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Abstract. We develop a new second-order unstaggered semidiscrete path-conservative central-
upwind (PCCU) scheme for ideal and shallow water magnetohydrodynamics (MHD) equations. The
new scheme possesses several important properties: it locally preserves the divergence-free constraint,
it does not rely on any (approximate) Riemann problem solver, and it robustly produces high-
resolution and nonoscillatory results. The derivation of the scheme is based on the Godunov--Powell
nonconservative modifications of the studied MHD systems. The local divergence-free property is
enforced by augmenting the modified systems with the evolution equations for the corresponding
derivatives of the magnetic field components. These derivatives are then used to design a special
piecewise linear reconstruction of the magnetic field, which guarantees a nonoscillatory nature of
the resulting scheme. In addition, the proposed PCCU discretization accounts for the jump of the
nonconservative product terms across cell interfaces, thereby ensuring stability. We test the proposed
PCCU scheme on several benchmarks for both ideal and shallow water MHD systems. The obtained
numerical results illustrate the performance of the new scheme, its robustness, and its ability not
only to achieve high resolution, but also to preserve the positivity of computed quantities such as
density, pressure, and water depth.
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1. Introduction. This paper focuses on developing a novel numerical method
for magnetohydrodynamic (MHD) systems, widely used in many applications, such
as astrophysics, plasma physics, space physics, and engineering. In these models,
fluid dynamics equations are coupled with the equations for the magnetic field, which
satisfies the divergence-free condition---a physically exact constraint, that is, if ini-
tially, the divergence of the magnetic field is zero, then it must remain zero for
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LOCALLY DIVERGENCE-FREE SCHEME FOR MHD SYSTEMS A1999

all times. When deriving numerical methods for MHD systems, the divergence-free
condition must be handled with care, as neglecting an identically zero divergence on a
discrete level may lead to severe numerical instabilities and/or nonphysical structures
in the numerical solution; see, e.g., [5, 6, 40, 58]. In addition, like other hyperbolic
systems of conservation and balance laws, the MHD systems typically develop very
complicated nonsmooth solution structures containing shock waves, rarefactions, and
contact discontinuities, as well as their interactions.

In the past few decades, various numerical techniques have been developed to
deal with the divergence-free constraint for MHD systems. An early effort in this
direction is the projection method [6], which is a postprocessing divergence correction
procedure that uses Hodge decomposition to project the non-divergence-free magnetic
field into a divergence-free subspace by solving an elliptic Poisson equation. Another
widely used approach is the constrained transport (CT) method, which was proposed
in [21] for simulating MHD flows. This method preserves a specific discrete version
of a divergence-free condition on staggered grids, and its variants were further de-
veloped by researchers within various frameworks; see, e.g., [5, 12, 17, 24, 46, 56, 66].
Unstaggered CT methods were also developed (see, e.g., [10, 29, 30, 47, 55]), and they
are usually based on numerically evolving the magnetic potential and computing the
divergence-free magnetic field through the (discrete) curl of the magnetic potential.
In addition, locally divergence-free discontinuous Galerkin methods that enforce the
zero divergence of the magnetic field within each cell were developed in [40, 67]. In re-
cent years, globally divergence-free high-order methods were also proposed to enforce
the exact zero divergence of the magnetic field within the finite-volume or (central)
discontinuous Galerkin framework; see, e.g., [2, 3, 4, 19, 22, 41, 42].

There is also a different class of schemes that reduce the divergence errors but
do not explicitly enforce any divergence-free constraint. In the context of the ideal
MHD equations, these methods, typically referred to as eight-wave methods, were
proposed by Powell et al. [51, 52, 53] based on a proper discretization of a modified,
nonconservative ideal MHD model. This model was first introduced by Godunov [26]
for entropy symmetrization. Compared to the conservative ideal MHD equations, the
modified model contains extra nonconservative source terms (referred to as Godunov--
Powell source terms in the following), which are proportional to the divergence of the
magnetic field. These source terms change the character of the MHD equations,
making the modified model Galilean invariant [14], symmetrizable [26], and better
equipped for the design of entropy stable schemes (see, e.g., [9, 16, 45]). In [51], it
was also noticed that the conservative ideal MHD equations are weakly hyperbolic,
and thus such source terms should be added to recover the missing eigenvector. As
demonstrated in [52, 53], the inclusion of the source terms ensures that the mag-
netic divergence is advected with the flow, and the numerical divergence errors are
also expected to be advected and would not accumulate. This makes the eight-wave
methods capable of controlling the divergence error, although certain drawbacks may
arise due to the nonconservative nature of the Godunov--Powell modified ideal MHD
equations; see [58]. As recently discovered in [62], a discrete divergence-free condi-
tion is closely related to the positivity-preserving property of numerical schemes for
the ideal MHD equations. Furthermore, locally divergence-free positivity-preserving
schemes [63, 64] for the Godunov--Powell modified ideal MHD model can be obtained
via geometric quasilinearization [65]. Another class of divergence-controlling schemes
is the so-called hyperbolic divergence-cleaning method [13], which introduces a mixed
hyperbolic-parabolic equation to damp the divergence errors away instead of enforcing
an exactly divergence-free magnetic field.

A variant of the MHD equations---known as the shallow water MHD system---has
also become a model of significant numerical interest over the last few decades; see,
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e.g., [39, 50, 69] and references therein. First introduced in the context of a solar
tachocline in [25] and now used in several astrophysical and geophysical contexts,
this variant is fully derived from the ideal MHD equations under the assumptions
of constant density and magnetohydrostatic equilibrium; see [15, 68]. An assortment
of numerical methods have additionally been explored to treat divergence errors for
this system---such as space-time conservation element and solution element (CE/SE)
methods in [1, 54], an evolution Galerkin scheme in [33], Roe-type schemes with hyper-
bolic divergence cleaning [32], and entropy-stable schemes in [18, 61], to name a few.

Despite these advances, devising highly accurate, stable, and at the same time
robust numerical methods capable of preserving the divergence-free condition at a
discrete level is still a challenging task. Our main goal is to develop such a scheme.
To this end, we consider the Godunov--Powell modified ideal and shallow water MHD
models and supplement them with additional equations obtained by differentiating
the magnetic field equations in space; the latter will help to ensure local divergence-
free conditions. The resulting augmented MHD systems will be nonconservative and
rather complicated to solve using an upwind numerical method, that is, a method
relying on a solution of (generalized) Riemann problems. Instead, we numerically solve
the augmented MHD systems using second-order unstaggered finite-volume Riemann-
problem-solver-free path-conservative central-upwind (PCCU) schemes, which were
introduced in [8] as a black-box solver for nonconservative hyperbolic systems of PDEs.
PCCU schemes are a path-conservative extension of the central-upwind (CU) schemes,
which were developed in [34, 35, 37] for general multidimensional hyperbolic systems
of conservation laws. We enforce the local divergence-free condition with the help of
a special piecewise linear reconstruction of the magnetic field variables. The resulting
scheme produces highly accurate and nonoscillatory results for ideal and shallow water
MHD systems.

The paper consists of two parts: In section 2, we study the ideal MHD equations,
while section 3 is devoted to the shallow water MHD system. The Godunov--Powell
modifications and the augmented forms of the studied systems are presented in sec-
tions 2.1 and 3.1, the new numerical methods for the resulting augmented systems
are introduced in sections 2.2 and 3.2, and the results of the preformed numerical
experiments are reported in sections 2.3 and 3.3. We conclude the paper and discuss
some of our future research plans in section 4.

2. Ideal MHD equations.

2.1. Governing equations. The ideal MHD equations read as

\rho t +\nabla \cdot (\rho \bfitu ) = 0,

(\rho \bfitu )t +\nabla \cdot 
\Bigl[ 
\rho \bfitu \bfitu \top +

\Bigl( 
p+

1

2
| \bfitb | 2
\Bigr) 
I  - \bfitb \bfitb \top 

\Bigr] 
= 0,

\bfitb t  - \nabla \times (\bfitu \times \bfitb ) = 0,

\scrE t +\nabla \cdot 
\Bigl[ \Bigl( 

\scrE + p+
1

2
| \bfitb | 2
\Bigr) 
\bfitu  - \bfitb (\bfitu \cdot \bfitb )

\Bigr] 
= 0,

(2.1)

where t represents the time, \rho is the density, p is the pressure, \bfitu = (u, v,w)\top represents
the fluid velocity, \bfitb = (b1, b2, b3)

\top is the magnetic field, and \scrE is the total energy.
Additionally, I is the 3\times 3 identity matrix, \gamma represents the ratio of specific heats,
and, finally, the system is completed through the equation of state (EOS)

\scrE =
p

\gamma  - 1
+

\rho 

2
| \bfitu | 2 + 1

2
| \bfitb | 2,(2.2)
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LOCALLY DIVERGENCE-FREE SCHEME FOR MHD SYSTEMS A2001

where | \cdot | represents the Euclidean norm. It is easy to show that

\nabla \cdot \bfitb = 0,(2.3)

as long as initially the magnetic field is divergence-free.
As mentioned in section 1, we follow a commonly used approach and, instead

of considering (2.1), we develop a new numerical method for the Godunov--Powell
modified ideal MHD equations:

\rho t +\nabla \cdot (\rho \bfitu ) = 0,

(\rho \bfitu )t +\nabla \cdot 
\Bigl[ 
\rho \bfitu \bfitu \top +

\Bigl( 
p+

1

2
| \bfitb | 2
\Bigr) 
I  - \bfitb \bfitb \top 

\Bigr] 
= - \bfitb (\nabla \cdot \bfitb ),

\bfitb t  - \nabla \times (\bfitu \times \bfitb ) = - \bfitu (\nabla \cdot \bfitb ),

\scrE t +\nabla \cdot 
\Bigl[ \Bigl( 

\scrE + p+
1

2
| \bfitb | 2
\Bigr) 
\bfitu  - \bfitb (\bfitu \cdot \bfitb )

\Bigr] 
= - (\bfitu \cdot \bfitb )(\nabla \cdot \bfitb ),

(2.4)

which is closed with the help of the same EOS (2.2). Note that, theoretically, the
Godunov--Powell source terms  - \bfitb (\nabla \cdot \bfitb ),  - \bfitu (\nabla \cdot \bfitb ), and  - (\bfitu \cdot \bfitb )(\nabla \cdot \bfitb ) on the right-
hand side (RHS) of (2.4) are zero due to the divergence-free condition (2.3). However,
when numerically solving (2.4) with EOS (2.2), these added relaxation terms help to
reduce the divergence errors and enhance the robustness; see, e.g., [23, 31, 52, 53, 60,
63, 64]. It is worth noting that although our proposed schemes are locally divergence-
free, there are jumps of normal magnetic components across cell interfaces, and the
inclusion of these extra source terms can help to control the (weak) divergence errors
at cell interfaces.

