, Fig. 5 shows the
solutions obtained with τ = 0, τ = 0.005 and τ = 0.01 for the BGK model, while for the
HCKM we take τHCKM = τ/3 as for the first test. In Fig. 6, we present the same results at
x = 0.5 comparing the isentropic Euler, the BGK and the HCKM solutions. In this picture,
we can clearly see that oscillations are damped when moving far from the regime of validity
of the isentropic Euler equations and that the HCKM captures the BGK solution very well
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Fig. 3 Highly oscillating fluid. Comparison of the density (left) and velocity ux (x, y, t) (right) profiles for
x = 0.5. The results for the Euler, the BGK and the HCKM equations with respectively τ = 0.001, τ = 0.005
and τ = 0.01 are shown

for all regimes, considered at least for the density and the first component of the velocity
field. Finally, in Fig. 7, we show a comparison between the HCKM and the NS model using
again the BGK model as reference, all presented at x = 0.5. For the specific case of the NS
model, we take ε = τ while all the others numerical parameters are equal to the ones of
the HCKM model. From this figure we see that for small values of τ both models capture
very well the reference solution given by the BGK equation, while for larger τ , NS tends to
overestimate the damping for what concerns the density profile. Both models is capable of
capturing the first component of the velocity field ux , while both fail in the description of
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Fig. 4 Highly oscillating fluid. Comparison of the density (left) and velocity ux (x, y, t) (right) profiles
for x = 0.5. The results for the the BGK, the Navier-Stokes and the HCKM equations with respectively
τ = 0.001, τ = 0.005 and τ = 0.01 are shown

the second component uy when τ = 0.01. Let observe anyway that uy is affected by waves,
which are at least one order of magnitude smaller than the perturbation waves acting on the
other macroscopic quantities and thus the error introduced in the solution remains very small.
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Fig. 5 Perturbed Couette flow. Profiles of density and velocity for the Euler and the BGK equations. From
top to bottom: Density, x-velocity and y-velocity profiles. Left τ = 0, middle τ = 0.005, right τ = 0.01

Fig. 6 Perturbed Couette flow. Comparison of the density (left), x-velocity (middle) and y-velocity (right)
profiles for x = 0.5. The results for the Euler, the BGK and the HCKMequations with respectively τ = 0.001,
τ = 0.005 and τ = 0.01 are shown
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Fig. 7 Perturbed Couette flow. Comparison of the density (left), x-velocity (middle) and y-velocity (right)
profiles for x = 0.5. The results for the theBGK, theNavier-Stokes and the HCKMequationswith respectively
τ = 0.001, τ = 0.005 and τ = 0.01 are shown

4.5 A vortex test problem

In this last section, we consider a Taylor-Green-type problem. The initial data are given by

ρ(x, y, 0) = 1 + 0.1 cos(8πx) sin(8π y),

u(x, y, 0) = (ux , uy) = (cos(x) sin(y),− cos(y) sin(x)).

The temperature is T = 1, the universal gas constant R = 1, and the computational domain
is � = [0, 2π]2 discretized with Nx = Ny = 128 points in each direction. The velocity
space is discretized using the same parameters as in the previous tests. We take a time step
�t = 2 10−4 and set a final time of T f = 0.6. The initial data are represented in Fig. 8 on
the top left, while the final solution for the isentropic Euler is reported in the same figure
on the top right and illustrates the vortices formation. The bottom image reports a three-
dimensional view of the same solution for the density. In Fig. 9, we present comparisons
between the isentropic Euler, the BGK and our HCKM at the final time for the density and
the velocities and for three different values of the relaxation parameter τ = 0.005, τ = 0.01
and τ = 0.025 with τHCKM = τ/3. Once again, the obtained results indicate that the HCKM
is able to capture microscopic structures with a sufficiently high accuracy for the regimes
under considaration.
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Fig. 8 Vortex flow. Profiles of density and velocity for the Euler and the BGK equations. From top to bottom:
Density initial data, density Euler solution, density Euler solution three dimensional view and density BGK
solution with τ = 0.01. Red arrows represent the velocity vector field

5 Conclusions

In this work, we have introduced a new hybrid multiscale model coupling the continuum and
kinetic descriptions. We have applied the Chapman-Enskog expansion on a suitably scaled
stationary BGK equation and then upscaled the kinetic contribution over a microscopic box.
These microscopic regions are located at each points where the fluid equation are solved.
The probability density function used to study the kinetic evolution is related to the unknown
density and velocity of the system through truncated Taylor expansions. Based on a scaling
assumption, related to the problem under consideration, a new multiscale continuum-kinetic
model has been derived. A linear stability analysis shows that new hybrid multiscale model
is conditionally linearly stable in the strongly supersonic regime and unconditionally stable
in the subsonic and mildly supersonic one. Several numerical examples demonstrate that the
hybrid multiscale model is more accurate than standard fluid models and represents complex
flows at different regimes more precisely.
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Fig. 9 Vortex flow. Comparison of the density (left), x-velocity (middle) and y-velocity (right) profiles for
x = 0.5. The results for the Euler, the BGK and the HCKM equations with respectively τ = 0.005, τ = 0.01
and τ = 0.025 are shown

In future work we would like to derive different hybrid multiscale models following the
same general strategy outlined in this work: couple a microscopic description with a macro-
scopic one through an upscaling of the microscopic information obtained by homogenization
of the micro quantities over micro sized boxes.
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grateful to the Gutenberg Research College and Mainz Institute of Multiscale Modelling for supporting her
research.

Funding Open Access funding enabled and organized by Projekt DEAL.

Data availability statement Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study. The computer code used to generate the images of the article is available
upon request by writing to giacomo.dimarco@unife.it.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

123



Partial Differential Equations and Applications             (2022) 3:63 Page 27 of 28    63 

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge-Kutta methods for time-dependent partial
differential equations, Appl. Numer. Math., 25 (1997), pp. 151–167. Special issue on time integration
(Amsterdam, 1996)

2. Bardos, C., Golse, F., Levermore, C.D.: Fluid dynamic limits of kinetic equations. II. Convergence proofs
for the Boltzmann equation. Comm. Pure Appl. Math. 46, 667–753 (1993)

3. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude
processes in charged and neutral one-component systems. Phys. Rev. 94, 511–525 (1954)

4. Borg, M.K., Lockerby, D.A., Reese, J.M.: Fluid simulations with atomistic resolution: a hybrid multiscale
method with field-wise coupling. J. Comput. Phys. 255, 149–165 (2013)

5. Borg, M.K., Lockerby, D.A., Reese, J.M.: A hybrid molecular-continuummethod for unsteady compress-
ible multiscale flows. J. Fluid Mech. 768, 388–414 (2015)

6. Cercignani, C.: Mathematical methods in kinetic theory, 2nd edn. Plenum Press, New York (1990)
7. Crestetto, A., Crouseilles, N., Dimarco, G., Lemou, M.: Asymptotically complexity diminishing schemes

(ACDS) for kinetic equations in the diffusive scaling. J. Comput. Phys. 394, 243–262 (2019)
8. Datta, R., Yelash, L., Schmid, F., Kummer, F., Oberlack, M., Lukáčová-Medvid’ová, M., Virnau, P.:
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