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ACCURATE DETERMINISTIC PROJECTION METHODS FOR
STIFF DETONATION WAVES∗

ALINA CHERTOCK† , SHAOSHUAI CHU‡ , AND ALEXANDER KURGANOV§

Abstract. We study numerical approximations of the reactive Euler equations of gas dynamics. In
addition to shock, contact and rarefaction waves, these equations admit detonation waves appearing at
the interface between different fractions of the reacting species. It is well-known that in order to resolve
the reaction zone numerically, one has to take both space and time stepsizes to be proportional to the
reaction time, which may cause the numerical method to become very computationally expensive or
even impractical when the reaction is fast. Therefore, it is necessary to develop underresolved numerical
methods, which are capable of accurately predicting locations of the detonation waves without resolving
their detailed structure. One can distinguish between two different degrees of stiffness. In the stiff case,
the reaction time is very small, while in the extremely stiff case, the reaction is assumed to occur
instantaneously.

In [A. Kurganov, in Hyperbolic problems: theory, numerics, applications, Springer, Berlin, 2003],
we proposed a simple underresolved method—an accurate deterministic projection (ADP) method—for
one-dimensional hyperbolic systems with stiff source terms including the reactive Euler equations in
the extremely stiff regime. In this paper, we extend the ADP method to the (non-extremely) stiff
case, multispecies detonation models, and the two-dimensional reactive Euler equations in all of the
aforementioned regimes. We also investigate ways to distinguish between different regimes in practice
as well as study the limitations of the proposed ADP methods with respect to the ignition temperature.
We demonstrate the accuracy and robustness of the ADP methods in a number of numerical experiments
with both relatively low and large ignition temperature, and illustrate the difficulties one may face when
the ignition temperature is low.

Keywords. Stiff detonation waves; reactive Euler equations; splitting method; deterministic
projection method; central-upwind scheme; multispecies detonation.
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1. Introduction

We study numerical methods for hyperbolic systems of balance laws with very stiff
source terms. In the two-dimensional (2-D) case, such systems read as

Ut+F (U)x+G(U)y =S(U ,ε), (1.1)

where, U is an unknown function of space variables x and y and a time variable t, F
and G are given flux functions and S is a source term, which depends on the stiffness
parameter 0<ε≪1. In particular, we consider an inviscid, compressible, reacting flow,
governed by the reactive Euler equations, which, in the single reaction case, have the
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following form:
ρ
ρu
ρv
E
ρz


t

+


ρu

ρu2+p
ρuv

u(E+p)
ρuz


x

+


ρv
ρuv

ρv2+p
v(E+p)

ρvz


y

=


0
0
0
0

−ρzK(τ ;ε,τc)

. (1.2)

Here, the dependent variables ρ, u, v, E and z are the density, x- and y-velocities, total
energy and the fraction of unburnt gas, respectively. The system is completed through
the following equation of state (EOS):

p=(γ−1)
[
E− ρ

2
(u2+v2)−q0ρz

]
, (1.3)

where the parameters γ and q0 represent the specific heat ratio and chemical heat release,
respectively. On the right-hand side (RHS) of (1.2), τ :=p/ρ is the temperature. Finally,
the reaction can be modeled by either the Arrhenius kinetic term,

K(τ ;ε,τc)=
1

ε
e−τc/τ , (1.4)

where τc is the ignition temperature and ε is the reaction time, or even stiffer Heaviside
kinetic term [34]:

K(τ ;ε,τc)=
1

ε
H(τ−τc)=


1

ε
, if τ ≥ τc,

0, otherwise.
(1.5)

The system (1.2)–(1.3) with the kinetic term K(τ ;ε,τc) given by either (1.4) or
(1.5) is a hyperbolic system of balance laws whose solutions contain shock, contact and
rarefaction waves. In addition, in the studied stiff regimes, it also admits detonation
waves appearing at the interface between the burnt and unburnt fractions of the gas. It
is well-known that in order to resolve the reaction zone numerically, one has to take both
spatial (∆x,∆y) and temporal (∆t) stepsizes to be proportional to the reaction time
ε, which may cause the numerical method to become very computationally expensive
or even impractical when the reaction is fast, that is, when ∆x/ε≫1, ∆y/ε≫1 and
∆t/ε≫1. Therefore, it is necessary to develop underresolved numerical methods, which
are capable of accurately predicting locations of the detonation waves without resolving
their detailed structure. One can distinguish between two different degrees of stiffness.
In the stiff case (ε≪0), the reaction time is very small, while in the extremely stiff
regime (ε→0), the reaction is assumed to occur instantaneously. In the latter case, the
reaction can only be modeled by the stiffer Heaviside kinetic term (1.5).

Designing an accurate underresolved numerical method for the general system (1.1)
with a very small ε (or, in particular, for the reactive Euler system in either stiff or
extremely stiff regime) is a rather challenging task. Since the system is stiff, it is
natural that one may wish to use an operator splitting (fractional step) method; see, e.g.,
[23,26,29]. The latter can be implemented by considering the following two subsystems:

Ut+F (U)x+G(U)y =0 (1.6)

and

Ut=S(U ,ε). (1.7)
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Then, assuming that U(x,t) is available at time t, an approximate solution at the next
time level t+∆t is given by

U(x,y,t+∆t)=SP(∆t)SH(∆t)U(x,y,t),

where SH and SP denote the solution operators for the subsystems (1.6) and (1.7),
respectively.

The hyperbolic system of conservation laws (1.6) can be solved by any (stable
and sufficiently accurate) shock-capturing method. In this paper, we use the second-
order central-upwind scheme briefly described in the Appendix. Central-upwind schemes
are Riemann-problem-solver-free Godunov-type schemes for general multidimensional
hyperbolic systems of conservation laws. These schemes were first proposed in [20] and
then further developed in [17–19,21].

The step of solving the ODE (1.7) requires a special attention. In the extremely
stiff case, the solution operator SP reduces to the projection of the computed solution
onto an equilibrium state:

U 7→PU , (1.8)

where S(PU ,ε)≡0. In a less stiff case, one has to solve the ODE (1.7) with a very
small, yet finite ε. Though this solution may be very close to the projected one given by
(1.8), the difference between the stiff and extremely stiff cases is sometimes significant,
especially in the multispecies case considered in Section 4.

Even though the operator splitting method is very simple, it has a major drawback:
If the deterministic projection operator described in Section 2.1 is used in (1.8), this
approach may lead to a spurious weak detonation wave that travels with a nonphysical
propagation speed (the same phenomena will be observed if the ODE (1.7) is solved
in the case of a very small ε). This occurs since shock-capturing methods smear dis-
continuities, and as soon as the nonphysical value of the temperature in this numerical
layer is above the ignition temperature, a certain part of the gas may get numerically
burnt prematurely. This peculiar numerical phenomenon was first observed in [8, 9],
and since then it has attracted lots of attention. It was found in [22] that the propaga-
tion error is mainly due to numerical dissipation, and in order to tackle this numerical
problem, it was reduced in, e.g., [38]. In [6, 7, 25, 35], front-tracking approaches were
used to obtain the correct propagation of the reactive front. Since numerical dissi-
pation cannot be generally avoided, alternative approaches that focus on establishing
accurate temperatures from the artificially diffused solutions have been proposed: the
ignition temperature was artificially increased in [5], corrected [12,28], or replaced using
random projection methods [2, 3, 31]. Numerical methods using overlapping grids and
block-structured adaptive mesh refinement for high-speed reactive flow in complex ge-
ometries were proposed in [13,14]. In [32,33,36], the ENO subcell approach was utilized
to design high-order finite-difference methods. In [37], the threshold values method,
which is based on the physically motivated detonation wave velocities correction, was
proposed. We refer the reader to [4, 31, 32, 36–38] for the extensions of some of the
aforementioned numerical methods to the case of multispecies detonation.

A simple and robust alternative to the aforementioned approaches was proposed
in [16], where an accurate deterministic projection (ADP) method for one-dimensional
(1-D) hyperbolic systems with extremely stiff source terms was introduced. The key
idea of the ADP method for the reactive Euler equations can be described as follows.
In order to avoid numerical smearing of the profile of z, we only solve the equations for
the density, momentum and energy at the hydrodynamics substep SH. The values of z
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are then evolved in time only during the projection substep SP , at which the pressure
(and hence the temperature) is computed using the EOS, at which the values of z from
the previous time level are used; see the details presented in the 2-D case in Section 2.2.

In this paper, we generalize the ADP method developed in [16] for the 1-D ex-
tremely stiff reactive Euler equations to the 2-D case and to the following settings.
First, in Section 3, we consider the single reaction case in the non-extremely stiff regime
with either Arrhenius (1.4) or Heaviside (1.5) kinetic terms and replace the projection
operator (1.8) with a trapezoidal-like ODE solver. We then consider in Section 4 the
multispecies detonation, for which we either directly extend the ADP solution operator
(in the extremely stiff regime; Section 4.1) or develop a special ADP-based ODE solver
(in the non-extremely stiff regime; Section 4.2). These extensions are carried out in both
the 1-D and 2-D cases. The developed ADP methods are tested on a number of numer-
ical examples, presented in Section 2.3, Section 3.1 and Section 4.3 at the end of each
section after the corresponding version of the ADP method is presented. In the con-
ducted numerical experiments, we compare the obtained numerical solutions with the
corresponding reference solutions computed by a fully resolved central-upwind scheme,
and outline ways to distinguish between different regimes in practice. In addition, we
study the limitations of the ADP methods with respect to the ignition temperature τc
and demonstrate the accuracy and robustness of the proposed ADP method in a number
of numerical experiments with relatively large τc. We also illustrate the difficulties one
may face when τc is low.