In this paper, we restrict our attention to the 2-D case, where all the quantities
of interest depend on the spatial variables x and y and time t only. In this case, the
divergence-free condition (2.3) reads as (b1)x + (b2)y = 0 and one of the goals in the
development of a good numerical method for the ideal MHD system (2.4), (2.2) is to
enforce this condition at the discrete level. In order to achieve this goal, we introduce
the new variables A := (b1)x and B := (b2)y and differentiate the induction equation
for b1 and b2 in (2.4) with respect to x and y, respectively, to obtain the following
two evolution equations for A and B:

At +
\bigl( 
uA - b2uy

\bigr) 
x
+
\bigl( 
vA+ b1vx

\bigr) 
y
= 0,

Bt +
\bigl( 
uB + b2uy

\bigr) 
x
+
\bigl( 
vB  - b1vx

\bigr) 
y
= 0.

(2.5)

From now on, we will add these equations to the Godunov--Powell modified ideal
MHD equations and will numerically solve the augmented system (2.4)--(2.5), (2.2).
Even though the number of equations to be discretized has been increased, adding
the equations in (2.5) makes it easier to control the divergence-free constraint, which
now reads as A+B = 0.

Before introducing the numerical method, we write the augmented ideal MHD
system (2.4)--(2.5) in the following vector form:

\bfitU t +\bfitF (\bfitU )x +\bfitG (\bfitU )y =Q(\bfitU )\bfitU x +R(\bfitU )\bfitU y,(2.6)

where \bfitU = (\rho , \rho u, \rho v, \rho w, b1, b2, b3,\scrE ,A,B)\top ,

\bfitF (\bfitU ) =
\Bigl( 
\rho u,\rho u2 + p+

1

2
| \bfitb | 2  - b21, \rho uv - b1b2, \rho uw - b1b3,0, ub2  - vb1,

ub3  - wb1,
\bigl( 
\scrE + p+

1

2
| \bfitb | 2
\bigr) 
u - (\bfitu \cdot \bfitb )b1, uA - b2uy, uB + b2uy

\Bigr) \top 
,

(2.7)
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\bfitG (\bfitU ) =
\Bigl( 
\rho v, \rho uv - b1b2, \rho v

2 + p+
1

2
| \bfitb | 2  - b22, \rho vw - b2b3, vb1  - ub2,0,

vb3  - wb2,
\bigl( 
\scrE + p+

1

2
| \bfitb | 2
\bigr) 
v - (\bfitu \cdot \bfitb )b2, vA+ b1vx, vB  - b1vx,

\Bigr) \top 
,

(2.8)

Q(\bfitU ) =

\left(                

0 0 0 0 0 0 0 0 0 0
0 0 0 0  - b1 0 0 0 0 0
0 0 0 0  - b2 0 0 0 0 0
0 0 0 0  - b3 0 0 0 0 0
0 0 0 0  - u 0 0 0 0 0
0 0 0 0  - v 0 0 0 0 0
0 0 0 0  - w 0 0 0 0 0
0 0 0 0  - \bfitu \cdot \bfitb 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

\right)                
,(2.9)

R(\bfitU ) =

\left(                

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0  - b1 0 0 0 0
0 0 0 0 0  - b2 0 0 0 0
0 0 0 0 0  - b3 0 0 0 0
0 0 0 0 0  - u 0 0 0 0
0 0 0 0 0  - v 0 0 0 0
0 0 0 0 0  - w 0 0 0 0
0 0 0 0 0  - \bfitu \cdot \bfitb 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

\right)                
.(2.10)

2.2. Numerical method. We introduce a uniform Cartesian mesh consisting
of the finite-volume cells Cj,k = [xj - 1

2
, xj+ 1

2
]\times [yk - 1

2
, yk+ 1

2
] with xj+ 1

2
 - xj - 1

2
\equiv \Delta x

and yk+ 1
2
 - yk - 1

2
\equiv \Delta y. We assume that at a certain time level t, the computed

solution realized in terms of its cell averages,

\bfitU j,k \approx 
1

\Delta x\Delta y

\int \int 
Cj,k

\bfitU (x, y, t)dxdy,

is available. Notice that the dependence of \bfitU j,k and many other indexed quantities
on t is omitted here and throughout the rest of the paper for the sake of brevity.

The cell averages \bfitU j,k are evolved in time by implementing a dimension-by-
dimension extension of the PCCU scheme from [8], which results in the following
semidiscretization of (2.6)--(2.10):

d

dt
\bfitU j,k = - 1

\Delta x

\biggl[ 
\bfscrF j+ 1

2 ,k
 - \bfscrF j - 1

2 ,k
 - \bfitQ j,k

 - 
s+
j - 1

2 ,k

s+
j - 1

2 ,k
 - s - 

j - 1
2 ,k

\bfitQ \Psi ,j - 1
2 ,k

+
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\bfitQ \Psi ,j+ 1
2 ,k

\biggr] 
(2.11)

 - 1

\Delta y

\biggl[ 
\bfscrG j,k+ 1

2
 - \bfscrG j,k - 1

2
 - \bfitR j,k

 - 
s+
j,k - 1

2

s+
j,k - 1

2

 - s - 
j,k - 1

2

\bfitR \Psi ,j,k - 1
2
+

s - 
j,k+ 1

2

s+
j,k+ 1

2

 - s - 
j,k+ 1

2

\bfitR \Psi ,j,k+ 1
2

\biggr] 
.
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Here,

\bfscrF j+ 1
2 ,k

=
s+
j+ 1

2 ,k
\bfitF 
\bigl( 
\bfitU E

j,k

\bigr) 
 - s - 

j+ 1
2 ,k

\bfitF 
\bigl( 
\bfitU W

j+1,k

\bigr) 
s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

+
s+
j+ 1

2 ,k
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\Bigl( 
\bfitU W

j+1,k  - \bfitU E
j,k

\Bigr) 
,(2.12)

\bfscrG j,k+ 1
2
=

s+
j,k+ 1

2

\bfitG 
\bigl( 
\bfitU N

j,k

\bigr) 
 - s - 

j,k+ 1
2

\bfitG 
\bigl( 
\bfitU S

j,k+1

\bigr) 
s+
j,k+ 1

2

 - s - 
j,k+ 1

2

+
s+
j,k+ 1

2

s - 
j,k+ 1

2

s+
j,k+ 1

2

 - s - 
j,k+ 1

2

\Bigl( 
\bfitU S

j,k+1  - \bfitU N
j,k

\Bigr) 

are the CU numerical fluxes from [38], \bfitU E, W, N, S
j,k are the reconstructed point values

at the cell interfaces of cell Cj,k (see section 2.2.1 for details), s\pm 
j+ 1

2 ,k
and s\pm 

j,k+ 1
2

are the one-sided local speeds of propagation in the x- and y-directions, respectively
(see section 2.2.2 for details), and \bfitQ j,k, \bfitR j,k, \bfitQ \Psi ,j+ 1

2 ,k
, and \bfitR \Psi ,j,k+ 1

2
denote the

discretizations of the nonconservative products on the RHS of (2.6) (see section 2.2.3
for details).

We point out that (2.11) is a system of ODEs, which should be numerically inte-
grated in time by an appropriate ODE solver. In the numerical experiments reported
in section 2.3, we have used the explicit three-stage third-order strong stability pre-
serving (SSP) Runge--Kutta method; see, e.g., [27, 28]; and, to ensure stability, we
meet the following CFL condition:

\Delta t\leq \eta \cdot min

\left(   \Delta x

max
j,k

\Bigl\{ 
s+
j+ 1

2 ,k
, s - 

j+ 1
2 ,k

\Bigr\} , \Delta y

max
j,k

\Bigl\{ 
s+
j,k+ 1

2

, s - 
j,k+ 1

2

\Bigr\} 
\right)   ,(2.13)

where \eta denotes the CFL number, which must not exceed a value of 0.5. This is
a standard CFL restriction for the CU schemes. However, in order to ensure the
positivity of the computed values of \rho (and h in the shallow water system considered
in section 3 below) one needs to take a smaller CFL number \eta = 0.25; see, e.g., [36].