2. Deterministic projection method: extremely stiff case
In this section, we describe two deterministic projection approaches for solving the

reactive Euler Equations (1.2)–(1.3), (1.5) in an extremely stiff regime.

2.1. “Standard” deterministic projection (SDP) method. We begin with
a “standard” deterministic projection (SDP) approach. For simplicity, we consider a
rectangular computational domain covered by a uniform spatial mesh consisting of the
cells Cj,k centered at (xj ,yk) :=(j∆x,k∆y) and assume that the computed solution is

realized in terms of its cell averages, U
n

j,k=
1

∆x∆y

∫
Cj,k

U(x,y,tn)dydx, and available

at time level t= tn. In order to evolve the solution to the next time level according
to the aforementioned operator splitting approach, we first use a (stable and accurate)
shock-capturing method to numerically solve the homogeneous system arising at the
hydrodynamics substep (1.6):

ρ
ρu
ρv
E
ρz


t

+


ρu

ρu2+p
ρuv

u(E+p)
ρuz


x

+


ρv
ρuv

ρv2+p
v(E+p)

ρvz


y

=


0
0
0
0
0

, (2.1)

completed through the EOS (1.3). Here, we prefer to work with finite-volume methods
(in particular, with the central-upwind scheme described in the Appendix), but would
like to stress that the considered computational framework is general and may be used
in conjunction with one’s favorite shock-capturing method. The cell averages ρn+1

j,k ,

(ρu)n+1
j,k , (ρv)n+1

j,k , E
n+1

j,k and (ρz)∗j,k at the new time level tn+1 := tn+∆t are then used

to obtain un+1
j,k =(ρu)n+1

j,k /ρn+1
j,k , vn+1

j,k =(ρv)n+1
j,k /ρn+1

j,k , z∗j,k := (ρz)∗j,k/ρ
n+1
j,k and to define

pn+1
j,k (z)=(γ−1)

[
E

n+1

j,k −
ρn+1
j,k

2

(
(un+1

j,k )2+(vn+1
j,k )2

)
−q0ρ

n+1
j,k z

]
(2.2)
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and

τn+1
j,k (z)=

pn+1
j,k (z)

ρn+1
j,k

. (2.3)

Notice that for the (ρz)∗j,k and z∗j,k the upper index is not n+1 yet as they are going to
be changed after the projection step (1.8), at which we obtain the values of z and ρz at
time level t= tn+1:

zn+1
j,k =

{
0, if τn+1

j,k (z∗j,k)≥ τc,

1, if τn+1
j,k (z∗j,k)<τc,

(ρz)n+1
j,k = ρn+1

j,k zn+1
j,k ,

and then calculate pn+1
j,k (zn+1

j,k ) using (2.2) with z=zn+1
j,k .

This “standard” deterministic projection method is very simple, but as mentioned
in Section 1 it may lead to spurious, nonphysical detonation waves traveling with arti-
ficial speeds, which makes the “standard” deterministic projection method impractical.
Utilizing the ADP method presented in the next section allows one to avoid such an
undesirable situation.

2.2. Accurate deterministic projection (ADP) method. The main reason
of the failure of the SDP method is that it uses nonphysical, artificial values of (ρz)∗j,k
obtained after the fluid dynamics substep SH of the operator splitting method. The
simplest way to prevent this undesirable situation is not to solve the (ρz)-equation at
the fluid dynamics step at all. We thus modify the deterministic projection method as
follows.

Once again, we assume that cell averages of the solution at time level t= tn (in-
cluding the values of the fraction of unburnt gas znj,k=(ρz)nj,k/ρ

n
j,k) have been already

computed. We first evolve them in time by applying a (stable and accurate) shock-
capturing finite-volume method to the homogeneous system that contains only the first
four equations of the system (2.1):

ρ
ρu
ρv
E


t

+


ρu

ρu2+p
ρuv

u(E+p)


x

+


ρv
ρuv

ρv2+p
v(E+p)


y

=


0
0
0
0

, (2.4)

completed through the EOS (1.3). As before, the evolved cell averages ρn+1
j,k , (ρu)n+1

j,k ,

(ρv)n+1
j,k andE

n+1

j,k (but not (ρz)∗j,k, which is not computed now at all) are used to obtain

un+1
j,k , vn+1

j,k and pn+1
j,k (znj,k) using (2.2) with z=znj,k. Notice that compared with the SDP

method, the pressure pn+1
j,k is now computed using the value of z from the previous time

level, which is one of the crucial points in the ADP method.
The projection step is then performed as in the case of the SDP method, but with

τn+1
j,k (z∗j,k) replaced with τn+1

j,k (znj,k), namely, we set

zn+1
j,k =

{
0, if τn+1

j,k (znj,k)≥ τc,

1, if τn+1
j,k (znj,k)<τc,

(2.5)

where τn+1
j,k (znj,k) is computed using (2.2), (2.3) with z=znj,k.

Upon the completion of the projection step (2.5), we calculate pn+1
j,k (zn+1

j,k ) using

(2.2) with z=zn+1
j,k .
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2.3. Numerical examples. In this section, we demonstrate the performance of
the proposed ADP method and compare it with the SDP method on four 2-D numerical
examples. For the 1-D numerical examples, we refer the reader to [16].

In the first three examples, we take the CFL number 0.5 (the time step ∆t is
determined adaptively by using the CFL condition for the homogeneous systems (2.4)
and (2.1) for the ADP and SDP methods, respectively), while in the fourth example we
use a smaller CFL number 0.25 to avoid small oscillations appearing when a larger time
step is used.

In all of the examples considered in this section, the reaction is assumed to occur
instantaneously, that is, ε≈0, and thus the value of ε does not need to be specified
as it is not used in the direct projection (2.5). It should be observed that one can,
in principle, set a very small value of ε and replace the direct projection (2.5) with
solving the corresponding ODE (1.7). This, however, leads to almost identical results
and therefore in the extremely stiff case we always use a simpler approach based on the
direct projection. In Section 4.3, we will also demonstrate that the stiff case reduces to
the extremely stiff case when ε→0.

Fig. 2.1. Example 1: Density ρ computed by the ADP (top row) and SDP (bottom row) methods.

Example 1–detonation wave in a channel. We consider the initial-boundary
value problem taken from [2]. The initial data,

(ρ(x,y,0),u(x,y,0),v(x,y,0),p(x,y,0),z(x,y,0))=

{
(ρl,ul,0,p1,0), if x≤ ξ(y),
(ρr,ur,0,pr,1), if x>ξ(y),
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Fig. 2.2. Example 1: Time evolution of the fraction of unburnt gas z computed by the ADP (top
row) and SDP (bottom row) methods. In both figures, the detonation wave propagates from left to right
and the interface between the burnt and unburnt fractions of the gas is shown at times t=0, 10−8,
5 ·10−8, 9 ·10−8 and 1.7 ·10−7.

Fig. 2.3. Example 2: Temperature τ computed by the ADP (left column) and SDP (right column)
methods.

where

ξ(y)=

{
0.004, if |y−0.0025|≥0.001,
0.005−|y−0.0025|, if |y−0.0025|<0.001,

are given in a 2-D channel [0,0.025]× [0,0.005] with the solid wall boundary conditions
at the upper and lower boundaries and free boundary conditions on the left and on
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Fig. 2.4. Example 2: Fraction of unburnt gas z (shaded in red) computed by the ADP (left
column) and SDP (right column) methods.

the right. We take the following parameter values: γ=1.4, q0=5.196×109 and τc=
1.155×109, and the initial values: ρl=1.945×10−3, pl=6.27×106, ul=8.162×104,
ρr=1.201×10−3, pr=8.321×105 and ur=0, which are the same as in [2].

One important feature of this solution is that the triple points travel in the trans-
verse direction and bounce back and forth against the upper and lower walls, forming
a cellular pattern.

We compute the solutions by using both the ADP and SDP methods on a uniform
spatial mesh with ∆x=∆y=5×10−5. In Figure 2.1, we show the density computed
at four different times using the ADP (top row) and SDP (bottom row) methods. The
ADP results are in good agreement with the results reported in [2], while the SDP
solution develops a wave traveling with a nonphysical speed. This can also be clearly
seen in Figure 2.2, where we show the propagation of the interface between the burnt
and unburnt fractions of the gas, computed by the two studied methods.

Example 2–radial detonation wave. In the second example taken from [3], we
consider the initial setting, which corresponds to a circular detonation front and consists
of totally burnt gas inside a semi-circle with radius 10 and totally unburnt gas outside
the semi-circle and the radially symmetric initial velocities. The radially symmetric
initial data are

(ρ,u,v,p,z)(x,y,0)=

{
(ρin,uin(x,y),vin(x,y),pin,0), if r≤10,
(1,0,0,1,1), if r>10,

r=
√
x2+y2,
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Fig. 2.5. Example 3: Temperature τ computed by the ADP (left column) and SDP (right column)
methods.

where pin=21.53134, ρin=1.79463, uin(x,y)=10x/r, and vin(x,y)=10y/r. The param-
eters are chosen as γ=1.2, q0=50 and τc=2.

We take the computational domain [−50,50]× [0,50] and use a uniform spatial mesh
with ∆x=∆y=1. The solid wall boundary conditions are used along the bottom part
of the domain, while the free boundary conditions are implemented at the other parts
of the boundary. We have solved the problem numerically by both the ADP and SDP
methods and the obtained results are reported in Figures 2.3 and 2.4.
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Fig. 2.6. Example 3: Fraction of unburnt gas z (shaded in red) computed by the ADP (left
column) and SDP (right column) methods.

In Figure 2.3, we plot the temperature component of the computed solution at
times t=0.25, 1 and 3. As one can see, the ADP and SDP temperatures are totally
different even at a smaller time t=0.25. The source of this difference can be understood
by looking at the propagation of the interface between the burnt and unburnt fractions
of the gas shown in Figure 2.4. As the ADP solution is in a good agreement with the
solution reported in [3], we conclude that the fast wave developed by the SDP solution
is a numerical artifact that can be prevented by using the proposed ADP.

Example 3–interaction of gas dynamics and detonation waves. In the third
example, we study the collision of a radially symmetric stiff detonation wave with a
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Fig. 2.7. Example 4: Domain and the initial wave location.

shock, contact discontinuity and rarefaction wave. This problem is an extension of the
1-D experiment conducted in [3, 15,16]. We consider the following initial data:

(ρ,u,v,p,z)(x,y,0)=


(4,0,0,10,0), if x>40,

(3.64282,10cosθ,10sinθ,54.8244,0), if
√

x2+y2<10,

(1,0,0,1,1), otherwise,

where tanθ=y/x and use the following parameters: γ=1.2, q0=50 and τc=3. We take
the computational domain [−30,100]× [−30,30], on which we implement free boundary
conditions, and use a uniform spatial mesh with ∆x=∆y=1/2.

The results (temperature and fraction of unburnt gas) obtained by the ADP and
SDP methods at times t=0.25, 1, 3, 4 and 5 are reported in Figures 2.5 and 2.6. As
one can observe, both methods provide similar approximations at small times t=0.25
and 1 (before the collision). At a later time t=3 (after the collision with the shock, but
before the collision with the rarefaction wave), the solutions start exhibiting a different
behavior due to the fact that the detonation wave produced by the SDP method starts
moving with a nonphysical speed; this is similar to the 1-D case studied in [16]. Finally,
at times t=4 and 5 (after all the collisions), the detonation wave front computed by
the SDP method keeps moving to the right with the increasing nonphysical speed. At
the same time, the ADP method seems to produce accurate results.

Example 4–diffraction of a detonation wave. In the last example of this sec-
tion, we consider a detonation wave in the domain [−1,0]× [0,1]∪ [0,3]× [−1,1] with the
solid walls along the top part of the boundary and along the following line segments:
{−1≤x≤0, y=0}, {x=0,−1≤y≤0} and {0≤x≤3, y=−1}, and the open boundaries
on the left and on the right. The initial data are

(ρ,u,v,p,z)(x,y,0)=

{
(3.64282, 6.2489, 0, 54.8244, 0), if x≤−0.5,
(1,0,0,1,1), if x>−0.5,

and the parameters are the same as in Example 2: γ=1.2, q0=50 and τc=2. The
initial setting is outlined in Figure 2.7.

In this example, the detonation wave initially positioned vertically at x=−0.5,
first propagates to the right and then diffracts around a solid corner. We compute the
solution at times t=0.2 and 0.4 on a uniform spatial grid with ∆x=∆y=1/100 using
both the ADP and SDP methods. The results are shown in Figures 2.8 and 2.9, where
we plot the temperature and the fraction of unburnt gas fields. As one can clearly see,
an artificially fast wave generated by the SDP method after the diffraction, is prevented
by the use of the proposed ADP procedure.



882 ACCURATE DETERMINISTIC PROJECTION METHODS

Fig. 2.8. Example 4: Temperature τ (top row) and fraction of unburnt gas z (bottom row) at
time t=0.2 computed by the ADP (left column) and SDP (right column) methods.

Fig. 2.9. Example 4: Same as in Figure 2.8, but at time t=0.4.

3. Accurate deterministic projection method: stiff case

We now consider a stiff, but not extremely stiff regime. In this case, instead of
performing a direct projection (1.8) one has to numerically solve the stiff ODE (1.7) at
the projection substep SP .

To do so, we first note that the last equation of the system (1.2) can be combined
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with the density equation and then recast in the nonconservative form as

zt+uzx+vzy =−zK(τ ;ε,τc),

where K(τ ;ε,τc) is given by either (1.4) or (1.5). Therefore, at the projection substep
SP , we will have to solve the following stiff ODEs at every cell center (xj ,yk):

d

dt
zj,k=−zj,kK

(
τn+1
j,k (z);ε,τc

)
, t∈ [tn,tn+1). (3.1)

We note that the RHS of (3.1) is prescribed upon the completion of the hydrodynamic
substep SH and thus it depends on τn+1

j,k (z), which is defined in (2.2), (2.3) and according

to the ADP approach, remains constant on the time interval [tn,tn+1) as we do not
update z until the projection substep SP is completed. Therefore, K

(
τn+1
j,k (z);ε,τc

)
also remains constant, that is, K

(
τn+1
j,k (z);ε,τc

)
≡K

(
τn+1
j,k (znj,k

)
;ε,τc) for t∈ [tn,tn+1),

and we can solve the ODE (3.1) exactly to obtain

zn+1
j,k =znj,k exp

{
−∆tK

(
τn+1
j,k (znj,k);ε,τc

)}
,

where τn+1
j,k (znj,k) is calculated using (2.2), (2.3) with z=znj,k.

Remark 3.1. We note that in the SDP method, K
(
τn+1
j,k (z);ε,τc

)
is not constant for

t∈ [tn,tn+1) as we update z during the hydrodynamics substep SH. Therefore, in order
to design the SDP method, we develop a proper ODE solver for (3.1). To this end, we
first rewrite it in terms of an auxiliary variable w := lnz,

wt=−K
(
τn+1
j,k (z);ε,τc

)
, (3.2)

and then apply the trapezoidal method to equation (3.2) and implement it in an explicit
form using the predictor-corrector approach. This results in

wn+1
j,k =w∗

j,k−
∆t

2

[
K
(
τn+1
j,k (z∗j,k);ε,τc

)
+K

(
τn+1
j,k (z̃n+1

j,k );ε,τc
)]
,

where w̃n+1
j,k =ln(z̃n+1

j,k ) is the value predicted by the forward Euler method, namely,

w̃n+1
j,k =w∗

j,k−∆tK
(
τn+1
j,k (z∗j,k);ε,τc

)
.

After the backward substitution z=ew, we obtain the following trapezoidal-like ODE
method to compute zn+1

j,k :

zn+1
j,k =z∗j,k exp

{
−∆t

2

[
K
(
τn+1
j,k (z∗j,k);ε,τc

)
+K

(
τn+1
j,k (z̃n+1

j,k );ε,τc
)]}

with

z̃n+1
j,k =z∗j,k exp

{
−∆tK

(
τn+1
j,k (z∗j,k);ε,τc

)}
,

where τn+1
j,k (z∗j,k) and τn+1

j,k (z̃n+1
j,k ) are calculated using (2.2) and (2.3) with z=z∗j,k and

z= z̃n+1
j,k , respectively.
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3.1. Numerical examples. In this section, we present three numerical experi-
ments, in which we consider stiff, but not extremely stiff, 1-D and 2-D problems with
the Arrhenius kinetic term (1.4). Notice that the 2-D ADP method proposed in Section
3 can be reduced to the 1-D case in a straightforward way. In all of the examples, the
CFL number is set to 0.3.

Example 5—1-D detonation waves. We first consider the 1-D example taken
from [28,33,38]. The initial conditions, which correspond to a burnt gas on the left and
unburnt gas on the right, are given by

(ρ,u,p,z)(x,0)=

{
(1.6812, 2.8867, 21.5672, 0), if x≤10,
(1,0,1,1), if x>10,

and the parameters are chosen as γ=1.4, q0=25, 1/ε=16418 and τc=15. We take
the computational domain [0,30] and use a uniform spatial mesh with ∆x=1/10. The
density, pressure, temperature and fraction of unburnt gas, computed by both the ADP
and SDP methods at t=1.5, are presented in Figure 3.1 together with the reference
solution obtained on a uniform spatial mesh with ∆x=3/4000. It is important to point
out that the reference solution cannot be computed with ∆x≳1/200 as the unsplit
central-upwind scheme must be fully resolved (otherwise, it will suffer from the same
drawback as the SDP method, that is, the computed detonation wave speed will become
nonphysical). As one can see, the proposed ADP method captures the detonation wave
propagating with the correct speed, while the detonation wave computed by the SDP
method moves faster. Also note that our results are in good agreement with those
reported in [38, Example 4.1].