2.2.1. Piecewise linear reconstruction. Equipped with the cell averages
\bfitU j,k, we first use the EOS (2.2) and compute the approximate point values of u,
v, w, and p at the cell centers:

uj,k =
(\rho u)j,k
\rho j,k

, vj,k =
(\rho v)j,k
\rho j,k

, wj,k =
(\rho w)j,k
\rho j,k

,

pj,k = (\gamma  - 1)

\biggl[ 
\scrE j,k  - 

1

2
\rho j,k

\bigl( 
u2
j,k + v2j,k +w2

j,k

\bigr) 
 - 1

2

\Bigl( 
(b1)

2
j,k + (b2)

2
j,k + (b3)

2
j,k

\Bigr) \biggr] 
.

We then introduce a new set of discrete variables,

\bfitW j,k := (\rho j,k, uj,k, vj,k,wj,k, (b1)j,k, (b2)j,k, (b3)j,k, pj,k,Aj,k,Bj,k)
\top ,

and compute the cell interface point values \bfitW E, W, N, S
j,k using a proper conservative

piecewise linear reconstruction,\widetilde \bfitW (x, y) =\bfitW j,k + (\bfitW x)j,k(x - xj) + (\bfitW y)j,k(y - yk), (x, y)\in Cj,k,(2.14)
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A2004 A. CHERTOCK, A. KURGANOV, M. REDLE, AND K. WU

which results in

\bfitW E
j,k =\bfitW j,k + (\bfitW x)j,k

\Delta x

2
, \bfitW W

j,k =\bfitW j,k  - (\bfitW x)j,k
\Delta x

2
,

\bfitW N
j,k =\bfitW j,k + (\bfitW y)j,k

\Delta y

2
, \bfitW S

j,k =\bfitW j,k  - (\bfitW y)j,k
\Delta y

2
.

(2.15)

In order for (2.14) to be second-order accurate, the slopes (\bfitW x)j,k and (\bfitW y)j,k
have to be at least first-order approximations of \bfitW x(xj , yk) and \bfitW y(xj , yk), re-
spectively. The nonoscillatory nature of the piecewise linear reconstruction (2.14) is
typically ensured with the help of a nonlinear limiter. To all of the components of
\bfitW , we compute the slopes (except for ((b1)x)j,k and ((b2)y)j,k) using the generalized
minmod limiter (see, e.g., [43, 48, 57]):

(W (i)
x )j,k =minmod

\Biggl( 
\theta 
W

(i)
j,k  - W

(i)
j - 1,k

\Delta x
,
W

(i)
j+1,k  - W

(i)
j - 1,k

2\Delta x
,

\theta 
W

(i)
j+1,k  - W

(i)
j,k

\Delta x

\Biggr) 
, i \not = 5,

(W (i)
y )j,k =minmod

\Biggl( 
\theta 
W

(i)
j,k  - W

(i)
j,k - 1

\Delta y
,
W

(i)
j,k+1  - W

(i)
j,k - 1

2\Delta y
,

\theta 
W

(i)
j,k+1  - W

(i)
j,k

\Delta y

\Biggr) 
, i \not = 6,

(2.16)

where the minmod function is defined by

minmod(a1, a2, . . .) =

\left\{     
min(a1, a2, . . .) if ai > 0 \forall i,
max(a1, a2, . . .) if ai < 0 \forall i,
0 otherwise.

(2.17)

The slopes ((b1)x)j,k and ((b2)y)j,k, however, should not be computed using the
generalized minmod limiter or any other conventional limiter as our goal is to enforce
local divergence-free condition (2.3), which at the discrete level reads as ((b1)x)j,k +
((b2)y)j,k \equiv 0 for all j, k. This goal can be achieved if we set

((b1)x)j,k = Aj,k and ((b2)y)j,k = Bj,k,(2.18)

since

Aj,k + Bj,k = 0(2.19)

is true for all j, k, provided (2.19) is satisfied at time t = 0; see Theorem 2.2 in
section 2.2.4.

While the use of (2.18) guarantees the local discrete divergence-free condition,
the resulting reconstruction of b1 and b2 may be oscillatory in the x- and y-directions,
respectively. As we have observed in several numerical experiments, this often leads
to an oscillatory numerical solution. We, therefore, adjust the slopes in (2.18) by
scaling them as follows.

We begin by introducing the auxiliary slopes (\widehat (b1)x)j,k and (\widehat (b2)y)j,k, which are
computed using the aforementioned generalized minmod reconstruction. The recon-
structions of b1 and b2 can then be made both nonoscillatory and locally divergence-
free by replacing (2.18) with

((b1)x)j,k = \sigma j,kAj,k, ((b2)y)j,k = \sigma j,kBj,k,(2.20)
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LOCALLY DIVERGENCE-FREE SCHEME FOR MHD SYSTEMS A2005

where

\sigma j,k =min
\Bigl\{ 
1, \sigma x

j,k, \sigma 
y
j,k

\Bigr\} 
(2.21)

and the scaling factors \sigma x
j,k and \sigma y

j,k are computed by

\sigma x
j,k :=

\left\{     min

\biggl\{ 
1,

(\widehat (b1)x)j,k
Aj,k

\biggr\} 
if (\widehat (b1)x)j,kAj,k > 0,

0 otherwise

(2.22)

and

\sigma y
j,k :=

\left\{     min

\biggl\{ 
1,

(\widehat (b2)y)j,k
Bj,k

\biggr\} 
if (\widehat (b2)y)j,kBj,k > 0,

0 otherwise.

(2.23)

Finally, equipped with (2.15), we use the EOS (2.2) to compute the cell interface
point values \scrE E, W, N, S

j,k as follows:

\scrE \ell 
j,k =

p\ell j,k
\gamma  - 1

+
1

2
\rho \ell j,k

\bigl[ 
(u\ell 

j,k)
2 + (v\ell j,k)

2 + (w\ell 
j,k)

2
\bigr] 

+
1

2

\Bigl[ \bigl( 
(b1)

\ell 
j,k

\bigr) 2
+
\bigl( 
(b2)

\ell 
j,k

\bigr) 2
+
\bigl( 
(b3)

\ell 
j,k

\bigr) 2\Bigr] 
, \ell \in \{ E,W,N,S\} .

(2.24)

Remark 2.1. We note that we have reconstructed the primitive variables u, v,
w, and p rather than the conservative variables \rho u, \rho v, \rho w, and \scrE since our numer-
ical experiments clearly indicate that the resulting scheme, which is based on the
reconstruction of the primitive variables, is less oscillatory and produces no negative
pressure values.

It is important to point out that the ninth and tenth components of the fluxes
\bfitF (\bfitU 

E(W)
j,k ) and \bfitG (\bfitU 

N(S)
j,k ) depend not only on the corresponding point values of u, v,

A, B, b1, and b2, but also on the point values of the derivatives (uy)
E(W)
j,k and (vx)

N(S)
j,k .

We compute these values using first-order approximation, namely, we set

(uy)
E
j,k = (uy)j,k, (uy)

W
j,k = (uy)j,k, (vx)

N
j,k = (vx)j,k, (vx)

S
j,k = (vx)j,k,

where the slopes (uy)j,k and (vx)j,k are computed by (2.16). Notice that even though
this will result in the first-order approximation of the auxiliary variables A and B,
the other components of \bfitU will still be computed with the second order, and thus the
second-order accuracy of the resulting scheme will not be affected.

2.2.2. One-sided speeds of propagation. Equipped with the reconstructed
point values (2.15) and (2.24), we now proceed with the computation of the one-
sided local speeds of propagation s\pm 

j+ 1
2 ,k

and s\pm 
j,k+ 1

2

seen in (2.11) and (2.12). We

stress that when the PCCU schemes are applied to general nonconservative systems
of type (2.6), the x- and y-directional speeds would typically be estimated using the
largest and smallest eigenvalues of the matrices \partial \bfitF 

\partial \bfitU (\bfitU ) - Q(\bfitU ) and \partial \bfitG 
\partial \bfitU (\bfitU ) - R(\bfitU ),

respectively. However, it is known (see, e.g., [20]) that in the context of the ideal
MHD system (2.6)--(2.10), the estimates, which are solely based on the eigenvalues
mentioned above, may be inaccurate and using them may lead to severe instabilities.
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We therefore follow [64], where the propagation speeds were slightly overestimated
to ensure the positivity of both the computed density and pressure, and estimate the
right- and left-sided local speeds in the x-direction by

s+
j+ 1

2 ,k
=max

\Bigl\{ 
max

\bigl\{ 
uE
j,k, u

Roe
j+ 1

2 ,k

\bigr\} 
+ cEj,k + \beta x

j+ 1
2 ,k

,

max
\bigl\{ 
uW
j+1,k, u

Roe
j+ 1

2 ,k

\bigr\} 
+ cWj+1,k + \beta x

j+ 1
2 ,k

, 0
\Bigr\} 
,

s - 
j+ 1

2 ,k
=min

\Bigl\{ 
min

\bigl\{ 
uE
j,k, u

Roe
j+ 1

2 ,k

\bigr\} 
 - cEj,k  - \beta x

j+ 1
2 ,k

,

min
\bigl\{ 
uW
j+1,k, u

Roe
j+ 1

2 ,k

\bigr\} 
 - cWj+1,k  - \beta x

j+ 1
2 ,k

, 0
\Bigr\} 
,

where

uRoe
j+ 1

2 ,k
:=

uE
j,k

\sqrt{} 
\rho Ej,k + uW

j+1,k

\sqrt{} 
\rho Wj+1,k\sqrt{} 

\rho Ej,k +
\sqrt{} 
\rho Wj+1,k

, \beta x
j+ 1

2 ,k
:=

\bigm| \bigm| \bigm| \bfitb Ej,k  - \bfitb Wj+1,k

\bigm| \bigm| \bigm| \sqrt{} 
\rho Ej,k +

\sqrt{} 
\rho Wj+1,k

,

and c
E(W)
j,k are the fast magnetoacoustic wave speeds computed using

\Bigl( 
c
E(W)
j,k

\Bigr) 2
=

1

2\rho 
E(W)
j,k

\Biggl[ 
\gamma p

E(W)
j,k +

\bigm| \bigm| \bigm| \bfitb E(W)
j,k

\bigm| \bigm| \bigm| 2
+

\sqrt{} \biggl( 
\gamma p

E(W)
j,k +

\bigm| \bigm| \bigm| \bfitb E(W)
j,k

\bigm| \bigm| \bigm| 2\biggr) 2

 - 4\gamma p
E(W)
j,k

\Bigl( 
(b1)

E(W)
j,k

\Bigr) 2\Biggr] 
.

Similarly, we estimate the corresponding y-directional speeds by

s+
j,k+ 1

2

=max
\Bigl\{ 
max

\bigl\{ 
vNj,k, v

Roe
j,k+ 1

2

\bigr\} 
+ cNj,k + \beta y

j,k+ 1
2

,

max
\bigl\{ 
vSj,k+1, v

Roe
j,k+ 1

2

\bigr\} 
+ cSj,k+1 + \beta y

j,k+ 1
2

, 0
\Bigr\} 
,

s - 
j,k+ 1

2

=min
\Bigl\{ 
min

\bigl\{ 
vNj,k, v

Roe
j,k+ 1

2

\bigr\} 
 - cNj,k  - \beta y

j,k+ 1
2

,

min
\bigl\{ 
vSj,k+1, v

Roe
j,k+ 1

2

\bigr\} 
 - cSj,k+1  - \beta y

j,k+ 1
2

, 0
\Bigr\} 
,

where

vRoe
j,k+ 1

2
:=

vNj,k

\sqrt{} 
\rho Nj,k + vSj,k+1

\sqrt{} 
\rho Sj,k+1\sqrt{} 

\rho Nj,k +
\sqrt{} 
\rho Sj,k+1

, \beta y

j,k+ 1
2

:=

\bigm| \bigm| \bigm| \bfitb Nj,k  - \bfitb Sj,k+1

\bigm| \bigm| \bigm| \sqrt{} 
\rho Nj,k +

\sqrt{} 
\rho Sj,k+1

,

\Bigl( 
c
N(S)
j,k

\Bigr) 2
=

1

2\rho 
N(S)
j,k

\Biggl[ 
\gamma p

N(S)
j,k +

\bigm| \bigm| \bigm| \bfitb N(S)
j,k

\bigm| \bigm| \bigm| 2
+

\sqrt{} \biggl( 
\gamma p

N(S)
j,k +

\bigm| \bigm| \bigm| \bfitb N(S)
j,k

\bigm| \bigm| \bigm| 2\biggr) 2

 - 4\gamma p
N(S)
j,k

\Bigl( 
(b2)

N(S)
j,k

\Bigr) 2\Biggr] 
.

2.2.3. Discretization of the nonconservative products. In this section, we
provide the computation of the nonconservative product terms in (2.11).

Following [8] (see also [11]), we obtain nonconservative terms in the x-direction,
\bfitQ j,k and \bfitQ \Psi ,j+ 1

2 ,k
, as follows. First, in order to compute the term \bfitQ j,k, we take a
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global (in space) interpolant \bfitU (\widetilde \bfitW (x, y)), where \widetilde \bfitW is given by (2.14), and evaluate
the integral in

\bfitQ j,k =

\int x
j+1

2

x
j - 1

2

Q
\bigl( 
\bfitU 
\bigl( \widetilde \bfitW (x, yk)

\bigr) \bigr) 
\bfitU (\widetilde \bfitW (x, yk))x dx,

where Q(\bfitU ) is defined as in (2.9), exactly. This results in the following expressions
for the ten components of the vector \bfitQ j,k:

Q
(1)
j,k =Q

(9)
j,k =Q

(10)
j,k = 0,

Q
(i)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde bi - 1(x, yk)((b1)x)j,k dx= - ( bi - 1)j,k\sigma j,kAj,k\Delta x, i= 2,3,4,

\biggl( 
Q

(5)
j,k,Q

(6)
j,k,Q

(7)
j,k

\biggr) \top 

= - 
\int x

j+1
2

x
j - 1

2

\widetilde \bfitu (x, yk)((b1)x)j,k dx= - \bfitu j,k\sigma j,kAj,k\Delta x,

Q
(8)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde \bfitu (x, yk) \cdot \widetilde \bfitb (x, yk)((b1)x)j,k dx= - 
\Bigl[ \Bigl( 

\bfitu j,k \cdot \bfitb j,k

+
(\Delta x)2

12

\bigl\{ 
(ux)j,k\sigma j,kAj,k+(vx)j,k((b2)x)j,k+(wx)j,k((b3)x)j,k

\bigr\} \Bigr) \Bigr] 
\sigma j,kAj,k\Delta x,

where we have used the slopes ((b1)x)j,k given by (2.20)--(2.23), while the other slopes
are computed as in (2.16)--(2.17).

Next, the terms \bfitQ \Psi ,j+ 1
2 ,k

are computed by the exact integration of

\bfitQ \Psi ,j+ 1
2 ,k

=

\int 1

0

Q
\bigl( 
\bfitU 
\bigl( 
\Psi j+ 1

2 ,k
(s)
\bigr) \bigr) 
\Psi \prime 

j+ 1
2 ,k

(s)ds,

where \Psi j+ 1
2 ,k

(s) is a linear path connecting the states \bfitW E
j,k and \bfitW W

j+1,k:

\Psi j+ 1
2 ,k

(s) =\bfitW E
j,k + s

\Bigl( 
\bfitW W

j+1,k  - \bfitW E
j,k

\Bigr) 
.

This results in

Q
(1)

\Psi ,j+ 1
2 ,k

=Q
(9)

\Psi ,j+ 1
2 ,k

=Q
(10)

\Psi ,j+ 1
2 ,k

= 0,

Q
(i)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

\bigl\{ 
(bi - 1)

E
j,k + s

\bigl( 
(bi - 1)

W
j+1,k  - (bi - 1)

E
j,k

\bigr) \bigr\} 
[b1]j+ 1

2 ,k
ds

= - 1

2

\bigl( 
(bi - 1)

E
j,k + (bi - 1)

W
j+1,k

\bigr) 
[b1]j+ 1

2 ,k
, i= 2,3,4,\biggl( 

Q
(5)

\Psi ,j+ 1
2 ,k

,Q
(6)

\Psi ,j+ 1
2 ,k

,Q
(7)

\Psi ,j+ 1
2 ,k

\biggr) \top 

= - 
\int 1

0

\bigl\{ 
\bfitu E
j,k + s

\bigl( 
\bfitu W
j+1,k  - \bfitu E

j,k

\bigr) \bigr\} 
[b1]j+ 1

2 ,k
ds

= - 1

2

\bigl( 
\bfitu E
j,k +\bfitu W

j+1,k

\bigr) 
[b1]j+ 1

2 ,k
,

Q
(8)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

\bigl\{ 
\bfitu E
j,k + s

\bigl( 
\bfitu W
j+1,k  - \bfitu E

j,k

\bigr) \bigr\} 
\cdot 
\Bigl\{ 
\bfitb Ej,k + s

\Bigl( 
\bfitb Wj+1,k  - \bfitb Ej,k

\Bigr) \Bigr\} 
[b1]j+ 1

2 ,k
ds

= - 1

6

\Bigl( 
2\bfitu E

j,k \cdot \bfitb 
E
j,k +\bfitu E

j,k \cdot \bfitb 
W
j+1,k +\bfitu W

j+1,k \cdot \bfitb 
E
j,k + 2\bfitu W

j+1,k \cdot \bfitb 
W
j+1,k

\Bigr) 
[b1]j+ 1

2 ,k
,

where [b1]j+ 1
2 ,k

:= (b1)
W
j+1,k  - (b1)

E
j,k.
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Similarly, we obtain the following formulae for the nonconservative terms in the
y-direction, \bfitR j,k and \bfitR \Psi ,j,k+ 1

2
:

R
(1)
j,k =R

(9)
j,k =R

(10)
j,k = 0, R

(i)
j,k = - ( bi - 1)j,k\sigma j,kBj,k\Delta y, i= 2,3,4,\bigl( 

R
(5)
j,k ,R

(6)
j,k ,R

(7)
j,k

\bigr) \top 
= - \bfitu j,k\sigma j,kBj,k\Delta y,

R
(8)
j,k = - 

\Bigl[ \Bigl( 
\bfitu j,k \cdot \bfitb j,k +

(\Delta y)2

12

\bigl\{ 
(uy)j,k((b1)y)j,k + (vy)j,k\sigma j,kBj,k

+(wy)j,k((b3)y)j,k\} 
\Bigr) \Bigr] 

\sigma j,kBj,k\Delta y,

where we have used the slopes ((b2)y)j,k given by (2.20)--(2.23), while the other slopes
are computed as in (2.16)--(2.17), and

R
(1)

\Psi ,j,k+ 1
2

=R
(9)

\Psi ,j,k+ 1
2

=R
(10)

\Psi ,j,k+ 1
2

= 0,

R
(i)

\Psi ,j,k+ 1
2

= - 1

2

\bigl( 
(bi - 1)

N
j,k + (bi - 1)

S
j,k+1

\bigr) 
[b2]j,k+ 1

2
, i= 2,3,4,\bigl( 

R
(5)

\Psi ,j,k+ 1
2

,R
(6)

\Psi ,j,k+ 1
2

,R
(7)

\Psi ,j,k+ 1
2

\bigr) \top 
= - 1

2

\bigl( 
\bfitu N
j,k +\bfitu S

j,k+1

\bigr) 
[b2]j,k+ 1

2
,

R
(8)

\Psi ,j,k+ 1
2

= - 1

6

\Bigl( 
2\bfitu N

j,k \cdot \bfitb 
N
j,k +\bfitu N

j,k \cdot \bfitb 
S
j,k+1 +\bfitu S

j,k+1 \cdot \bfitb 
N
j,k + 2\bfitu S

j,k+1 \cdot \bfitb 
S
j,k+1

\Bigr) 
[b2]j,k+ 1

2
,

where [b2]j,k+ 1
2
:= ((b2)

S
j,k+1  - (b2)

N
j,k).