Fig. 3.1. Example 5: Density (ρ), pressure (p), temperature (τ) and mass fraction (z) computed
by the ADP and SDP methods.
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Example 6—2-D Detonation Waves. We now consider the 2-D example taken
from [38], and take the initial conditions similar to those in Example 2, but put into
the radially symmetric setting:

(ρ,u,v,p,z)(x,y,0)=

{
(ρin,uin(x,y),vin(x,y),pin,0), if r≤2,
(1,0,0,1,1), if r>2,

where r=
√

x2+y2, pin=21.53134, ρin=1.79463, uin(x,y)=10x/r and vin(x,y)=
10y/r. The parameters are γ=1.4, q0=30, 1/ε=20000 and τc=15. The computa-
tional domain is [−10,10]× [0,10] and we use a uniform mesh with ∆x=∆y=1/10. We
compute the solution using both the ADP and SDP methods until the final time t=1
and present the obtained density, pressure, temperature and fraction of unburnt gas
along the y=x 1-D cross-section in Figure 3.2. Unfortunately, no reference solution
can be computed in the 2-D case as a fully resolved unsplit central-upwind scheme is
computationally unaffordable. In order to verify that the ADP solution converges to
the physically relevant one, we also plot the ADP and SDP solutions computed using a
finer mesh with ∆x=∆y=1/40. As one can see, the position of the detonation wave in
the obtained ADP solutions is about the same, which suggests that the ADP method
captures the detonation wave propagating with the correct speed. We would also like
to point out that our results are similar to those reported in [38, Example 4.4].

Fig. 3.2. Example 6: 1-D cross-sections along the y=x of the density (ρ), pressure (p), temper-
ature (τ) and mass fraction (z) computed by the ADP and SDP methods using the coarse mesh with
∆x=∆y=1/10 and a finer mesh with ∆x=∆y=1/40.

Example 7–diffraction of detonation waves. In this example designed in the
spirit of the numerical experiments conducted in [1], we consider several stiff detonation
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Fig. 3.3. Example 7: Domain and the initial wave location.

Fig. 3.4. Example 7: Schlieren images of the magnitude of the density gradient field |∇ρ|
computed by the ADP method for different values of ε and τc.
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waves satisfying the same following initial data:

(ρ,u,v,p)(x,y,0)=

{
(3.64282, 6.2489, 0, 54.8244,), if x≤−0.5,
(1,0,0,1), if x>−0.5.

The parameters γ=1.2 and q0=50 are fixed, but the values of ε and τc are varied to
model different regimes.

The initial setting is similar to the one used in Example 4 and it is outlined in
Figure 3.3. The computational domain is [−1,0]× [0,2]∪ [0,3]× [−2,2] and the solid
walls boundary conditions are imposed along the top part of the boundary and along
the following three line segments: {−1≤x≤0, y=0}, {x=0,−2≤y≤0}, and {0≤x≤
3, y=−2}, while the left and right boundaries are open.

We compute the solutions for six different combinations of parameters ε and τc on
a uniform spatial grid with ∆x=∆y=1/100. As in Example 4, the detonation waves
initially situated vertically at x=−0.5, first travel to the right, and then diffract around
a solid corner. The solutions obtained using the proposed ADP method at the final time
t=0.4 are presented in Figure 3.4. As in [1], we plot Schlieren images of the magnitude
of the density gradient field |∇ρ|. To this end, we have used the following shading
function:

0.8exp

(
− 30|∇ρ|

max(|∇ρ|)

)
,

where the numerical density derivatives are computed using standard central differenc-
ing. As one can see from this figure, the solution structure dramatically changes when
the reaction time is reduced and the ignition temperature increases. It is clear that
small solution structures studied in [1] cannot be fully reproduced in underresolved
simulations, but the main solution features can be captured by the ADP method.

4. ADP methods for multispecies detonation
In this section, we extend the ADP methods described in Section 2.2 and Section 3

to the multispecies detonation; see, e.g., [4, 31,32,36–38].
The governing equations now read as (1.1) with

U =



ρ
ρu
ρv
E
ρz1
...

ρzN−1


, F (U)=



ρu
ρu2+p
ρuv

u(E+p)
ρuz1
...

ρuzN−1


, G(U)=



ρv
ρuv

ρv2+p
v(E+p)
ρvz1
...

ρvzN−1


, S(U ,ε)=



0
0
0
0

S1(U ,ε)
...

SN−1(U ,ε)


,

(4.1)
and they are completed with the following EOS:

p=(γ−1)
[
E− ρ

2
(u2+v2)−

N∑
i=1

qiρzi

]
, (4.2)

and the algebraic relation

N∑
i=1

zi=1−zcat. (4.3)
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In (4.1)–(4.3), z := (z1,. ..,zN )⊤ and q := (q1,. ..,qN )⊤ are the mass fractions and heat
releases of the N chemical species, respectively, zcat is the total mass fraction of the
catalysts, ε := (ε1,. ..,εM )⊤ are the parameters representing the reaction times of M
reactions, and

Si(U ,ε)=Wi

M∑
ℓ=1

(v′′iℓ−v′iℓ)K(τ ;εℓ,τℓ)
N∏
j=1

(ρzj
Wj

)v′
jℓ

, i=1,. ..,N−1. (4.4)

Here, Wi is the molecular weight of the i-th chemical species, v′′iℓ and v′iℓ are the sto-
ichiometric coefficients for the i-th species appearing as a product and a reactant in
the ℓ-th reaction, τℓ is the parameter representing the ignition temperature for the ℓ-th
reaction, and K(τ ;εℓ,τℓ) is either the Arrhenius,

K(τ ;εℓ,τℓ)=
1

εℓ
e−τℓ/τ ,

or Heaviside,

K(τ ;εℓ,τℓ)=
1

εℓ
H(τ−τℓ)=


1

εℓ
, if τ ≥ τℓ,

0, otherwise,

(4.5)

kinetic term.

Example. To cite an example, we consider a reacting model consisting of N =4
species and M =2 reactions. Prototype reactions for such model are

H2+O2→2OH, 2OH+H2→2H2O, (4.6)

with τ1≤ τ2 and N2 being a catalyst. In this case, v′1,1=v′2,1=1, v′3,1=v′4,1, v
′
1,2=1,

v′3,2=2, v′2,2=v′4,2=0, v′′3,1=2, v′′1,1=v′′2,1=v′′4,1=0, v′′4,2=2, v′′1,2=v′′2,2=v′′3,2=0, and
thus formula (4.4) reads as

S1=W1

[
−K(τ ;ε1,τ1)

(ρz1
W1

)(ρz2
W2

)
−K(τ ;ε2,τ2)

(ρz1
W1

)(ρz3
W3

)2]
,

S2=W2

[
−K(τ ;ε1,τ1)

(ρz1
W1

)(ρz2
W2

)]
,

S3=W3

[
2K(τ ;ε1,τ1)

(ρz1
W1

)(ρz2
W2

)
−2K(τ ;ε2,τ2)

(ρz1
W1

)(ρz3
W3

)2]
,

(4.7)

where z1, z2, and z3 are the mass fractions of hydrogen (H2), oxygen (O2), and hydroxide
(OH), respectively, and the corresponding molecular weights are W1=2, W2=32, and
W3=17.

Finally, zcat is the constant mass fraction of nitrogen (N2), which is the catalyst,
and the mass fraction of water (H2O) is obtained directly from (4.3):

z4=1−z1−z2−z3−zcat. (4.8)

For the simplicity of presentation, in the remaining part of Section 4, we restrict
our consideration to the reactions presented in the above example.
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4.1. Extremely stiff case. We begin with the extremely stiff case, in which the
multispecies extension of the ADP method is quite straightforward. As before, the time
evolution of the computed solution from time t= tn to t= tn+1 consists of two splitting
substeps. We first solve the system (2.4) to obtain the cell averages ρn+1

j,k , (ρu)n+1
j,k ,

(ρv)n+1
j,k and E

n+1

j,k and use them and the EOS (4.2) to obtain un+1
j,k , vn+1

j,k , pn+1
j,k (zn

j,k)

and τn+1
j,k (zn

j,k), where

pn+1
j,k (z)=(γ−1)

[
E

n+1

j,k −
ρn+1
j,k

2

(
(un+1

j,k )2+(vn+1
j,k )2

)
−

5∑
i=1

qiρ
n+1
j,k zi

]
(4.9)

and

τn+1
j,k (z)=

pn+1
j,k (z)

ρn+1
j,k

. (4.10)

We then generalize the ADP operator (2.5) to the multispecies case as follows:

(zi)
n+1
j,k =


zHT
i , if τn+1

j,k (zn
j,k)≥ τ2,

zITi , if τ2>τn+1
j,k (zn

j,k)≥ τ1,

zLT
i , if τn+1

j,k (zn
j,k)<τ1,

i=1,2,3. (4.11)

Here, zLT
i , zITi and zHT

i are the mass fractions of the i-th chemical species in the
low, intermediate and high temperature regimes, respectively. We note that when the
temperature is lower than τ1, no reactions occur, while when the temperature is higher
than τ2, then both reactions have been completed. The value of zITi depends on the
quantities of the reactants in the mixture. For the sake of brevity, we will only consider
the case in which there is more hydrogen than oxygen, that is, zLT

1 ≥ W1

W2
zLT
2 . The

values of the mass fractions zITi are then given by

zIT1 =zLT
1 −W1

W2
zLT
2 , zIT2 =0, zIT3 =

2W3

W2
zLT
2 .