2.2.4. Local divergence-free property. We now prove the local divergence-
free property of the proposed PCCU scheme.

Theorem 2.2. For the PCCU scheme (2.11)--(2.12) with the reconstruction de-
scribed in section 2.2.1, the local divergence-free condition\bigl( 

(b1)x
\bigr) 
j,k

+
\bigl( 
(b2)y

\bigr) 
j,k

= 0(2.25)

holds for all j, k and at all times, provided it is satisfied initially.

Proof. First, we note that according to (2.20),\bigl( 
(b1)x

\bigr) 
j,k

+
\bigl( 
(b2)y

\bigr) 
j,k

= \sigma j,k

\bigl( 
Aj,k + Bj,k

\bigr) 
.

Therefore, in order to prove (2.25), it is sufficient to show that Aj,k + Bj,k = 0 for all
j, k and for all times assuming that it is satisfied at the initial time t= 0.

We then observe that the quantities Aj,k and Bj,k are the ninth and tenth compo-
nents of \bfitU j,k, and thus they are evolved in time by numerically integrating the ninth
and tenth components of (2.11)--(2.12). Adding these components in (2.11) results in

d

dt

\bigl( 
Aj,k + Bj,k

\bigr) 
= - 1

\Delta x

\biggl[ 
\scrF (9)

j+ 1
2 ,k

 - \scrF (9)

j - 1
2 ,k

+\scrF (10)

j+ 1
2 ,k

 - \scrF (10)

j - 1
2 ,k

\biggr] 
 - 1

\Delta y

\biggl[ 
\scrG (9)

j,k+ 1
2

 - \scrG (9)

j,k - 1
2

+ \scrG (10)

j,k+ 1
2

 - \scrG (10)

j,k - 1
2

\biggr] 
.

(2.26)

In order to complete the proof, it is sufficient to show that the RHS of (2.26) vanishes
as long as Aj,k + Bj,k = 0 for all j, k. To this end, we use (2.12) to evaluate
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\scrF (9)

j+ 1
2 ,k

 - \scrF (9)

j - 1
2 ,k

+\scrF (10)

j+ 1
2 ,k

 - \scrF (10)

j - 1
2 ,k

=
s+
j+ 1

2 ,k

\Bigl[ 
uE
j,k

\Bigl( 
AE

j,k +BE
j,k

\Bigr) \Bigr] 
 - s - 

j+ 1
2 ,k

\Bigl[ 
uW
j+1,k

\Bigl( 
AW

j+1,k +BW
j+1,k

\Bigr) \Bigr] 
s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

+
s+
j+ 1

2 ,k
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\Bigl[ \bigl( 
AW

j+1,k +BW
j+1,k

\bigr) 
 - 
\bigl( 
AE

j,k +BE
j,k

\bigr) \Bigr] 
(2.15)
=

s+
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\biggl[ 
uE
j,k

\Bigl( 
Aj,k +

\Delta x

2
(Ax)j,k + Bj,k +

\Delta x

2
(Bx)j,k

\Bigr) \biggr] 

 - 
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\biggl[ 
uW
j+1,k

\Bigl( 
Aj+1,k  - 

\Delta x

2
(Ax)j+1,k + Bj+1,k  - 

\Delta x

2
(Bx)j+1,k

\Bigr) \biggr] 

+
s+
j+ 1

2 ,k
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\biggl[ 
Aj+1,k  - 

\Delta x

2
(Ax)j+1,k + Bj+1,k  - 

\Delta x

2
(Bx)j+1,k

\biggr] 

 - 
s+
j+ 1

2 ,k
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\biggl[ 
Aj,k +

\Delta x

2
(Ax)j,k + Bj,k +

\Delta x

2
(Bx)j,k

\biggr] 

=
\Delta x

2

\Biggl\{ 
s+
j+ 1

2 ,k

\Bigl[ 
uE
j,k ((Ax)j,k + (Bx)j,k)

\Bigr] 
+ s - 

j+ 1
2 ,k

\Bigl[ 
uW
j+1,k ((Ax)j+1,k + (Bx)j+1,k)

\Bigr] 
s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

 - 
s+
j+ 1

2 ,k
s - 
j+ 1

2 ,k

s+
j+ 1

2 ,k
 - s - 

j+ 1
2 ,k

\Bigl[ 
(Ax)j+1,k + (Bx)j+1,k + (Ax)j,k + (Bx)j,k

\Bigr] \Biggr\} 
,

where the last equality is obtained using Aj,k + Bj,k =Aj+1,k + Bj+1,k = 0.

It is now clear that \scrF (9)

j+ 1
2 ,k

 - \scrF (9)

j - 1
2 ,k

+\scrF (10)

j+ 1
2 ,k

 - \scrF (10)

j - 1
2 ,k

will be identically zero as

long as

(Ax)j,k + (Bx)j,k = 0(2.27)

for all j, k. Indeed, (2.27) is true since Aj,k =  - Bj,k for all j, k and both the slopes
(Ax)j,k and (Bx)j,k are computed using the same limiter (2.16).

Similarly, one can show that \scrG (9)

j,k+ 1
2

 - \scrG (9)

j,k - 1
2

+ \scrG (10)

j,k+ 1
2

 - \scrG (10)

j,k - 1
2

\equiv 0, so that the

RHS of (2.26) vanishes, and thus the proof of the theorem is complete.

2.3. Numerical examples. In this section, we demonstrate the performance
of the proposed PCCU scheme in several numerical experiments conducted for the
augmented 2-D ideal MHD system (2.6)-(2.10), (2.2). In all of the examples in this
section, we follow the CFL condition in (2.13) and take the CFL number \eta = 0.25 and
the minmod parameter \theta = 1.3.

Example 1---Brio--Wu shock-tube problem. In the first example, we consider the
one-dimensional (1-D) Riemann problem known as the Brio--Wu shock-tube problem,
originally presented in [7]. This problem is the standard test for capturing compound
waves that emerge as solutions of the ideal MHD system. We take the following initial
data, which depend on x only:

(\rho ,u, v,w, b1, b2, b3, p)
\bigm| \bigm| \bigm| 
(x,y,0)

=

\Biggl\{ 
(1,0,0,0,0.75,1,0,1), x < 0,

(0.125,0,0,0,0.75, - 1,0,0.1) otherwise.
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Fig. 2.1. Example 1: \rho , b1, and b2 computed by the PCCU scheme on 200\times 2 (red circles) and
1600\times 16 (solid black line) uniform meshes.

We set the free boundary conditions on all sides of the computational domain [ - 1,1]\times 
[ - 0.01,0.01]. The specific heat ratio is \gamma = 2 in this example.

In Figure 2.1, we plot the y = 0 cross-section of the density \rho , x-magnetic field
b1, and y-magnetic field b2 computed on 200 \times 2 and 1600 \times 16 uniform meshes at
time t = 0.2. As one can see, the solution to this 1-D Riemann problem consists of
several nonsmooth structures, such as rarefaction waves, shocks traveling at various
speeds, a contact discontinuity, and a compound shock wave. The proposed PCCU
scheme captures all of these complicated structures well, even on a coarser mesh, and
the obtained results strongly agree with those reported in [19, 23, 40, 42, 45].

Example 2---circularly polarized Alfv\'en wave. In the second example, taken from
[58], we consider the time evolution of a circularly polarized Alfv\'en wave that travels
at a constant speed at an angle of \alpha = \pi /6 with respect to the x-axis. The initial
conditions are

\rho (x, y,0)\equiv 1, u(x, y,0) = v\| cos\alpha + v\bot sin\alpha , v(x, y,0) = v\| sin\alpha  - v\bot cos\alpha ,

p(x, y,0)\equiv 0.1, b1(x, y,0) = b\| cos\alpha + b\bot sin\alpha , b2(x, y,0) = b\| sin\alpha  - b\bot cos\alpha ,

w(x, y,0) = b3(x, y,0) = 0.1cos
\bigl[ 
2\pi (x cos\alpha + y sin\alpha )

\bigr] 
,

where

v\| = 0, b\| = 1, v\bot = b\bot = 0.1 sin
\bigl[ 
2\pi (x cos\alpha + y sin\alpha )

\bigr] 
.