Finally, we note that (z5)
n+1
j,k =(z5)

0
j,k as the mass fraction of a catalyst remains con-

stant during the entire reaction process, and (z4)
n+1
j,k =1−(z1)

n+1
j,k −(z2)

n+1
j,k −(z3)

n+1
j,k −

(z5)
n+1
j,k from (4.3).

4.2. Stiff case. In order to complete the derivation of the ADP method in the
stiff case, we need to develop an ODE solver for the system of ODEs

(zi)t=
1

ρ
Si, i=1,. ..,N−1, (4.12)

with Si given by (4.7) (or (4.4) in the general case). This system is supposed to be
solved upon the completion of the hydrodynamic substep SH.

Equations (4.12) can be simplified as follows. First, it can be easily verified that(
z3+

2W3

W1
z1−

4W3

W2
z2

)
t
=0,

which implies that the quantity

c :=z3+
2W3

W1
z1−

4W3

W2
z2 (4.13)
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is independent of time. Therefore, z3 can be obtained from (4.13) and substituted
into (4.12) so that at the projection step SP we will only need to solve a 2×2 system
of ODEs consisting of the first two equations of (4.12) prescribed at every cell center
(xj ,yk). We then divide the first two equations of (4.12) by z1 and z2, respectively,
introduce w1 := lnz1 and w2 := lnz2, and obtain the system

d

dt
(w1)j,k=R1(zj,k),

d

dt
(w2)j,k=R2(zj,k), t∈ [tn,tn+1), (4.14)

with

R1(zj,k)=−
[
K1

ρn+1
j,k (z2)j,k

W2
+K2

(
ρn+1
j,k (z3)j,k

W3

)2]
, R2(zj,k)=−K1

ρn+1
j,k (z1)j,k

W1
,

(4.15)

(z3)j,k= c− 2W3

W1
(z1)j,k+

4W3

W2
(z2)j,k, (4.16)

where K1 :=K
(
τn+1
j,k (zn

j,k);ε1,τ1
)
and K2 :=K

(
τn+1
j,k (zn

j,k);ε2,τ2
)
are constants for t∈

[tn+1,tn) since in the ADP approach we compute the temperature based on the values
of z from the time level t= tn, and τn+1

j,k (zn
j,k) is calculated using (4.9), (4.10) with

z=zn
j,k.

We solve the ODE system (4.14)–(4.16) in a predictor-corrector manner. First, we
predict the solution at time t= tn+1 using the forward Euler method, which in terms of
z1=ew1 and z2=ew2 reads as

(z̃1)
n+1
j,k =(z1)

n
j,k exp

{
∆tR1(z

n
j,k)
}
, (z̃2)

n+1
j,k =(z2)

n
j,k exp

{
∆tR2(z

n
j,k)
}
. (4.17)

The values of z3 are then updated using (4.13):

(z̃3)
n+1
j,k = cj,k−

2W3

W1
(z̃1)

n+1
j,k +

4W3

W2
(z̃2)

n+1
j,k ,

where the time-independent quantities cj,k are given by

cj,k=(z3)
0
j,k+

2W3

W1
(z1)

0
j,k−

4W3

W2
(z2)

0
j,k, (4.18)

the values of z4 are obtained from (4.8):

(z̃4)
n+1
j,k =1−(z̃1)

n+1
j,k −(z̃2)

n+1
j,k −(z̃3)

n+1
j,k −(z̃5)

n+1
j,k ,

and the values of z5 remain unchanged, namely, (z̃5)
n+1
j,k =(z5)

0
j,k.

The computed values (z̃1)
n+1
j,k and (z̃2)

n+1
j,k are then updated with the help of a

trapezoidal corrector, once again applied to the ODEs (4.14)–(4.16) and then written
in terms of z1=ew1 and z2=ew2 as

(z1)
n+1
j,k =(z1)

n
j,k exp

{
∆t

2

[
R1(z

n
j,k)+R1(z̃

n+1
j,k )

]}
,

(z2)
n+1
j,k =(z2)

n
j,k exp

{
∆t

2

[
R2(z

n
j,k)+R2(z̃

n+1
j,k )

]}
.

(4.19)

Finally, the new values of z3 are obtained using (4.13):

(z3)
n+1
j,k = cj,k−

2W3

W1
(z1)

n+1
j,k +

4W3

W2
(z2)

n+1
j,k ,
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where cj,k are given in (4.18), the new values of z4 are obtained from (4.8):

(z4)
n+1
j,k =1−(z1)

n+1
j,k −(z2)

n+1
j,k −(z3)

n+1
j,k −(z5)

n+1
j,k ,

and the values of z5 remain unchanged, namely, (z5)
n+1
j,k =(z5)

0
j,k.

Remark 4.1. We note that in the SDP method, neither K
(
τn+1
j,k (z);ε1,τ1

)
nor

K
(
τn+1
j,k (z);ε2,τ2

)
is constant for t∈ [tn+1,tn) as we update z during the hydrodynamic

substep SH. Therefore, when the SDP method is implemented, R1 and R2 in (4.15) are
replaced with

R̂1(zj,k)=−
[
K
(
τn+1
j,k (z);ε1,τ1

)ρn+1
j,k (z2)j,k

W2
+K

(
τn+1
j,k (z);ε2,τ2

)(ρn+1
j,k (z3)j,k

W3

)2]
,

R̂2(zj,k)=−K
(
τn+1
j,k (z);ε1,τ1

)ρn+1
j,k (z1)j,k

W1
,

and (4.17) and (4.19) become

(z̃1)
n+1
j,k =(z1)

∗
j,k exp

{
∆tR̂1(z

∗
j,k)
}
, (z̃2)

n+1
j,k =(z2)

∗
j,k exp

{
∆tR̂2(z

∗
j,k)
}
,

and

(z1)
n+1
j,k =(z1)

∗
j,k exp

{
∆t

2

[
R̂1(z

∗
j,k)+R̂1(z̃

n+1
j,k )

]}
,

(z2)
n+1
j,k =(z2)

∗
j,k exp

{
∆t

2

[
R̂2(z

∗
j,k)+R̂2(z̃

n+1
j,k )

]}
,

respectively.

4.3. Numerical examples. In order to illustrate the performance of the ADP
methods for multispecies detonation, we conduct several numerical experiments in both
1-D and 2-D cases. As in Section 3.1, the 2-D ADP methods proposed in Section 4.1
and Section 4.2 can be reduced to their corresponding 1-D versions in a straightforward
manner. In all of the numerical examples below, the Heaviside kinetic term (4.5) is used
and the CFL value is chosen to be 0.3, except for Example 8a, where a smaller CFL
value of 0.1 is used to reduce the numerical oscillations.

Example 8–one reaction. We begin with a multispecies case with one reaction

CH4+2O2→CO2+2H2O,

also studied in [4]. Here, M =1, N =4, W1=16, W2=32, W3=44, W4=18, v′1,1=1,
v′2,1=2, v′3,1=0, v′4,1=0, v′′1,1=0, v′′2,1=0, v′′3,1=1 and v′′4,1=2, and formula (4.4) reads
as

S1=− 1

1024
K(τ ;ε1,τ1)(ρz1)(ρz2)

2, S2=4S1, S3=−11

4
S1, (4.20)

where zi, i=1,2,3,4 are the mass fractions of methane (CH4), oxygen (O2), carbon
dioxide (CO2), and water (H2O), respectively.

Note that it is unnecessary to compute the source term S4, since z4 can be obtained
directly from (4.3) and it is equal to z4=1−z1−z2−z3. We note that in the stiff
case considered in Examples 8b and 8c, one only needs to compute S1 since (4.20)
immediately implies that (z2)t−4(z1)t=0 and (z3)t+

11
4 (z1)t=0. In Examples 8a–8c,

we use the same parameters as in [4]: γ=1.4, q2=0, q3=0, q4=0, τ1=2 and q1=500
(in Examples 8a and 8b) or q1=100 (in Example 8c).
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Example 8a–1-D extremely stiff case. We begin with a 1-D extremely stiff
case. The initial data are given by

(ρ,u,p,z1,z2,z3,z4)(x,0)=

{
(2, 10, 40, 0, 0.2, 0.475, 0.325), if x≤2.5,
(1,0,1,0.1, 0.6, 0.2, 0.1), if x>2.5.

(4.21)

In this example, we use the following ADP operator:

(zi)
n+1
j =

{
zHT
i , if τn+1

j (zn
j )≥ τ1,

zLT
i , if τn+1

j (zn
j )<τ1,

i=1,2,3, (4.22)

with zHT
1 =0, zLT

1 =0.1, zHT
2 =0.2, zLT

2 =0.6, zHT
3 =0.475, zLT

3 =0.2, and (z4)
n+1
j =1−

(z1)
n+1
j −(z2)

n+1
j −(z3)

n+1
j . Here, (·)n+1

j denotes the value of the corresponding variable

in the 1-D cell Cj at time level t= tn+1. We compute the numerical solution using both
the ADP and SDP methods on the domain [0,50] using uniform meshes with ∆x=
1/4 and ∆x=1/16 until the final time t=3. The numerical results (density, pressure,
temperature and mass fractions of CH4) are presented in Figure 4.1. As one can observe,
the solution consists of a detonation wave followed by a contact discontinuity and a
shock, and they all seem to be accurately captured by the ADP method as the ADP
results are in good agreement with those reported in [4, Example 5.3], while the solution
computed by the SDP method is incorrect.

Fig. 4.1. Example 8a: Density (ρ), pressure (p), temperature (τ) and mass fraction of CH4 (z1)
computed by the ADP and SDP methods using the coarse mesh with ∆x=1/4 and a finer mesh with
∆x=1/16.

Example 8b–1-D stiff case. We now turn our attention to the stiff case, in
which we numerically integrate the ODE for z1 (using the ODE solver similar to the
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Fig. 4.2. Example 8b: Density (ρ), pressure (p), temperature (τ) and mass fraction of CH4 (z1)
computed by the ADP and SDP methods for 1/ε1=2×105.

one described in Section 4.2) instead of applying the ADP operator (4.22). We use the
same initial conditions (4.21) as in Example 8a.

We first take the value 1/ε1=2×105 used in [4] and compute the solutions by both
ADP and SDP methods on the domain [0,50] using a uniform mesh with ∆x=1/4 until
the final time t=3. The obtained results (density, pressure, temperature and mass
fraction of CH4) are presented in Figure 4.2 along with the reference solution, which is
computed by the fully resolved unsplit central-upwind scheme using a very fine uniform
mesh with ∆x=1/100. As one can see, both the ADP and SDP results are in good
agreement with the reference solution computed on a mesh, which is sufficient to resolve
the detonation wave structure—not only its accurate location. We also note that the
unsplit central-upwind scheme fails to capture accurate detonation wave dynamics when
∆x≳1/10. However, the unsplit method still can be used in this case without being
extremely inefficient. Therefore, we conclude that the value 1/ε1=2×105 corresponds
to a stiff, but not extremely stiff case.

We then take the 10 times larger value of 1/ε1=2×106, repeat the same compu-
tations, and plot the obtained results in Figure 4.3. This time, the ADP and SDP
solutions have been computed on the same uniform mesh with ∆x=1/4, but the fully
resolved reference solution is obtained on a much finer (compared with the 1/ε1=2×105

case) mesh with ∆x=1/1000. Once again, the ADP is capable of exactly capturing the
propagation of the detonation wave, while the SDP method fails. We also notice that
in this case the unsplit central-upwind scheme fails if ∆x≳1/100, which brings us to
the conclusion that the value 1/ε1=2×106 seems to correspond to the extremely stiff
regime. In order to verify this, we plot, in Figure 4.3, the obtained solutions along
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with the extremely stiff ADP solution computed using the ADP operator (4.22), that
is, the ADP solution obtained in Example 8a. As one can see, the two ADP solutions
are almost the same. This suggests that the extremely stiff case can be accurately
treated using the stiff approach, that is, by using the ODE solver rather than the direct
projection.

Fig. 4.3. Example 8b: Density (ρ), pressure (p), temperature (τ) and mass fraction of CH4 (z1)
computed by the stiff and extremely stiff ADP methods and the stiff SDP method for 1/ε1=2×106.

Example 8c–2-D case. We now consider the 2-D case with the radially symmetric
initial data

(ρ,u,v,p,z1,z2,z3,z4)(x,y,0)=

{
(2,uin(x,y),vin(x,y),40,0,0.2,0.475,0.325), if r≤10,
(1,0,0,1,0.1,0.6,0.2,0.1), if r>10,

where r=
√
x2+y2, uin(x,y)=10x/r and vin(x,y)=10y/r. As in Example 8a, the ADP

operator is given by

(zi)
n+1
j,k =

{
zHT
i , if τn+1

j,k ≥ τ1,

zLT
i , if τn+1

j,k <τ1,
i=1,2,3

with zHT
1 =0, zLT

1 =0.1, zHT
2 =0.2, zLT

2 =0.6, zHT
3 =0.475, zLT

3 =0.2, and (z4)
n+1
j,k =

1−(z1)
n+1
j,k −(z2)

n+1
j,k −(z3)

n+1
j,k . We solve this problem on the domain [0,50]× [0,50]

using a uniform mesh with ∆x=∆y=1/4. Solid wall boundary conditions are imposed
along x=0 and y=0, while the free boundary conditions are used along the other parts
of the boundary.

We consider both the extremely stiff (1/ε1=2×106) and stiff (1/ε1=2×105) cases
and compute the numerical solutions by the extremely stiff and stiff ADP methods,
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respectively. Figure 4.4 shows the pressure, temperature and mass fraction of CH4 (we
plot 100z1 rather then z1 for a better visualization) along the line y=x, x≥0 at times
t=1, 2, 4 and 6. As one can see, the extremely stiff and stiff results are almost the
same and they are in good agreement with those reported in [4, Example 5.5]. We note
that in this example, the SDP method yields quite accurate results (very close to those
shown in Figure 4.4), which are omitted for the sake of brevity.

Fig. 4.4. Example 8c: Pressure (p), temperature (τ) and 100 times of mass fraction of CH4

(100z1) computed by the ADP method at different times.

Example 9–two reactions. In this example taken from [4, 37], we simulate the
two reaction–five species model (4.1)–(4.2) for the reactions (4.6). The details of the
model as well as the corresponding ADP methods are described and studied in Section 4.
In Examples 9a–9d, we use the following parameters: γ=1.4, q1=0, q2=0, q4=−100,
q5=0. Other parameters vary and will be specified in each particular example.

Example 9a–1-D extremely stiff case. We begin with the 1-D extremely stiff
case studied subject to the following Riemann initial data also used in [4, Example 5.4]:

(ρ,u,p,z1,z2,z3,z4,z5)(x,0)=

{
(2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if x≤2.5,
(1,0,1, 0.08, 0.72, 0, 0, 0.2), if x>2.5.

In this example, we set q3=−20 and use the 1-D version of the ADP operator (4.11) with
zHT
1 =0, zIT1 =0.035, zLT

1 =0.08, zHT
2 =0, zIT2 =0, zLT

2 =0.72, zHT
3 =0.17, zIT3 =0.765

and zLT
3 =0. We first compute the numerical solution with τ1=2 and τ2=10 (which

were used in [4, Example 5.4]) by both the ADP and SDP methods in the computational
domain [0,50] using a uniform mesh with ∆x=1/4 until the final time t=3. The
numerical results (density, pressure, temperature and mass fractions of H2) are presented
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in Figure 4.5. As one can observe, the results computed by the ADP and SDP methods
are practically the same and are in good agreement with those reported in [4, Example
5.4], except that the density and temperature fields plotted in [4, Figure 4] are smeared
(this causes the pressure graph to be nonflat in the area x∈ [20,30]) compared with
much sharper jumps in ρ and τ and flat p around x∈ [20,30]; seen in Figure 4.5.

Fig. 4.5. Example 9a: Density (ρ), pressure (p), temperature (τ) and mass fraction of H2 (z1)
computed by the ADP and SDP methods for τ1=2 and τ2=10.

We then consider more challenging, smaller values of the ignition temperature and
take τ1=1.5 and τ2=2. We compute the numerical solutions by both the ADP and
SDP methods and present the numerical results in Figure 4.6. As one can see, the
obtained results are now very different. In order to verify whether the proposed ADP
method captures the detonation wave propagating with the correct speed, we compute
the reference solution computed using the unsplit central-upwind scheme for the fast,
but finite reaction time with 1/ε1=1/ε2=106. The reference solution is computed using
∆x=1/1000, and as it agrees well with the ADP solution, we conclude that the ADP
solution is capable of accurately capturing the correct detonation wave speed, while the
SDP method fails.