We use a specific heat ratio \gamma = 5/3, take the computational domain [0,1/ cos\alpha ] \times 
[0,1/ sin\alpha ], and prescribe the periodic boundary conditions in both the x- and y-
directions. It is easy to show that the solution of the resulting initial-boundary value
problem is a traveling wave, which returns to its initial position at any integer t.

We compute the solution on an N \times N uniform mesh and compute the L1-errors
when the solution reaches the final time t = 5. Both the errors and corresponding
experimental rates of convergence for u and b3 are presented in Table 2.1. From this
data, one can see that the proposed scheme does indeed achieve the expected second
order of accuracy.

Example 3---Orszag--Tang vortex problem. In this example, we consider the
Orszag--Tang vortex problem, which was introduced in [49] and has been widely used
as a benchmark due to the formation and interaction of multiple shocks as the system
evolves in time and to the presence of many important features of MHD turbulence;
see, e.g., [19, 41, 42, 44, 67]. The initial conditions for this problem read as
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Table 2.1
Example 2: L1-errors for u and b3 and the corresponding experimental rates of convergence.

N \| u(x, y,5) - u(x, y,0)\| 1 Rate \| b3(x, y,5) - b3(x, y,0)\| 1 Rate

20 1.96e-02 -- 4.24e-02 --
40 4.63e-03 2.08 1.10e-02 1.95

80 1.47e-03 1.65 3.48e-03 1.66

160 3.88e-04 1.92 9.24e-04 1.91
320 9.34e-05 2.06 2.20e-04 2.07

Fig. 2.2. Example 3: Fluid density \rho computed by the proposed PCCU scheme at different times.
40 equally spaced contours are used in each plot with the ranges [2.11,5.83], [0.63,6.17], [1.29,6.12],
and [1.25,5.8], respectively.

\rho (x, y,0)\equiv \gamma 2, u(x, y,0) = - siny, v(x, y,0) = sinx, w(x, y,0)\equiv 0,

b1(x, y,0) = - siny, b2(x, y,0) = sin(2x), b3(x, y,0)\equiv 0, p(x, y,0)\equiv \gamma ,

where \gamma = 5/3 is the specific heat ratio. We set the periodic boundary conditions on
all sides of the computational domain [0,2\pi ]\times [0,2\pi ].

The time evolution of the fluid density \rho computed on a uniform 200\times 200 mesh
is shown at times t = 0.5, 2, 3, and 4 in Figure 2.2. We observe that the numerical
solution computed by the proposed PCCU scheme remains stable and is consistent
with previous results presented in [41, 42, 44, 67], demonstrating the ability of our
scheme to capture both smooth flows and shocks.

Example 4---rotor problem. Next, we consider the ``second rotor problem"" from
[5, 58], referred to as the rotor problem in this paper. This commonly used benchmark

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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A2012 A. CHERTOCK, A. KURGANOV, M. REDLE, AND K. WU

problem describes a rapidly rotating disk of dense fluid centered in a background of
static fluid. Over time, the disk expands and rotates. The initial conditions are
given by

(\rho ,u, v)
\bigm| \bigm| \bigm| 
(x,y,0)

=

\left\{             

\biggl( 
10,

0.5 - y

r0
,
x - 0.5

r0

\biggr) 
, r < 0.1,\biggl( 

1 + 9\lambda ,
\lambda (0.5 - y)

r
,
\lambda (x - 0.5)

r

\biggr) 
, 0.1\leq r\leq 0.115,

(1,0,0), r > 0.115,

w(x, y,0) = b2(x, y,0) = b3(x, y,0)\equiv 0, b1(x, y,0)\equiv 
2.5\surd 
4\pi 

, p(x, y,0)\equiv 0.5,

where r =
\sqrt{} 

(x - 0.5)2 + (y - 0.5)2 and \lambda = (0.115 - r)/0.015. We take the specific
heat ratio \gamma = 5/3 and use the periodic boundary conditions on all sides of the
computational domain [0,1]\times [0,1].

In Figure 2.3, we show the fluid density \rho , pressure p, Mach number | \bfitu | /cs (where
cs =

\sqrt{} 
\gamma p/\rho is the speed of sound), and magnetic pressure | \bfitb | 2/2 computed on a uni-

form 200\times 200 mesh at time t= 0.295. We note that our results are in good agreement
with those reported in, e.g., [42, 44, 58]. In addition, it is emphasized in [5, 44, 58]
that, due to rapid changes at the center of the rotation, many numerical methods
produce oscillations or negative pressure values. We stress that during numerical sim-
ulations, we have not observed any oscillations, and the proposed PCCU scheme has
produced no negative values of the computed pressure. The oscillation-free feature is

Fig. 2.3. Example 4: Fluid density \rho , pressure p, Mach number | \bfitu | /cs, and magnetic pressure
| \bfitb | 2/2 computed by the proposed PCCU scheme. 40 equally spaced contours are used in each plot
with the ranges [0.71,8.95], [0.01,0.78], [0,2.9], and [0.02,0.65], respectively.
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LOCALLY DIVERGENCE-FREE SCHEME FOR MHD SYSTEMS A2013

Fig. 2.4. Example 4: Zoom-in of the center of the Mach number plots computed on a 400\times 400
mesh without any divergence-free treatment (left), on a 400\times 400 mesh using the proposed scheme
(middle), and on a 800\times 800 mesh using the proposed scheme (right). 40 equally spaced contours in
the range [0,2.9] are used in each plot.

further illustrated in Figure 2.4, where we zoom in on the center of the Mach number
computed with our proposed scheme (middle and right panels), creating oscillation-
free solutions, and the analogous CU scheme (see, e.g., [37]) without any divergence-
free treatment (left panel), which returns a solution with clear spurious oscillations.

Example 5---blast problem. In this example, we consider the blast problem, first
introduced in [5]. This benchmark problem is seen in a number of studies (see, e.g.,
[41, 42, 44, 67]) and is considered a challenge due to the low gas pressure and strong
magnetosonic shocks. Negative pressures are easily produced near the shocks; see
[41, 42] and references therein. The initial conditions are

(\rho ,u, v,w, b1, b2, b3)
\bigm| \bigm| \bigm| 
(x,y,0)

=

\biggl( 
1,0,0,0,

100\surd 
4\pi 

,0,0

\biggr) 
,

p(x, y,0) =

\Biggl\{ 
1000,

\sqrt{} 
x2 + y2 < 0.1,

0.1 otherwise.

We take the specific heat ratio \gamma = 1.4 and use zero-order extrapolation on the bound-
aries of the computational domain [ - 0.5,0.5]\times [ - 0.5,0.5].

The fluid density \rho , pressure p, magnitude of velocity | \bfitu | , and magnetic pressure
| \bfitb | 2/2 computed by the proposed PCCU scheme on a 200 \times 200 uniform mesh at
t = 0.01 are depicted in Figure 2.5. Additionally, the numerical experimentation of
the proposed method resulted in positive pressure values throughout the entire com-
putational domain, returning a minimum pressure of 0.10. Positive pressure values
are also completely maintained when running the blast problem on a refined 400\times 400
uniform grid (the fine mesh results are not shown here for brevity).

3. Shallow water MHD.

3.1. Governing equations. In this section, we study the modified Godunov--
Powell shallow water MHD system, which reads as

ht + (hu)x + (hv)y = 0,

(hu)t +
\Bigl( 
hu2 +

g

2
h2  - ha2

\Bigr) 
x
+ (huv - hab)y = - a [(ha)x + (hb)y] ,

(hv)t + (huv - hab)x +
\Bigl( 
hv2 +

g

2
h2  - hb2

\Bigr) 
y
= - b [(ha)x + (hb)y] ,(3.1)

(ha)t + (hbu - hav)y = - u [(ha)x + (hb)y] ,

(hb)t + (hav - hbu)x = - v [(ha)x + (hb)y] .
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Fig. 2.5. Example 5: Fluid density \rho , pressure p, velocity magnitude | \bfitu | , and magnetic pressure
| \bfitb | 2/2 computed by the proposed PCCU scheme. 40 equally spaced contours are used in each plot
with the ranges [0.22,4.09], [0.10,250], [0,16.77], and [215,588], respectively.

Here, h is the fluid thickness, u and v represent the x- and y-velocity, (a, b)\top is the
reduced magnetic field, which has units of velocity, and g is the acceleration due to
gravity. As in the ideal MHD system considered in section 2, one can easily show that

(ha)x + (hb)y = 0(3.2)

as long as the field (ha,hb)\top is initially divergence-free. Therefore, the Godunov--
Powell source terms on the RHS of (3.1) are theoretically zero. Still, they are added to
the original shallow water MHD system to help enforce the divergence-free constraint
(3.2) numerically; see, e.g., [32, 33, 61].