Example 9b–1-D stiff case. Next, we study the 1-D stiff case using an example
similar to the one considered in [37]. We take the following Riemann initial data:

(ρ,u,p,z1,z2,z3,z4,z5)(x,0)=

{
(2, 10, 40, 0, 0, 0.17, 0.63, 0.2), if x≤0.5,
(1,0,1, 0.08, 0.72, 0, 0, 0.2), if x>0.5,

and set q3=−100. We first compute the solution with τ1= τ2=1.5 and 1/ε1=1/ε2=105

(which were used in [37]) until the final time t=0.06 by both the ADP and SDP methods
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Fig. 4.6. Example 9a: Same as in Figure 4.5, but for τ1=1.5 and τ2=2.

on the domain [0,2] using a uniform mesh with ∆x=1/150. The obtained results
(pressure, temperature, mass fractions of H2 and OH) are plotted in Figure 4.7 together
with the reference solution computed by the unsplit central-upwind scheme with a much
finer uniform spatial mesh with ∆x=1/5000. It should be observed that the reference
solution can be, in principle, computed on a coarser grid, but the use of any mesh size
∆x≳1/400 will lead to inaccurate solution. This suggests that this case is stiff but
not very stiff. As can be clearly seen, the SDP methods fails to capture the correct
speed of the detonation wave, while the ADP method shows a good agreement with
the reference solution; see also the numerical solution reported in [37, Example 5.3].
At the same time, one can observe that the mass fractions of H2 and OH have small
jumps at x=0.5, which is the breaking point in the initial data, and also their values
are quite inaccurate in the post detonation wave area, which is at x∈ [0.8,1.3]. We
believe that this is attributed to the fact that the ignition temperatures are quite low
in this example. While the above results may be considered satisfactory (recall
that the aim of this paper is to develop an underresolved method capable of exactly
capturing the speed of the detonation wave), the gain in the efficiency is rather small as
this particular set of data corresponds to a not very stiff case. We therefore investigate
the behavior of the ADP method for the same set of the ignition temperatures, that is,
τ1= τ2=1.5, but 10 times larger 1/ε1=1/ε2=106. We then compute the ADP solution
at the same final time t=0.06 using the same coarse grid as before (∆x=1/150) and
plot it in Figure 4.8 along with the reference solution computed with ∆x=1/10000. As
one can see, the ADP method fails. We then refine the mesh to ∆x=1/600 and observe
that in this case, the ADP method produces accurate results, which are close to the
reference solution; see Figure 4.8. However, the unsplit central-upwind scheme, used to
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Fig. 4.7. Example 9b: Pressure (p), temperature (τ), mass fraction of H2 (z1) and mass fraction
of OH (z3) computed by the ADP and SDP methods for τ1= τ2=1.5 and 1/ε1=1/ε2=105. The small
jumps in z1 and z3 occurring at x=0.5 are magnified.

Fig. 4.8. Example 9b: Pressure (p), temperature (τ), mass fraction of H2 (z1) and mass fraction
of OH (z3) computed by the ADP method with ∆x=1/150 and 1/600 for 1/ε1=1/ε2=106.
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Fig. 4.9. Example 9b: Same as in Figure 4.8, but for 1/ε1=1/ε2=107.

Fig. 4.10. Example 9b: Same as in Figure 4.7, but with τ1= τ2=2.
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Fig. 4.11. Example 9b: Same as in Figure 4.10, but with 1/ε1=1/ε2=106.

Fig. 4.12. Example 9b: Pressure (p), temperature (τ), mass fraction of H2 (z1) and mass
fraction of OH (z3) computed by the stiff and extremely stiff ADP methods for 1/ε1=1/ε2=107.
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Fig. 4.13. Example 9c: Contour plots of density (ρ) computed by the ADP (left column) and
SDP (right column) methods at different times.

produce the reference solution, is capable of accurately capturing the detonation wave
speed using a mesh with ∆x≲1/3200, which means that the efficiency gain achieved by
the ADP method is more substantial than in the previously considered less stiff regime.

We then reduce the reaction time even further and take 1/ε1=1/ε2=107. We
compute the ADP and reference solutions until the same final time t=0.06 and plot
the obtained results in Figure 4.9. As one can see, when the ADP method is used on a
coarse mesh with ∆x=1/150, the computed detonation wave propagates with a wrong
speed. In order to achieve the correct speed, one has to take a much finer mesh: after
reducing the reaction times by a factor of 10, we had to take ∆x=1/6000, which is also
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Fig. 4.14. Example 9c: Pressure (p), temperature (τ) and 300 times mass fraction of H2 (300z1)
computed by the ADP (left column) and SDP (right column) methods at different times.

10 times smaller and this is about the borderline. This implies that the mesh size should
be proportional to the reaction time and thus the ADP method cannot be used as an
underresolved method. Nevertheless, it is instructive to compare the ADP solutions
with the reference solution, which is computed with ∆x=1/50000 in Figure 4.9. In



A. CHERTOCK, S. CHU, AND A. KURGANOV 903

Fig. 4.15. Example 9d: Density (ρ), pressure (p), temperature (τ) and mass fraction of H2 (z1)
computed by the ADP (left column) and SDP (right column) methods with ∆x=∆y=1/200.

fact, the unsplit central-upwind scheme can capture the detonation wave propagating
with the accurate speed with a slightly larger ∆x as long as ∆x≲1/32000, which means
that the ADP method is still more efficient. However, it clearly becomes impractical in
a very stiff regime with small ignition temperatures.

Based on the above observations, we conjecture that the low efficiency of the ADP
method in the considered numerical example is related to the fact that the ignition tem-
peratures are low. We therefore proceed with the investigation of the solution behavior
when the ignition temperatures are slightly larger. To this end, we take τ1= τ2=2 and
consider several different sets of the reaction times. We begin with 1/ε1=1/ε2=105 and
compute the numerical solutions by both the ADP and SDP methods until the same
final time t=0.06. In Figure 4.10, we present the results obtained with ∆x=1/150
together with the reference solution computed by the unsplit central-upwind scheme
using ∆x=1/5000. As one can see, the ADP solution is reasonably accurate though,
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Fig. 4.16. Example 9d: Same as in Figure 4.15, but for ∆x=∆y=1/400.

as in the case of the lower ignition temperature (see Figure 4.7), it still has a small
jump in the mass fractions at x=0.5 and the computed mass fraction values are quite
inaccurate in the post detonation wave area, which is at x∈ [0.8,1.3]. At the same time,
the SDP method clearly fails. We emphasize that the case of 1/ε1=1/ε2=105 is, as
before, not very stiff since the unsplit central-upwind scheme could have captured the
accurate propagation of the detonation wave as long as ∆x≲1/250.

We then reduce the reaction times and take 1/ε1=1/ε2=106 without changing any
other data. In Figure 4.11, we plot the ADP and SDP solutions computed on a coarse
mesh with ∆x=1/150 along with the reference solution computed with ∆x=1/10000.
As one can see, the SDP solution is wrong, while the ADP solution is quite accurate. We
also note that the efficiency gain is more substantial now as the unsplit central-upwind
scheme can be used with ∆x≲1/2500 only.

We finish this set of experiments by considering even smaller reaction times with
1/ε1=1/ε2=107 and computing the numerical solutions by the ADPmethod on a coarse
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mesh with ∆x=1/150. The obtained results are depicted in Figure 4.12 together with
the reference solution computed using ∆x=1/50000 and the ADP solution computed
in the extremely stiff setting. As one can see, the obtained solutions are in very good
agreement, which confirms that the ADP method is applicable and very efficient in the
case of larger ignition temperatures. We also mention that the efficiency gain is now
even more crucial as the unsplit central-upwind scheme requires the mesh size to be
∆x≲1/30000.

Example 9c–2-D extremely stiff case. We now consider the 2-D extremely stiff
case with the initial data taken from [4, Example 5.6]:

(ρ,u,v,p,z1,z2,z3,z4,z5)(x,y,0)=

{
(2,10,0,40,0,0,0.17,0.63,0.2), if r≤ ξ(y),
(1,0,0,1,0.08,0.72,0,0,0.2), if r>ξ(y),

where r=
√
x2+y2 and

ξ(y)=

{
12.5−|y−12.5|, if |y−12.5|≤7.5,
5, if |y−12.5|>7.5.

In this example, we set q3=−40, τ1=2, τ2=10, and use the ADP operator (4.11) with
the same projection mass fraction values, which were used in Example 9a, namely,
zHT
1 =0, zIT1 =0.035, zLT

1 =0.08, zHT
2 =0, zIT2 =0, zLT

2 =0.72, zHT
3 =0.17, zIT3 =0.765

and zLT
3 =0. The problem is solved in the computational domain [0,150]× [0,25] using

a uniform mesh with ∆x=∆y=1/2. Solid wall boundary conditions are implemented
along the boundaries y=0 and y=25, and free boundary conditions are used at x=0
and x=150. In Figure 4.13, we show contour plots of the density computed by both the
ADP and SDP methods at times t=2, 4, 6 and 8. We also plot, in Figure 4.14, profiles
of pressure, temperature and 300 times mass fraction of H2 (as before, we plot 300z1
rather then z1 for a better visualization) along the line y=12.5 at the same times. As
one can clearly see from these figures, the ADP and SDP solutions are very different in
this example. As the ADP solution agrees well with the one reported in [4, Example
5.6], we conclude that the ADP method captures the detonation wave propagating with
the correct speeds.

Example 9d–2-D stiff case. In the last example, we consider the 2-D case with
the radially symmetric initial data given by

(ρ,u,v,p,z1,z2,z3,z4,z5)(x,y,0)=

{
(2,uin(x,y),vin(x,y),40,0,0,0.17,0.63,0.2), r≤0.5,
(1,0,0,1,0.08,0.72,0,0,0.2), r>0.5,

where r=
√
x2+y2, uin(x,y)=10x/r and vin(x,y)=10y/r. Other parameters are the

same as in Example 9c: q3=−100, τ1= τ2=1.5 and 1/ε1=1/ε2=105. We compute
the solution until the final time t=0.06 by both the ADP and SDP methods in the
computational domain [−2,2]× [0,2] using a uniform mesh with ∆x=∆y=1/200. The
solid wall boundary conditions are used along the bottom part of the domain, while the
free boundary conditions are implemented at the other parts of the boundary. Contour
plots of the density, pressure, temperature and mass fraction of H2 are presented in
Figure 4.15. As one can clearly see, the results obtained by the ADP and SDP methods
are very different. In order to verify that the ADP solution converges to the physically
relevant one, we compute the solutions by both the ADP and SDP methods using a
finer mesh with ∆x=∆y=1/400 and present the results in Figure 4.16. As one can see,
the position of the detonation wave in the obtained ADP solutions is about the same,
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which suggests that the ADP method captures the detonation wave propagating with
the correct speed. On contrary, the SDP solution is clearly mesh dependent and thus
it fails.

5. Comparison with existing methods
It is instructive to compare the proposed ADP method with an existing high-order

method. To this end, we have repeated the same computations as in Example 8b
with 1/ε1=2×105 using the high-order subcell resolution method from [32]. This is
a fractional step method. In the convection step, a fifth-order finite-difference WENO
scheme has been implemented using the local Lax-Friedrichs flux splitting and the local
characteristic decomposition together with the three-stage third-order SSP Runge-Kutta
method from [10,11]. In the reaction step, the same ODE solver has been used but with
certain computed flow variables in the shock region modified by the Harten subcell
resolution idea.

Fig. 5.1. Example 8b (additional comparison): Density (ρ), pressure (p), temperature (τ)
and mass fraction of CH4 (z1) computed by the ADP and high-order subcell resolution methods for
1/ε1=2×105.

In Figure 5.1, the results obtained by the subcell resolution method are compared
with the corresponding ADP solution and the reference solution, which have been pre-
viously shown in Figure 4.2. As one can clearly see, the results obtained by the ADP
and subcell resolution methods are very close, which, once again, suggests that the ADP
method is quite accurate and capable of exactly capturing the propagation of detonation
waves.

It is worth noting that as mentioned in [32], the high-order subcell resolution method
required a relatively small CFL number. In addition, it required the reaction splitting
substep (at which the ODEs for the mass fractions to be numerically integrated) to
consist of many small time steps to obtain a stable solution and the number of these
time steps increases proportionally to the stiffness of the problem at hand, which affects
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Fig. 5.2. Example 8b (additional comparison): Density (ρ), pressure (p), temperature (τ) and
mass fraction of CH4 (z1) computed by the ADP and high-order subcell resolution method with the
CFL number 0.3 and only 1 reaction ODE time step for 1/ε1=2×105.

the efficiency of the subcell resolution method. For instance, in order to obtain the
subcell resolution results shown in Figure 5.1, we have taken the CFL number 0.1 and
100 reaction ODE time steps as in [32, Example 5.2]. However, if a larger CFL number
and a smaller number of reaction time steps are used in the computations, the subcell
resolution method from [32] may produce detonation waves propagating with a wrong
speed. In order to illustrate this, we take the CFL number 0.3 and 1 reaction ODE
time step (as in the ADP method), recompute the results by the high-order subcell
resolution method, and depict them in Figure 5.2. As one can see, the detonation
wave now propagates with a wrong speed, which is not the case when the proposed
second-order ADP method is implemented. In the future work, we plan to extend
the ADP method to the fifth order of accuracy via the alternative weighted essentially
non-oscillatory (A-WENO) framework.

6. Conclusion

In this paper, we have considered inviscid, compressible, reactive flows governed by
the Euler equations coupled with a transport equation for the fraction of unburnt gas.
For small reaction times, the chemical reaction may be considered infinitely fast and thus
the transport equation has a stiff source term, which can be efficiently treated by pro-
jecting the computed solution onto an equilibrium state. A straightforward projection
however has a major drawback: it may lead to a spurious detonation wave that travels
with a nonphysical speed even if the scheme is stable, as we illustrated in our numerical
examples. Here, we have shown how the “standard” deterministic projection approach
can be modified to provide an accurate approximation for the underlying model. As
the result, we have designed a simple, robust and stable underresolved method for
stiff detonation waves using an accurate deterministic projection (ADP) approach and
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demonstrated that the proposed computational technique guarantees that the detona-
tion waves will propagate with a physically relevant speed. For the stiff waves, when
the chemical reaction time scales are not so much faster than the fluid dynamical ones,
the chemical reaction may not be considered infinitely fast. Otherwise, many details in
the reaction will be hidden. For this reason, we extend the proposed ADP method for
solving the stiff cases. We also extend the ADP method to 1-D and 2-D multispecies
waves, including extremely stiff and stiff cases. A number of numerical examples have
been presented to show the good performance of the proposed ADP method.
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Appendix. Semi-discrete central-upwind scheme. In this section, we briefly
describe the semi-discrete central-upwind scheme for the homogeneous 2-D systems
(2.1), (1.3) and (2.4), (1.3). The 2-D semi-discrete central-upwind scheme from [21]
admits the following flux form:

d
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2 ,k
−a−

j+ 1
2 ,k

+
a+
j+ 1

2 ,k
a−
j+ 1

2 ,k

a+
j+ 1

2 ,k
−a−

j+ 1
2 ,k

[
UW

j+1,k−UE
j,k

]
,

Hy

j,k+ 1
2

=
b+
j,k+ 1

2

G(UN
j,k)−b−

j,k+ 1
2

G(US
j,k+1)

b+
j,k+ 1

2

−b−
j,k+ 1

2

+
b+
j,k+ 1

2

b−
j,k+ 1

2

b+
j,k+ 1

2

−b−
j,k+ 1

2

[
UN

j,k+1−US
j,k

]
.

(A.2)

The quantities U j,k, H
x
j,k, H

y
j,k, a

+
j,k, a

−
j,k, U

E
j,k, U

W
j,k, U

N
j,k and US

j,k depend in fact on
t, but we suppress this dependence for the sake of brevity.

In (A.2),

UE
j,k=U j,k+

∆x

2
(Ux)j+ 1

2 ,k
,UW

j,k=U j,k−
∆x

2
(Ux)j+ 1

2 ,k
,

UN
j,k=U j,k+

∆y

2
(Uy)j,k+ 1

2
, US

j,k=U j,k−
∆y

2
(Uy)j,k+ 1

2

are the point values of the piecewise linear reconstruction

Ũ(x,y)=U j,k+(Ux)j,k(x−xj)+(Uy)j,k(y−yk), (x,y)∈
(
xj− 1

2
,xj+ 1

2

)
×
(
yk− 1

2
,yk+ 1

2

)
at the midpoints of the edges of cell (j,k).

The numerical derivatives (Ux)j,k and (Uy)j,k are to be computed using a nonlinear
limiter. We have used a minmod limiter (see, e.g., [24, 27,30]), which gives

(Ux)j,k=minmod

(
U j+1,k−U j,k

∆x
, θ

U j+1,k−U j−1,k

2∆x
,
U j,k−U j−1,k

∆x

)
,



A. CHERTOCK, S. CHU, AND A. KURGANOV 909

(Uy)j,k=minmod

(
U j,k+1−U j,k

∆y
, θ

U j,k+1−U j,k−1

2∆y
,
U j,k−U j,k−1

∆y

)
,

where θ∈ [1,2] can be used to control the amount of numerical dissipation present in
the resulting scheme and larger θ’s correspond to less dissipative but, in general, more
oscillatory reconstructions. The minmod function is defined as

minmod(a,b) :=
sgn(a)+sgn(b)

2
·min(|a|,|b|).

One-sided local propagation speeds in the x- and y-directions a±
j+ 1

2 ,k
and b±

j,k+ 1
2

are

obtained using the largest/smallest eigenvalues of the Jacobian. For the reactive Euler
systems (2.1), (1.3) and (2.4), (1.3), we obtain

a+
j+ 1

2 ,k
=max

(
uE
j,k+

√
γpEj,k
ρEj,k

, uW
j+1,k+

√
γpWj+1,k

ρWj,k
, 0

)
,

a−
j+ 1

2 ,k
=min

(
uE
j,k−

√
γpEj,k
ρEj,k

, uW
j+1,k−

√
γpWj+1,k

ρWj,k
, 0

)
,

b+
j,k+ 1

2

=max

(
uN
j,k+

√
γpNj,k
ρNj,k

, uS
j,k+1+

√
γpSj,k+1

ρSj,k
, 0

)
,

b−
j,k+ 1

2

=min

(
uN
j,k−

√
γpNj,k
ρNj,k

, uS
j,k+1−

√
γpSj,k+1

ρSj,k
, 0

)
.

Finally, the ODE system (A.1) is numerically integrated by the three-stage third-
order strong stability preserving (SSP) Runge-Kutta method; see, [10,11].
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