In order to develop a locally divergence-free numerical method for the system
(3.1), this divergence constraint (3.2) must be enforced on the discrete level. As
in section 2, we achieve this goal by introducing the new variables A := (ha)x and
B := (hb)y, differentiating the induction equation in (3.1) with respect to x and y,
and obtaining the following equations for A and B:

At +
\bigl( 
uA - hbuy

\bigr) 
x
+
\bigl( 
vA+ havx

\bigr) 
y
= 0,

Bt +
\bigl( 
uB + hbuy

\bigr) 
x
+
\bigl( 
vB  - havx

\bigr) 
y
= 0,

(3.3)

which are then added to the studied system (3.1).
Prior to introducing the numerical method for the augmented system (3.1), (3.3),

we write it in the vector form

\bfitU t +\bfitF (\bfitU )x +\bfitG (\bfitU )y =Q(\bfitU )\bfitU x +R(\bfitU )\bfitU y,(3.4)
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where \bfitU := (h,hu,hv,ha,hb,A,B)\top ,

\bfitF (\bfitU ) =
\bigl( 
hu,hu2 +

g

2
gh2  - ha2, huv - hab,0, hbu - hav,uA - hbuy, uB + hbuy

\bigr) \top 
,

\bfitG (\bfitU ) =
\bigl( 
hv,huv - hab,hv2 +

g

2
h2  - hb2, hav - hbu,0, vA+ havx, vB  - havx,

\bigr) \top 
,

Q(\bfitU ) =

\left(          

0 0 0 0 0 0 0
0 0 0  - a 0 0 0
0 0 0  - b 0 0 0
0 0 0  - u 0 0 0
0 0 0  - v 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

\right)          
, R(\bfitU ) =

\left(          

0 0 0 0 0 0 0
0 0 0 0  - a 0 0
0 0 0 0  - b 0 0
0 0 0 0  - u 0 0
0 0 0 0  - v 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

\right)          
.

3.2. Numerical method. We now extend the PCCU scheme developed in sec-
tion 2.2 to the shallow water MHD system.

Following the notation from section 2.2, the semidiscrete PCCU scheme still reads
as (2.11)--(2.12), and the resulting system of ODEs is to be numerically integrated us-
ing an appropriate ODE solver, for instance, the three-stage third-order SSP Runge--
Kutta method, which we have used in the numerical experiments reported in sec-
tion 3.3.

In sections 3.2.1, 3.2.2, and 3.2.3 below, we focus on details of the scheme, which
are different from the ideal MHD case.

3.2.1. Piecewise linear reconstruction. A piecewise linear reconstruction is
performed for the discrete variables

\bfitW j,k := (hj,k, uj,k, vj,k, (ha)j,k, (hb)j,k,Aj,k,Bj,k)
\top ,

where uj,k := (hu)j,k/hj,k and vj,k := hv)j,k/hj,k. We then calculate cell interface values

\bfitW E, W, N, S
j,k using (2.15). The slopes (W

(i)
x )j,k for i \not = 4 and (W

(i)
y )j,k for i \not = 5 are

computed using the generalized minmod limiter as in (2.16)--(2.17).
As in the ideal MHD case, the slopes ((ha)x)j,k and ((hb)y)j,k are computed in a

way that allows one to enforce the local discrete divergence-free condition ((ha)x)j,k+
((hb)y)j,k \equiv 0 for all j, k. To this end, we proceed as in section 2.2.1 and set

((ha)x)j,k = \sigma j,kAj,k, ((hb)y)j,k = \sigma j,kBj,k,

where

\sigma j,k =min
\Bigl\{ 
1, \sigma x

j,k, \sigma 
y
j,k

\Bigr\} 
,

\sigma x
j,k :=

\left\{     min

\biggl\{ 
1,

((\widehat ha)x)j,k
Aj,k

\biggr\} 
if ((\widehat ha)x)j,kAj,k > 0,

0 otherwise,

\sigma y
j,k :=

\left\{     min

\biggl\{ 
1,

((\widehat hb)y)j,k
Bj,k

\biggr\} 
if ((\widehat hb)y)j,kBj,k > 0,

0 otherwise,

and ((\widehat ha)x)j,k and ((\widehat hb)y)j,k are computed using the generalized minmod reconstruc-
tion as in (2.16)--(2.17).
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3.2.2. One-sided speeds of propagation. We point out that in the shallow
water MHD case, computing the one-sided speeds s\pm 

j+ 1
2 ,k

and s\pm 
j,k+ 1

2

needed in the

semidiscretization (2.11)--(2.12), is significantly easier than in the ideal MHD case.
We follow the general recipe and estimate the x- and y-directional speeds using the
largest and smallest eigenvalues of the matrices \partial \bfitF 

\partial \bfitU (\bfitU ) - Q(\bfitU ) and \partial \bfitG 
\partial \bfitU (\bfitU ) - R(\bfitU ),

respectively. This results in

s+
j+ 1

2 ,k
=max

\biggl\{ 
uE
j,k +

\sqrt{} \bigl( 
aEj,k

\bigr) 2
+ ghE

j,k, u
W
j+1,k +

\sqrt{} \bigl( 
aWj+1,k

\bigr) 2
+ ghW

j+1,k, 0

\biggr\} 
,

s - 
j+ 1

2 ,k
=min

\biggl\{ 
uE
j,k  - 

\sqrt{} \bigl( 
aEj,k

\bigr) 2
+ ghE

j,k, u
W
j+1,k  - 

\sqrt{} \bigl( 
aWj+1,k

\bigr) 2
+ ghW

j+1,k, 0

\biggr\} 
,

s+
j,k+ 1

2

=max

\biggl\{ 
vNj,k +

\sqrt{} \bigl( 
bNj,k
\bigr) 2

+ ghN
j,k, v

S
j,k+1 +

\sqrt{} \bigl( 
bSj,k+1

\bigr) 2
+ ghS

j,k+1, 0

\biggr\} 
,

s - 
j,k+ 1

2

=min

\biggl\{ 
vNj,k  - 

\sqrt{} \bigl( 
bNj,k
\bigr) 2

+ ghN
j,k, v

S
j,k+1  - 

\sqrt{} \bigl( 
bSj,k+1

\bigr) 2
+ ghS

j,k+1, 0

\biggr\} 
.

3.2.3. Discretization of nonconservative products. In order to evaluate the
contribution of the nonconservative terms Q(\bfitU )\bfitU x appearing on the RHS of (3.4), we
again follow along the lines of [8, 11] and evaluate the corresponding integrals exactly:

Q
(1)
j,k =Q

(6)
j,k =Q

(7)
j,k =Q

(1)

\Psi ,j+ 1
2 ,k

=Q
(6)

\Psi ,j+ 1
2 ,k

=Q
(7)

\Psi ,j+ 1
2 ,k

= 0,

Q
(2)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde ha(x, yk)\widetilde h(x, yk) ((ha)x)j,k dx

=

\left\{               

 - aj,k\sigma j,kAj,k\Delta x, (hx)j,k = 0,

 - \sigma j,kAj,k

\biggl( 
(ha)j,k(hx)j,k  - hj,k\sigma j,kAj,k

((hx)j,k)2
ln

\biggl( 
hE
j,k

hW
j,k

\biggr) 
+

\sigma j,kAj,k\Delta x

(hx)j,k

\biggr) 
otherwise,

Q
(3)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde hb(x, yk)\widetilde h(x, yk) ((ha)x)j,k dx

=

\left\{             

 - bj,k\sigma j,kAj,k\Delta x, (hx)j,k = 0,

 - \sigma j,kAj,k

\biggl( 
(hb)j,k(hx)j,k  - hj,k((hb)x)j,k

((hx)j,k)2
ln

\biggl( 
hE
j,k

hW
j,k

\biggr) 
+

((hb)x)j,k\Delta x

(hx)j,k

\biggr) 
otherwise,

Q
(4)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde u(x, yk)((ha)x)j,k dx= - uj,k\sigma j,kAj,k\Delta x,

Q
(5)
j,k = - 

\int x
j+1

2

x
j - 1

2

\widetilde v(x, yk)((ha)x)j,k dx= - vj,k\sigma j,kAj,k\Delta x,
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Q
(2)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

(ha)Ej,k + s
\Bigl( 
(ha)Wj+1,k  - (ha)Ej,k

\Bigr) 
hE
j,k + s

\Bigl( 
hW
j+1,k  - hE

j,k

\Bigr) [ha]j+ 1
2 ,k

ds

=

\left\{                   

 - 1

2

\bigl( 
aEj,k + aWj+1,k

\bigr) 
[ha]j+ 1

2 ,k
, [h]j+ 1

2 ,k
= 0,

 - [ha]j+ 1
2 ,k

\biggl( 
(ha)Ej,k[h]j+ 1

2 ,k
 - hE

j,k[ha]j+ 1
2 ,k

[h]2
j+ 1

2 ,k

ln

\biggl( 
hW
j+1,k

hE
j,k

\biggr) 

+
[ha]j+ 1

2 ,k

[h]j+ 1
2 ,k

\biggr) 
otherwise,

Q
(3)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

(hb)Ej,k + s
\Bigl( 
(hb)Wj+1,k  - (hb)Ej,k

\Bigr) 
hE
j,k + s

\Bigl( 
hW
j+1,k  - hE

j,k

\Bigr) [ha]j+ 1
2 ,k

ds

=

\left\{                   

 - 1

2

\bigl( 
bEj,k + bWj+1,k

\bigr) 
[ha]j+ 1

2 ,k
, [h]j+ 1

2 ,k
= 0,

 - [ha]j+ 1
2 ,k

\biggl( 
(hb)Ej,k[h]j+ 1

2 ,k
 - hE

j,k[hb]j+ 1
2 ,k

[h]2
j+ 1

2 ,k

ln

\biggl( 
hW
j+1,k

hE
j,k

\biggr) 

+
[hb]j+ 1

2 ,k

[h]j+ 1
2 ,k

\biggr) 
otherwise,

Q
(4)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

\bigl\{ 
uE
j,k + s

\bigl( 
uW
j+1,k  - uE

j,k

\bigr) \bigr\} 
[ha]j+ 1

2 ,k
ds= - 

uE
j,k + uW

j+1,k

2
[ha]j+ 1

2 ,k
,

Q
(5)

\Psi ,j+ 1
2 ,k

= - 
\int 1

0

\bigl\{ 
vEj,k + s

\bigl( 
vWj+1,k  - vEj,k

\bigr) \bigr\} 
[ha]j+ 1

2 ,k
ds= - 

vEj,k + vWj+1,k

2
[ha]j+ 1

2 ,k
,

where

aj,k :=
(ha)j,k

hj,k

, bj,k :=
(hb)j,k

hj,k

, a
E(W)
j,k :=

(ha)
E(W)
j,k

h
E(W)
j,k

, b
E(W)
j,k :=

(hb)
E(W)
j,k

h
E(W)
j,k

,

[h]j+ 1
2 ,k

:= hW
j+1,k  - hE

j,k, [ha]j+ 1
2 ,k

:= (ha)Wj+1,k  - (ha)Ej,k,

[hb]j+ 1
2 ,k

:= (hb)Wj+1,k  - (hb)Ej,k.

The contribution of the nonconservative terms R(\bfitU )\bfitU x appearing on the RHS
of (3.4) is obtained in a similar manner and given by

R
(1)
j,k =R

(6)
j,k =R

(7)
j,k =R

(1)

\Psi ,j,k+ 1
2

=R
(6)

\Psi ,j,k+ 1
2

=R
(7)

\Psi ,j,k+ 1
2

= 0,

R
(2)
j,k =

\left\{             

 - aj,k\sigma j,kBj,k\Delta y, (hy)j,k = 0,

 - \sigma j,kBj,k

\biggl( 
(ha)j,k(hy)j,k  - hj,k((ha)y)j,k

((hy)j,k)2
ln

\biggl( 
hN
j,k

hS
j,k

\biggr) 
+

((ha)y)j,k\Delta y

(hy)j,k

\biggr) 
otherwise,

R
(3)
j,k =

\left\{               

 - bj,k\sigma j,kBj,k\Delta y, (hy)j,k = 0,

 - \sigma j,kBj,k

\biggl( 
(hb)j,k(hy)j,k  - hj,k\sigma j,kBj,k

((hy)j,k)2
ln

\biggl( 
hN
j,k

hS
j,k

\biggr) 
+

\sigma j,kBj,k\Delta y

(hy)j,k

\biggr) 
otherwise,
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R
(4)
j,k = - uj,k\sigma j,kBj,k\Delta y, R

(5)
j,k = - vj,k\sigma j,kBj,k\Delta y,

R
(2)

\Psi ,j,k+ 1
2

=

\left\{                   

 - 1

2

\bigl( 
aNj,k + aSj,k+1

\bigr) 
[hb]j,k+ 1

2
, [h]j,k+ 1

2
= 0,

 - [hb]j,k+ 1
2

\biggl( 
(ha)Nj,k[h]j,k+ 1

2
 - hN

j,k[ha]j,k+ 1
2

[h]2
j,k+ 1

2

ln

\biggl( 
hS
j,k+1

hN
j,k

\biggr) 

+
[ha]j,k+ 1

2

[h]j,k+ 1
2

\biggr) 
otherwise,

R
(3)

\Psi ,j,k+ 1
2

=

\left\{                   

 - 1

2

\bigl( 
bNj,k + bSj,k+1

\bigr) 
[hb]j,k+ 1

2
, [h]j,k+ 1

2
= 0,

 - [hb]j,k+ 1
2

\biggl( 
(hb)Nj,k[h]j,k+ 1

2
 - hN

j,k[hb]j,k+ 1
2

[h]2
j,k+ 1

2

ln

\biggl( 
hS
j,k+1

hN
j,k

\biggr) 

+
[hb]j,k+ 1

2

[h]j,k+ 1
2

\biggr) 
otherwise,

R
(4)

\Psi ,j,k+ 1
2

= - 1

2

\bigl( 
uN
j,k + uS

j,k+1

\bigr) 
[hb]j,k+ 1

2
, R

(5)

\Psi ,j,k+ 1
2

= - 1

2

\bigl( 
vNj,k + vSj,k+1

\bigr) 
[hb]j,k+ 1

2
,

where

a
N(S)
j,k :=

(ha)
N(S)
j,k

h
N(S)
j,k

, b
N(S)
j,k :=

(hb)
N(S)
j,k

h
N(S)
j,k

, [h]j,k+ 1
2
:= hS

j,k+1  - hN
j,k,

[ha]j,k+ 1
2
:= (ha)Sj,k+1  - (ha)Nj,k, [hb]j,k+ 1

2
:= (hb)Sj,k+1  - (hb)Nj,k.

3.3. Numerical examples. In this section, we apply the proposed PCCU
scheme to the 2-D shallow water MHD equations. In all of the examples, the CFL
number is set to \eta = 0.25 to satisfy the CFL condition in (2.13), and the minmod
parameter is set to \theta = 1.3.

Example 6---Orszag--Tang-like problem. This example, taken from [18, 70], is sim-
ilar to that of the ideal MHD Orszag--Tang problem studied in Example 3.

The shallow water MHD system is considered in the domain [0,2\pi ]\times [0,2\pi ] subject
to the periodic boundary conditions in both the x- and y-directions and the following
smooth initial data:

(h,u, v, a, b)(x, y,0) =

\biggl( 
25

9
, - siny, sinx, - siny, sin(2x)

\biggr) 
.

We compute the numerical solution by the proposed PCCU scheme on a uniform
200\times 200 mesh until the final time t= 2. Time snapshots of h and

\surd 
a2 + b2 at t= 1

and 2 are plotted in Figure 3.1. As one can see, the initially smooth solution breaks
down and develops multiple shock waves, whose interaction leads to the appearance
of many essential features of MHD turbulence. We observe that the obtained results
are in good agreement with those reported in [18, 70].

Example 7---rotor-like problem. Next, we consider a rotor-like problem taken from
[18, 33]. This benchmark, which is an extension of the ideal MHD rotor problem
studied in Example 4, portrays a disk with radius 0.1 of significant fluid depth h
rotating in a magnetic field.

The initial data

(h,u, v,ha,hb) =

\Biggl\{ 
(10, - y,x,1,0),

\sqrt{} 
x2 + y2 < 0.1,

(1,0,0,1,0) otherwise
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Fig. 3.1. Example 6: Fluid thickness h and magnetic field magnitude
\surd 
a2 + b2 computed by

the proposed PCCU scheme at t = 1 (top row) and 2 (bottom row). 40 equally spaced contours are
used in each plot.

are prescribed in the computational domain [ - 1,1]\times [ - 1,1], and zero-order extrap-
olation boundary conditions are set along its boundary. The solution computed by
the proposed PCCU scheme on a uniform 200\times 200 mesh at time t= 0.2 is plotted in
Figure 3.2. The obtained results are oscillation-free and overall comparable to those
reported in [18, 33].

Example 8---explosion problem. In the final example, we numerically solve the
explosion problem studied in [33, 59]. This is another benchmark for the shallow
water MHD equations considered subject to the following initial data:

(h,u, v, a, b)(x, y,0) =

\Biggl\{ 
(1,0,0,0.1,0),

\sqrt{} 
x2 + y2 < 0.3,

(0.1,0,0,1,0) otherwise.

In this example, we take the computational domain [ - 1,1]\times [ - 1,1] and implement
the zero-order extrapolation boundary conditions along its boundary.

The solution of the explosion problem consists of a shock traveling away from
the center, a rarefaction wave traveling toward the origin, and two Alfv\'en waves. We
compute the solution by the proposed PCCU scheme on a uniform 200\times 200 mesh.
The obtained results, shown in Figure 3.3 at t = 0.25, are nonoscillatory and agree
well with the corresponding results in [33, 59].
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Fig. 3.2. Example 7: Fluid thickness h, velocities u and v, and reduced magnetic field compo-
nents a and b computed by the proposed PCCU scheme. 40 equally spaced contours are used in each
plot.

Fig. 3.3. Example 8: Fluid thickness h, velocities u and v, and reduced magnetic field compo-
nents a and b computed by the proposed PCCU scheme. 40 equally spaced contours are used in each
plot.
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4. Conclusion. In this paper, we have developed a new second-order unstag-
gered path-conservative central-upwind (PCCU) scheme for the ideal and shallow
water magnetohydrodynamic (MHD) systems. The proposed scheme is (i) locally
divergence-free; (ii) Riemann-problem-solver-free; (iii) high-resolution; (iv) robust;
and (v) nonoscillatory. The derivation of the scheme is based on the Godunov--Powell
nonconservative modifications of the studied MHD systems. The local divergence-free
property is enforced by augmenting the studied systems with the evolution equations
for the corresponding derivatives of the magnetic field components and by using these
evolved quantities in the design of a special piecewise linear reconstruction of the
magnetic field, which also guarantees a nonoscillatory nature of the resulting scheme.
In addition, the proposed PCCU scheme allows for a proper treatment of the noncon-
servative product terms, which takes into account jumps of the normal component of
the magnetic field across cell interfaces, thus providing stability. The performance of
the new scheme has been illustrated on several benchmarks for both ideal and shal-
low water MHD systems, producing high-resolution and oscillation-free results with
positive computed quantities such as density, pressure, and water depth.

In future work, we plan to develop a provably positivity-preserving high-order
PCCU scheme as well as introduce a new well-balanced PCCU scheme for more general
shallow water MHD systems with the nonflat bottom topography and Coriolis forces
taken into account.
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